Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.

Identifieur interne : 000237 ( Ncbi/Merge ); précédent : 000236; suivant : 000238

A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.

Auteurs : Mary Y. Chang [États-Unis] ; Yoshinori Tanino [Japon] ; Veronika Vidova [États-Unis] ; Michael G. Kinsella [États-Unis] ; Christina K. Chan [États-Unis] ; Pamela Y. Johnson [États-Unis] ; Thomas N. Wight [États-Unis] ; Charles W. Frevert [États-Unis]

Source :

RBID : pubmed:24472738

Descripteurs français

English descriptors

Abstract

The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection.

DOI: 10.1016/j.matbio.2014.01.011
PubMed: 24472738

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24472738

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.</title>
<author>
<name sortKey="Chang, Mary Y" sort="Chang, Mary Y" uniqKey="Chang M" first="Mary Y" last="Chang">Mary Y. Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States. Electronic address: mychang@u.washington.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tanino, Yoshinori" sort="Tanino, Yoshinori" uniqKey="Tanino Y" first="Yoshinori" last="Tanino">Yoshinori Tanino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima</wicri:regionArea>
<wicri:noRegion>Fukushima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vidova, Veronika" sort="Vidova, Veronika" uniqKey="Vidova V" first="Veronika" last="Vidova">Veronika Vidova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kinsella, Michael G" sort="Kinsella, Michael G" uniqKey="Kinsella M" first="Michael G" last="Kinsella">Michael G. Kinsella</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Christina K" sort="Chan, Christina K" uniqKey="Chan C" first="Christina K" last="Chan">Christina K. Chan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Pamela Y" sort="Johnson, Pamela Y" uniqKey="Johnson P" first="Pamela Y" last="Johnson">Pamela Y. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wight, Thomas N" sort="Wight, Thomas N" uniqKey="Wight T" first="Thomas N" last="Wight">Thomas N. Wight</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frevert, Charles W" sort="Frevert, Charles W" uniqKey="Frevert C" first="Charles W" last="Frevert">Charles W. Frevert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24472738</idno>
<idno type="pmid">24472738</idno>
<idno type="doi">10.1016/j.matbio.2014.01.011</idno>
<idno type="wicri:Area/PubMed/Corpus">000304</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000304</idno>
<idno type="wicri:Area/PubMed/Curation">000304</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000304</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000309</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000309</idno>
<idno type="wicri:Area/Ncbi/Merge">000237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.</title>
<author>
<name sortKey="Chang, Mary Y" sort="Chang, Mary Y" uniqKey="Chang M" first="Mary Y" last="Chang">Mary Y. Chang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States. Electronic address: mychang@u.washington.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tanino, Yoshinori" sort="Tanino, Yoshinori" uniqKey="Tanino Y" first="Yoshinori" last="Tanino">Yoshinori Tanino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima</wicri:regionArea>
<wicri:noRegion>Fukushima</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vidova, Veronika" sort="Vidova, Veronika" uniqKey="Vidova V" first="Veronika" last="Vidova">Veronika Vidova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kinsella, Michael G" sort="Kinsella, Michael G" uniqKey="Kinsella M" first="Michael G" last="Kinsella">Michael G. Kinsella</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chan, Christina K" sort="Chan, Christina K" uniqKey="Chan C" first="Christina K" last="Chan">Christina K. Chan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Pamela Y" sort="Johnson, Pamela Y" uniqKey="Johnson P" first="Pamela Y" last="Johnson">Pamela Y. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wight, Thomas N" sort="Wight, Thomas N" uniqKey="Wight T" first="Thomas N" last="Wight">Thomas N. Wight</name>
<affiliation wicri:level="2">
<nlm:affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frevert, Charles W" sort="Frevert, Charles W" uniqKey="Frevert C" first="Charles W" last="Frevert">Charles W. Frevert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Matrix biology : journal of the International Society for Matrix Biology</title>
<idno type="eISSN">1569-1802</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Escherichia coli (pathogenicity)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Glucuronosyltransferase (biosynthesis)</term>
<term>Humans</term>
<term>Hyaluronan Synthases</term>
<term>Hyaluronic Acid (biosynthesis)</term>
<term>Hyaluronic Acid (metabolism)</term>
<term>Immunity, Innate (drug effects)</term>
<term>Immunity, Innate (genetics)</term>
<term>Lipopolysaccharides (toxicity)</term>
<term>Lung (cytology)</term>
<term>Lung (drug effects)</term>
<term>Lung (pathology)</term>
<term>Lung Diseases (genetics)</term>
<term>Lung Diseases (pathology)</term>
<term>Macrophage Activation (drug effects)</term>
<term>Macrophages (drug effects)</term>
<term>Macrophages (pathology)</term>
<term>Mice</term>
<term>Toll-Like Receptor 4 (genetics)</term>
<term>Versicans (biosynthesis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide hyaluronique (biosynthèse)</term>
<term>Acide hyaluronique (métabolisme)</term>
<term>Activation des macrophages ()</term>
<term>Animaux</term>
<term>Escherichia coli (pathogénicité)</term>
<term>Glucuronosyltransferase (biosynthèse)</term>
<term>Humains</term>
<term>Immunité innée ()</term>
<term>Immunité innée (génétique)</term>
<term>Lipopolysaccharides (toxicité)</term>
<term>Macrophages ()</term>
<term>Macrophages (anatomopathologie)</term>
<term>Maladies pulmonaires (anatomopathologie)</term>
<term>Maladies pulmonaires (génétique)</term>
<term>Poumon ()</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (cytologie)</term>
<term>Récepteur de type Toll-4 (génétique)</term>
<term>Régulation de l'expression des gènes ()</term>
<term>Souris</term>
<term>Versicanes (biosynthèse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glucuronosyltransferase</term>
<term>Hyaluronic Acid</term>
<term>Versicans</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Macrophages</term>
<term>Maladies pulmonaires</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide hyaluronique</term>
<term>Glucuronosyltransferase</term>
<term>Versicanes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Immunity, Innate</term>
<term>Lung</term>
<term>Macrophage Activation</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immunity, Innate</term>
<term>Lung Diseases</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Immunité innée</term>
<term>Maladies pulmonaires</term>
<term>Récepteur de type Toll-4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hyaluronic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide hyaluronique</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
<term>Lung Diseases</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Hyaluronan Synthases</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des macrophages</term>
<term>Animaux</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Macrophages</term>
<term>Poumon</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24472738</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1569-1802</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Matrix biology : journal of the International Society for Matrix Biology</Title>
<ISOAbbreviation>Matrix Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.</ArticleTitle>
<Pagination>
<MedlinePgn>1-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.matbio.2014.01.011</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0945-053X(14)00022-5</ELocationID>
<Abstract>
<AbstractText>The goals of this study were to characterize the changes in chondroitin sulfate proteoglycans and hyaluronan in lungs in acute response to gram-negative bacterial infection and to identify cellular components responsible for these changes. Mice were treated with intratracheal (IT) live Escherichia coli, E. coli lipopolysaccharide (LPS), or PBS. Both E. coli and LPS caused rapid selective increases in mRNA expression of versican and hyaluronan synthase (Has) isoforms 1 and 2 associated with increased immunohistochemical and histochemical staining for versican and hyaluronan in the lungs. Versican was associated with a subset of alveolar macrophages. To examine whether macrophages contribute to versican and hyaluronan accumulation, in vitro studies with primary cultures of bone marrow-derived and alveolar macrophages were performed. Unstimulated macrophages expressed very low levels of versican and hyaluronan synthase mRNA, with no detectible versican protein or hyaluronan product. Stimulation with LPS caused rapid increases in versican mRNA and protein, a rapid increase in Has1 mRNA, and concomitant inhibition of hyaluronidases 1 and 2, the major hyaluronan degrading enzymes. Hyaluronan could be detected following chloroquine pre-treatment, indicating rapid turnover and degradation of hyaluronan by macrophages. In addition, the effects of LPS, the M1 macrophage classical activation agonist, were compared to those of IL-4/IL-13 or IL-10, the M2a and M2c alternative activation agonists, respectively. Versican and Has1 increased only in response to M1 activation. Finally, the up-regulation of versican and Has1 in the whole lungs of wild-type mice following IT LPS was completely abrogated in TLR-4(-/-) mice. These findings suggest that versican and hyaluronan synthesis may play an important role in the innate immune response to gram-negative lung infection. </AbstractText>
<CopyrightInformation>Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Mary Y</ForeName>
<Initials>MY</Initials>
<AffiliationInfo>
<Affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States. Electronic address: mychang@u.washington.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tanino</LastName>
<ForeName>Yoshinori</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Fukushima Medical University School of Medicine, Department of Pulmonary Medicine, Fukushima, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vidova</LastName>
<ForeName>Veronika</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kinsella</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Christina K</ForeName>
<Initials>CK</Initials>
<AffiliationInfo>
<Affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Pamela Y</ForeName>
<Initials>PY</Initials>
<AffiliationInfo>
<Affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wight</LastName>
<ForeName>Thomas N</ForeName>
<Initials>TN</Initials>
<AffiliationInfo>
<Affiliation>Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frevert</LastName>
<ForeName>Charles W</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, United States; Division of Pulmonary/Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 RR030249</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL098067</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL098067</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 AI101984</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR030249-02</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Matrix Biol</MedlineTA>
<NlmUniqueID>9432592</NlmUniqueID>
<ISSNLinking>0945-053X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493487">Tlr4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>126968-45-4</RegistryNumber>
<NameOfSubstance UI="D053675">Versicans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-61-9</RegistryNumber>
<NameOfSubstance UI="D006820">Hyaluronic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.17</RegistryNumber>
<NameOfSubstance UI="D014453">Glucuronosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.212</RegistryNumber>
<NameOfSubstance UI="C491099">Has2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.212</RegistryNumber>
<NameOfSubstance UI="D000076002">Hyaluronan Synthases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ReprintIn">
<RefSource>Matrix Biol. 2014 Apr;35:162-73</RefSource>
<PMID Version="1">24727035</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014453" MajorTopicYN="N">Glucuronosyltransferase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076002" MajorTopicYN="N">Hyaluronan Synthases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006820" MajorTopicYN="N">Hyaluronic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008171" MajorTopicYN="N">Lung Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008262" MajorTopicYN="N">Macrophage Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053675" MajorTopicYN="N">Versicans</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Hyaluronan</Keyword>
<Keyword MajorTopicYN="N">Lung</Keyword>
<Keyword MajorTopicYN="N">Macrophage</Keyword>
<Keyword MajorTopicYN="N">TLR-4</Keyword>
<Keyword MajorTopicYN="N">Versican</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24472738</ArticleId>
<ArticleId IdType="pii">S0945-053X(14)00022-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.matbio.2014.01.011</ArticleId>
<ArticleId IdType="pmc">PMC4019684</ArticleId>
<ArticleId IdType="mid">NIHMS560535</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Physiol Rev. 2011 Jan;91(1):221-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2006 Sep;6(9):633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16917509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Nov 15;177(10):7303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2007 Jun 1;101(3):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17226775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 31;282(35):25687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2007;23:435-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 May 15;164(10):5439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2001 Jul;108(2):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Sep;69(9):5768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 14;276(37):35111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11451952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2001 Oct;15(12):2179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2001 Dec;20(8):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11731267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2002 Mar;109(6):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2002 May;26(5):572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11970909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 May;278(9):1419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21362137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 30;286(39):34298-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2012 Mar;31(2):90-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22155153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 20;287(17):14122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22351750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Jul 15;189(2):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22689883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2012 Aug;47(2):196-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Diab Rep. 2012 Oct;12(5):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22810951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002963</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2013 Jan;23(1):43-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22917573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biomater. 2013 Mar;9(3):5621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23168224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 May;280(10):2165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2012 Jul;122(2):344-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2013 Nov;23(11):1270-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23964097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2005 Dec;26(12):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2006 Apr;79(4):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16434690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2002 Apr;2(4):394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2002 Oct;14(5):617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 6;277(49):47626-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):640-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12855817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2004 Jul;287(1):L143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2004 Jul;31(1):92-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2004 Jul;4(7):528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1981 Nov;109(2):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6895375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1982 Jan;125(1):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6175261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1983 Dec;174(3):343-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6420793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1988 Jul;132(1):161-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3394797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1989 Mar;139(3):682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2923370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 May 15;264(14):8012-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2470739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1989 Oct;140(4):1028-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2478053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Dec;257(6 Pt 1):L379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2481983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Sep 15;266(26):17640-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1894644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflammation. 1992 Oct;16(5):459-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1428122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1993 Feb;155(2):324-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8432391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb. 1993 Jul;13(7):1026-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8318504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 1993 Jun;74(6):2812-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8365985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Mar;217(2):311-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8203761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jul;126(2):575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1994 Sep;107 ( Pt 9):2581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1996 Jan;64(1):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1996 Mar 1;183(3):1119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 1997 Dec;10(12):2731-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9493652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2085-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 1999 Apr;19(4):1004-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10195929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):25085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2004 Dec;25(12):677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Nov 15;117(Pt 24):5887-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Mar;16(3):1330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2005 Jul;15(7):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2005 Sep;207(1):102-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16041692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Nov;11(11):1173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 Dec;75(12):5640-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17923522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 21;283(12):7666-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18201970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:4933-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2008;9:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 1;457(7225):102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2009 Sep;86(3):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec (Hoboken). 2010 Jun;293(6):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20503391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Jul;43(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 20;285(34):26126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Chang, Mary Y" sort="Chang, Mary Y" uniqKey="Chang M" first="Mary Y" last="Chang">Mary Y. Chang</name>
</region>
<name sortKey="Chan, Christina K" sort="Chan, Christina K" uniqKey="Chan C" first="Christina K" last="Chan">Christina K. Chan</name>
<name sortKey="Frevert, Charles W" sort="Frevert, Charles W" uniqKey="Frevert C" first="Charles W" last="Frevert">Charles W. Frevert</name>
<name sortKey="Johnson, Pamela Y" sort="Johnson, Pamela Y" uniqKey="Johnson P" first="Pamela Y" last="Johnson">Pamela Y. Johnson</name>
<name sortKey="Kinsella, Michael G" sort="Kinsella, Michael G" uniqKey="Kinsella M" first="Michael G" last="Kinsella">Michael G. Kinsella</name>
<name sortKey="Vidova, Veronika" sort="Vidova, Veronika" uniqKey="Vidova V" first="Veronika" last="Vidova">Veronika Vidova</name>
<name sortKey="Wight, Thomas N" sort="Wight, Thomas N" uniqKey="Wight T" first="Thomas N" last="Wight">Thomas N. Wight</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Tanino, Yoshinori" sort="Tanino, Yoshinori" uniqKey="Tanino Y" first="Yoshinori" last="Tanino">Yoshinori Tanino</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24472738
   |texte=   A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24472738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroquineV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021