Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency

Identifieur interne : 002304 ( Main/Merge ); précédent : 002303; suivant : 002305

Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency

Auteurs : Hai-Quan Mao [Singapour, États-Unis] ; Krishnendu Roy [États-Unis] ; Vu L. Troung-Le [États-Unis] ; Kevin A. Janes [États-Unis] ; Kevin Y. Lin [États-Unis] ; Yan Wang [États-Unis] ; J. Thomas August [États-Unis] ; Kam W. Leong [Singapour, États-Unis]

Source :

RBID : ISTEX:B0AD63CD830DAD1F9C94BBC573DB964A11BDFEAF

English descriptors

Abstract

Abstract: Chitosan-DNA nanoparticles were prepared using a complex coacervation process. The important parameters for the nanoparticle synthesis were investigated, including the concentrations of DNA, chitosan and sodium sulfate, temperature of the solutions, pH of the buffer, and molecular weights of chitosan and DNA. At an amino group to phosphate group ratio (N/P ratio) between 3 and 8 and a chitosan concentration of 100 μg/ml, the size of particles was optimized to ∼100–250 nm with a narrow distribution, with a composition of 35.6 and 64.4% by weight for DNA and chitosan, respectively. The surface charge of these particles was slightly positive with a zeta potential of +12 to +18 mV at pH lower than 6.0, and became nearly neutral at pH 7.2. The chitosan-DNA nanoparticles could partially protect the encapsulated plasmid DNA from nuclease degradation as shown by electrophoretic mobility analysis. The transfection efficiency of chitosan-DNA nanoparticles was cell-type dependent. Typically, it was three to four orders of magnitude, in relative light units, higher than background level in HEK293 cells, and two to ten times lower than that achieved by Lipofectamine™-DNA complexes. The presence of 10% fetal bovine serum did not interfere with their transfection ability. Chloroquine could be co-encapsulated in the nanoparticles at 5.2%, but with negligible enhancement effect despite the fact that chitosan only showed limited buffering capacity compared with PEI. The present study also developed three different schemes to conjugate transferrin or KNOB protein to the nanoparticle surface. The transferrin conjugation only yielded a maximum of four-fold increase in their transfection efficiency in HEK293 cells and HeLa cells, whereas KNOB conjugated nanoparticles could improve gene expression level in HeLa cells by 130-fold. Conjugation of PEG on the nanoparticles allowed lyophilization without aggregation, and without loss of bioactivity for at least 1 month in storage. The clearance of the PEGylated nanoparticles in mice following intravenous administration was slower than unmodified nanoparticles at 15 min, and with higher depositions in kidney and liver. However, no difference was observed at the 1-h time point.

Url:
DOI: 10.1016/S0168-3659(00)00361-8

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:B0AD63CD830DAD1F9C94BBC573DB964A11BDFEAF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency</title>
<author>
<name sortKey="Mao, Hai Quan" sort="Mao, Hai Quan" uniqKey="Mao H" first="Hai-Quan" last="Mao">Hai-Quan Mao</name>
</author>
<author>
<name sortKey="Roy, Krishnendu" sort="Roy, Krishnendu" uniqKey="Roy K" first="Krishnendu" last="Roy">Krishnendu Roy</name>
</author>
<author>
<name sortKey="Troung Le, Vu L" sort="Troung Le, Vu L" uniqKey="Troung Le V" first="Vu L." last="Troung-Le">Vu L. Troung-Le</name>
</author>
<author>
<name sortKey="Janes, Kevin A" sort="Janes, Kevin A" uniqKey="Janes K" first="Kevin A." last="Janes">Kevin A. Janes</name>
</author>
<author>
<name sortKey="Lin, Kevin Y" sort="Lin, Kevin Y" uniqKey="Lin K" first="Kevin Y." last="Lin">Kevin Y. Lin</name>
</author>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
</author>
<author>
<name sortKey="August, J Thomas" sort="August, J Thomas" uniqKey="August J" first="J. Thomas" last="August">J. Thomas August</name>
</author>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B0AD63CD830DAD1F9C94BBC573DB964A11BDFEAF</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0168-3659(00)00361-8</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-J8QQC34V-D/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001062</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001062</idno>
<idno type="wicri:Area/Istex/Curation">001062</idno>
<idno type="wicri:Area/Istex/Checkpoint">001103</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001103</idno>
<idno type="wicri:doubleKey">0168-3659:2001:Mao H:chitosan:dna:nanoparticles</idno>
<idno type="wicri:Area/Main/Merge">002304</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency</title>
<author>
<name sortKey="Mao, Hai Quan" sort="Mao, Hai Quan" uniqKey="Mao H" first="Hai-Quan" last="Mao">Hai-Quan Mao</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Singapour</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roy, Krishnendu" sort="Roy, Krishnendu" uniqKey="Roy K" first="Krishnendu" last="Roy">Krishnendu Roy</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Troung Le, Vu L" sort="Troung Le, Vu L" uniqKey="Troung Le V" first="Vu L." last="Troung-Le">Vu L. Troung-Le</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Janes, Kevin A" sort="Janes, Kevin A" uniqKey="Janes K" first="Kevin A." last="Janes">Kevin A. Janes</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Kevin Y" sort="Lin, Kevin Y" uniqKey="Lin K" first="Kevin Y." last="Lin">Kevin Y. Lin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yan" sort="Wang, Yan" uniqKey="Wang Y" first="Yan" last="Wang">Yan Wang</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="August, J Thomas" sort="August, J Thomas" uniqKey="August J" first="J. Thomas" last="August">J. Thomas August</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Singapour</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 726 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Controlled Release</title>
<title level="j" type="abbrev">COREL</title>
<idno type="ISSN">0168-3659</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">70</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="399">399</biblScope>
<biblScope unit="page" to="421">421</biblScope>
</imprint>
<idno type="ISSN">0168-3659</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0168-3659</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aggregation</term>
<term>Amino</term>
<term>Amino groups</term>
<term>Buffering</term>
<term>Cationic</term>
<term>Chitosan</term>
<term>Chitosanase</term>
<term>Chloroquine</term>
<term>Coacervation</term>
<term>Conjugation</term>
<term>Conjugation degree</term>
<term>Digestion</term>
<term>Dnase</term>
<term>Gene delivery</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Intravenous administration</term>
<term>Knob</term>
<term>Knob protein</term>
<term>Luciferase</term>
<term>Luciferase activity</term>
<term>Lysozyme</term>
<term>Nanoparticle</term>
<term>Nanoparticle surface</term>
<term>Nanoparticle suspension</term>
<term>Nanoparticles</term>
<term>Particle size</term>
<term>Pegylated</term>
<term>Pegylated nanoparticles</term>
<term>Pegylation</term>
<term>Pharm</term>
<term>Plasmid</term>
<term>Proc</term>
<term>Receptor</term>
<term>Room temperature</term>
<term>Sulfate</term>
<term>Surface charge</term>
<term>Time point</term>
<term>Tissue distribution</term>
<term>Transfection</term>
<term>Transfection ability</term>
<term>Transferrin</term>
<term>Uorescence</term>
<term>Uorescence intensity</term>
<term>Zeta</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Chitosan-DNA nanoparticles were prepared using a complex coacervation process. The important parameters for the nanoparticle synthesis were investigated, including the concentrations of DNA, chitosan and sodium sulfate, temperature of the solutions, pH of the buffer, and molecular weights of chitosan and DNA. At an amino group to phosphate group ratio (N/P ratio) between 3 and 8 and a chitosan concentration of 100 μg/ml, the size of particles was optimized to ∼100–250 nm with a narrow distribution, with a composition of 35.6 and 64.4% by weight for DNA and chitosan, respectively. The surface charge of these particles was slightly positive with a zeta potential of +12 to +18 mV at pH lower than 6.0, and became nearly neutral at pH 7.2. The chitosan-DNA nanoparticles could partially protect the encapsulated plasmid DNA from nuclease degradation as shown by electrophoretic mobility analysis. The transfection efficiency of chitosan-DNA nanoparticles was cell-type dependent. Typically, it was three to four orders of magnitude, in relative light units, higher than background level in HEK293 cells, and two to ten times lower than that achieved by Lipofectamine™-DNA complexes. The presence of 10% fetal bovine serum did not interfere with their transfection ability. Chloroquine could be co-encapsulated in the nanoparticles at 5.2%, but with negligible enhancement effect despite the fact that chitosan only showed limited buffering capacity compared with PEI. The present study also developed three different schemes to conjugate transferrin or KNOB protein to the nanoparticle surface. The transferrin conjugation only yielded a maximum of four-fold increase in their transfection efficiency in HEK293 cells and HeLa cells, whereas KNOB conjugated nanoparticles could improve gene expression level in HeLa cells by 130-fold. Conjugation of PEG on the nanoparticles allowed lyophilization without aggregation, and without loss of bioactivity for at least 1 month in storage. The clearance of the PEGylated nanoparticles in mice following intravenous administration was slower than unmodified nanoparticles at 15 min, and with higher depositions in kidney and liver. However, no difference was observed at the 1-h time point.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002304 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 002304 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:B0AD63CD830DAD1F9C94BBC573DB964A11BDFEAF
   |texte=   Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021