Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†

Identifieur interne : 001A05 ( Istex/Corpus ); précédent : 001A04; suivant : 001A06

The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†

Auteurs : Roni Daoud ; Jose Desneves ; Leslie W. Deady ; Leann Tilley ; Rik J. Scheper ; Philippe Gros ; Elias Georges

Source :

RBID : ISTEX:36ABA24296CC0F5175E3849F9CFC34622FCCF8CA

Abstract

Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug, N-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C4, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions.

Url:
DOI: 10.1021/bi9922188

Links to Exploration step

ISTEX:36ABA24296CC0F5175E3849F9CFC34622FCCF8CA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†</title>
<author>
<name sortKey="Daoud, Roni" sort="Daoud, Roni" uniqKey="Daoud R" first="Roni" last="Daoud">Roni Daoud</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Institute of Parasitology, McGill University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desneves, Jose" sort="Desneves, Jose" uniqKey="Desneves J" first="Jose" last="Desneves">Jose Desneves</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deady, Leslie W" sort="Deady, Leslie W" uniqKey="Deady L" first="Leslie W." last="Deady">Leslie W. Deady</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> La Trobe University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tilley, Leann" sort="Tilley, Leann" uniqKey="Tilley L" first="Leann" last="Tilley">Leann Tilley</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> La Trobe University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scheper, Rik J" sort="Scheper, Rik J" uniqKey="Scheper R" first="Rik J." last="Scheper">Rik J. Scheper</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Free University Hospital.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gros, Philippe" sort="Gros, Philippe" uniqKey="Gros P" first="Philippe" last="Gros">Philippe Gros</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Biochemistry, McGill University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Georges, Elias" sort="Georges, Elias" uniqKey="Georges E" first="Elias" last="Georges">Elias Georges</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Institute of Parasitology, McGill University.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed:  Institute ofParasitology, McGill University, 21, 111 Lakeshore Road, Ste-Annede Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514)398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:36ABA24296CC0F5175E3849F9CFC34622FCCF8CA</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1021/bi9922188</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites
<ref type="bib" target="#bi9922188AF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Daoud, Roni" sort="Daoud, Roni" uniqKey="Daoud R" first="Roni" last="Daoud">Roni Daoud</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Institute of Parasitology, McGill University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desneves, Jose" sort="Desneves, Jose" uniqKey="Desneves J" first="Jose" last="Desneves">Jose Desneves</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deady, Leslie W" sort="Deady, Leslie W" uniqKey="Deady L" first="Leslie W." last="Deady">Leslie W. Deady</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> La Trobe University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tilley, Leann" sort="Tilley, Leann" uniqKey="Tilley L" first="Leann" last="Tilley">Leann Tilley</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> La Trobe University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scheper, Rik J" sort="Scheper, Rik J" uniqKey="Scheper R" first="Rik J." last="Scheper">Rik J. Scheper</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Free University Hospital.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gros, Philippe" sort="Gros, Philippe" uniqKey="Gros P" first="Philippe" last="Gros">Philippe Gros</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Biochemistry, McGill University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Georges, Elias" sort="Georges, Elias" uniqKey="Georges E" first="Elias" last="Georges">Elias Georges</name>
<affiliation>
<mods:affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Institute of Parasitology, McGill University.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed:  Institute ofParasitology, McGill University, 21, 111 Lakeshore Road, Ste-Annede Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514)398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2000-04-26">2000</date>
<date when="2000-05-23">2000</date>
<biblScope unit="vol">39</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="6094">6094</biblScope>
<biblScope unit="page" to="6102">6102</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug, N-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C4, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>iaci</json:string>
<json:string>photoaffinity</json:string>
<json:string>ltc4</json:string>
<json:string>polypeptide</json:string>
<json:string>digestion</json:string>
<json:string>msd1</json:string>
<json:string>trypsin</json:string>
<json:string>biochemistry</json:string>
<json:string>deeley</json:string>
<json:string>mrpm6</json:string>
<json:string>chem</json:string>
<json:string>msd2</json:string>
<json:string>biol</json:string>
<json:string>mrpr1</json:string>
<json:string>msd3</json:string>
<json:string>molar excess</json:string>
<json:string>photolabeled</json:string>
<json:string>biochem</json:string>
<json:string>transmembrane</json:string>
<json:string>monoclonal</json:string>
<json:string>photolabeling</json:string>
<json:string>iaciphotolabeled</json:string>
<json:string>peptide</json:string>
<json:string>doxorubicin</json:string>
<json:string>drug binding</json:string>
<json:string>sucrose</json:string>
<json:string>nbd1</json:string>
<json:string>photoreactive</json:string>
<json:string>colchicine</json:string>
<json:string>nbd2</json:string>
<json:string>helix</json:string>
<json:string>mabs</json:string>
<json:string>epitope</json:string>
<json:string>protease</json:string>
<json:string>apparent molecular mass</json:string>
<json:string>transmembrane helix</json:string>
<json:string>direct binding</json:string>
<json:string>molar</json:string>
<json:string>drug accumulation</json:string>
<json:string>unmodified</json:string>
<json:string>drug binding site</json:string>
<json:string>mrpm6 mabs</json:string>
<json:string>photoreactive drug</json:string>
<json:string>sodium azide</json:string>
<json:string>photolabeled peptide</json:string>
<json:string>drug sensitive</json:string>
<json:string>resistant cell</json:string>
<json:string>plasma membrane</json:string>
<json:string>mcgill university</json:string>
<json:string>multidrug resistance protein</json:string>
<json:string>protease inhibitor</json:string>
<json:string>monoclonal antibody</json:string>
<json:string>cole</json:string>
<json:string>membrane</json:string>
<json:string>membrane vesicle</json:string>
<json:string>iaci accumulation</json:string>
<json:string>ltc4 transport</json:string>
<json:string>drug binding domain</json:string>
<json:string>exhaustive digestion</json:string>
<json:string>silver staining</json:string>
<json:string>drug transport</json:string>
<json:string>carboxyl third</json:string>
<json:string>result show</json:string>
<json:string>multiple site</json:string>
<json:string>linker domain</json:string>
<json:string>several study</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>DAOUD Roni</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>Institute of Parasitology, McGill University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>DESNEVES Jose</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>DEADY Leslie W.</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>La Trobe University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>TILLEY Leann</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>La Trobe University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>SCHEPER Rik J.</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>Free University Hospital.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GROS Philippe</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>Department of Biochemistry, McGill University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>GEORGES Elias</name>
<affiliations>
<json:string>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</json:string>
<json:string>Institute of Parasitology, McGill University.</json:string>
<json:string>To whom correspondence should be addressed:  Institute ofParasitology, McGill University, 21, 111 Lakeshore Road, Ste-Annede Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514)398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-J0RG5SH4-V</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug, N-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C4, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>351</abstractWordCount>
<abstractCharCount>2420</abstractCharCount>
<keywordCount>0</keywordCount>
<score>10</score>
<pdfWordCount>6697</pdfWordCount>
<pdfCharCount>39822</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>744</pdfWordsPerPage>
<pdfText>true</pdfText>
</qualityIndicators>
<title>The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>39</volume>
<issue>20</issue>
<pages>
<first>6094</first>
<last>6102</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-J0RG5SH4-V</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1021/bi9922188</json:string>
</doi>
<id>36ABA24296CC0F5175E3849F9CFC34622FCCF8CA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2000 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="e-published" when="2000-04-26">2000</date>
<date when="2000-05-23">2000</date>
<date type="Copyright" when="2000">2000</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites
<ref type="bib" target="#bi9922188AF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Daoud</surname>
<forename type="first">Roni</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref></ref>
<p>  Institute of Parasitology, McGill University.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Desneves</surname>
<forename type="first">Jose</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Deady</surname>
<forename type="first">Leslie W.</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref>§</ref>
<p>  La Trobe University.</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Tilley</surname>
<forename type="first">Leann</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref>§</ref>
<p>  La Trobe University.</p>
</note>
</author>
<author xml:id="author-0004">
<persName>
<surname>Scheper</surname>
<forename type="first">Rik J.</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref></ref>
<p>  Free University Hospital.</p>
</note>
</author>
<author xml:id="author-0005">
<persName>
<surname>Gros</surname>
<forename type="first">Philippe</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref></ref>
<p>  Department of Biochemistry, McGill University.</p>
</note>
</author>
<author xml:id="author-0006" role="corresp">
<persName>
<surname>Georges</surname>
<forename type="first">Elias</forename>
</persName>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </affiliation>
<note place="foot">
<ref></ref>
<p>  Institute of Parasitology, McGill University.</p>
</note>
<affiliation role="corresp"> To whom correspondence should be addressed:  Institute of Parasitology, McGill University, 21, 111 Lakeshore Road, Ste-Anne de Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514) 398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</affiliation>
</author>
<idno type="istex">36ABA24296CC0F5175E3849F9CFC34622FCCF8CA</idno>
<idno type="ark">ark:/67375/TPS-J0RG5SH4-V</idno>
<idno type="DOI">10.1021/bi9922188</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="2000-04-26">2000</date>
<date when="2000-05-23">2000</date>
<biblScope unit="vol">39</biblScope>
<biblScope unit="issue">20</biblScope>
<biblScope unit="page" from="6094">6094</biblScope>
<biblScope unit="page" to="6102">6102</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract>
<p>Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug,
<hi rend="italic">N</hi>
-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C
<hi rend="subscript">4</hi>
, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="zxx"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi9922188</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites
<xref rid="bi9922188AF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Daoud</surname>
<given-names>Roni</given-names>
</name>
<xref rid="bi9922188AF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Desneves</surname>
<given-names>Jose</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Deady</surname>
<given-names>Leslie W.</given-names>
</name>
<xref rid="bi9922188AF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Tilley</surname>
<given-names>Leann</given-names>
</name>
<xref rid="bi9922188AF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Scheper</surname>
<given-names>Rik J.</given-names>
</name>
<xref rid="bi9922188AF5">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Gros</surname>
<given-names>Philippe</given-names>
</name>
<xref rid="bi9922188AF6">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Georges</surname>
<given-names>Elias</given-names>
</name>
<xref rid="bi9922188AF1">*</xref>
<xref rid="bi9922188AF3">
<sup></sup>
</xref>
</contrib>
<aff>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue, Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia, and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands </aff>
</contrib-group>
<author-notes>
<fn id="bi9922188AF3">
<label></label>
<p>  Institute of Parasitology, McGill University.</p>
</fn>
<fn id="bi9922188AF4">
<label>§</label>
<p>  La Trobe University.</p>
</fn>
<fn id="bi9922188AF5">
<label></label>
<p>  Free University Hospital.</p>
</fn>
<fn id="bi9922188AF6">
<label></label>
<p>  Department of Biochemistry, McGill University.</p>
</fn>
<corresp id="bi9922188AF1">  To whom correspondence should be addressed:  Institute of Parasitology, McGill University, 21, 111 Lakeshore Road, Ste-Anne de Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514) 398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>26</day>
<month>04</month>
<year>2000</year>
</pub-date>
<pub-date pub-type="ppub">
<day>23</day>
<month>05</month>
<year>2000</year>
</pub-date>
<volume>39</volume>
<issue>20</issue>
<fpage>6094</fpage>
<lpage>6102</lpage>
<history>
<date date-type="received">
<day>23</day>
<month>09</month>
<year>1999</year>
</date>
<date date-type="rev-recd">
<day>28</day>
<month>12</month>
<year>1999</year>
</date>
<date date-type="asap">
<day>26</day>
<month>04</month>
<year>2000</year>
</date>
<date date-type="issue-pub">
<day>23</day>
<month>05</month>
<year>2000</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2000 American Chemical Society</copyright-statement>
<copyright-year>2000</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug,
<italic toggle="yes">N</italic>
-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C
<sub>4</sub>
, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi9922188</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi9922188AF2">
<label></label>
<p>  This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada to E.G. Research at the Institute of Parasitology is partially supported by a grant from the FCAR pour l'aide à la recherche.</p>
</notes>
</front>
<body>
<sec id="d7e196">
<title></title>
<p>Treatment of cancer patients with chemotherapeutic drugs is often unsuccessful due to the emergence of drug resistant tumors. Similarly, tumor cell lines selected in vitro with anticancer drugs become resistant to multiple drugs with concurrent overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp1)
<sup>1</sup>
and the multidrug resistance protein (MRP) (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00001" ref-type="bibr"></xref>
<xref rid="bi9922188b00002" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00003" ref-type="bibr"></xref>
</named-content>
</italic>
). Gene transfer studies with human P-gp1 or MRP cDNA were shown to confer resistance to similar anticancer drugs onto previously drug susceptible cells (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00004" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00005" ref-type="bibr"></xref>
</named-content>
</italic>
). Furthermore, disruption of P-gp1 or MRP genes in mice led to increased sensitivity to natural product toxins and elevated glutathione levels in MRP-expressing tissues (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00006" ref-type="bibr"></xref>
<xref rid="bi9922188b00007" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00008" ref-type="bibr"></xref>
</named-content>
</italic>
). Although both proteins are likely to mediate several physiological functions, P-gp1 appears to function as a nonspecific efflux pump at the blood−brain barrier (
<italic toggle="yes">
<xref rid="bi9922188b00006" ref-type="bibr"></xref>
</italic>
), while MRP functions include mediation of inflammatory responses (
<italic toggle="yes">
<xref rid="bi9922188b00008" ref-type="bibr"></xref>
</italic>
). Moreover, both proteins have been shown to function as “flipases” of short chain lipids (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00009" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00010" ref-type="bibr"></xref>
</named-content>
</italic>
) and to mediate the transport of normal cell metabolites and xenobiotics (
<italic toggle="yes">5</italic>
,
<italic toggle="yes"> 11−13</italic>
). </p>
<p>P-gp1 and the MRP are members of a large family of membrane-trafficking proteins that couple ATP hydrolysis to ligand transport across the cell membrane (
<italic toggle="yes">
<xref rid="bi9922188b00014" ref-type="bibr"></xref>
</italic>
); however, the amino acid sequences of the two proteins are 15% identical (
<italic toggle="yes">
<xref rid="bi9922188b00015" ref-type="bibr"></xref>
</italic>
). MRP primary structure encodes an MDR-like core of two membrane-spanning domains (MSD2 and MSD3) and two nucleotide-binding domains (NBD1 and NBD2), in addition to a 220-amino acid N-terminal membrane-spanning domain (MSD1) (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00016" ref-type="bibr"></xref>
<xref rid="bi9922188b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). Although the role of MSD1 remains to be clarified, it is thought to contain five transmembrane helices with an extracytosolic N-terminus (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00017" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). Furthermore, deletion of the first transmembrane helix from MSD1 or the entire MSD1 plus the linker sequence between MDS1 and MDS2 was shown to inhibit MRP-mediated transport of LTC
<sub>4</sub>
(
<italic toggle="yes">
<xref rid="bi9922188b00019" ref-type="bibr"></xref>
</italic>
). More recently, Bakos et al. (
<italic toggle="yes">
<xref rid="bi9922188b00020" ref-type="bibr"></xref>
</italic>
) showed that the deletion of all transmembrane helices of MSD1 had no effect on MRP-mediated LTC
<sub>4</sub>
transport. Interestingly, deletion of the linker domain between MSD1 and MSD2 abolished LTC
<sub>4</sub>
transport (
<italic toggle="yes">
<xref rid="bi9922188b00020" ref-type="bibr"></xref>
</italic>
). </p>
<p>Several studies have shown MRP-mediated transport of glutathione-, glucuronidate-, and sulfate-conjugated drugs (
<italic toggle="yes">11</italic>
,
<italic toggle="yes"> 21−23</italic>
). The glutathione-conjugated eicosanoid, leukotriene C4 (LTC
<sub>4</sub>
), is the highest-affinity substrate for MRP transporter (
<italic toggle="yes">11</italic>
,
<italic toggle="yes"> 21</italic>
,
<italic toggle="yes"> 22</italic>
). Indeed, the MRP appears to function as a cotransporter of glutathione; hence, MRP-like proteins are known as GS-X pumps or multispecific organic anion transporters (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00024" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00025" ref-type="bibr"></xref>
</named-content>
</italic>
). The ability of MRP to bind and transport unmodified drugs remains to be resolved. The MRP was shown to transport several unmodified drugs and natural products (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00026" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00027" ref-type="bibr"></xref>
</named-content>
</italic>
). For example, direct binding and transport of unmodified quinoline-based drugs in MRP-expressing MDR cells has been previously described (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00027" ref-type="bibr"></xref>
<xref rid="bi9922188b00028" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00029" ref-type="bibr"></xref>
</named-content>
</italic>
). However, Loe et al. (
<italic toggle="yes">
<xref rid="bi9922188b00030" ref-type="bibr"></xref>
</italic>
) found MRP-mediated active transport of unmodified vincristine only in the presence of GSH. </p>
<p>Photoreactive drug analogues have been previously employed to study protein receptor interactions with small ligand molecules (
<italic toggle="yes">
<xref rid="bi9922188b00031" ref-type="bibr"></xref>
</italic>
). The use of photoreactive drug analogues that photoaffinity label P-gp has demonstrated the presence of at least two drug binding sites which map to sequences in transmembranes 5 and 6, and 11 and 12 (
<italic toggle="yes">
<xref rid="bi9922188b00032" ref-type="bibr"></xref>
</italic>
). The drug binding domains identified by photoaffinity labeling were later confirmed by mutational analyses of P-gp1 TMs sequences (
<italic toggle="yes">
<xref rid="bi9922188b00033" ref-type="bibr"></xref>
</italic>
). Several attempts to photoaffinity label the MRP with commercially available P-gp-specific photoreactive drugs have not been successful (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00028" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00034" ref-type="bibr"></xref>
</named-content>
</italic>
). Leier et al. (
<italic toggle="yes">
<xref rid="bi9922188b00011" ref-type="bibr"></xref>
</italic>
) demonstrated the photoaffinity labeling of MRP with [
<sup>3</sup>
H]LTC
<sub>4</sub>
. The specificity of LTC
<sub>4</sub>
photoaffinity labeling was confirmed by competition experiments with nonradiolabeled LTC
<sub>4</sub>
and MK571, a quinoline-based antagonist of the LTD
<sub>4</sub>
receptor which reverses MRP-mediated MDR (
<italic toggle="yes">
<xref rid="bi9922188b00035" ref-type="bibr"></xref>
</italic>
). However, photoaffinity labeling of MRP by [
<sup>3</sup>
H]LTC
<sub>4</sub>
suffers from a weak photolabeling efficiency which limits its usefulness in studying MRP−drug interactions. Furthermore, with respect to MRP binding to anticancer drugs, it is not known if LTC
<sub>4</sub>
and unmodified anticancer drugs bind to the same sites. In this report, we demonstrate specific photoaffinity labeling of the MRP by a quinoline-based photoreactive drug. Moreover, our results show for the first time photoaffinity labeling of three sites in the N- and C-halves of the MRP. </p>
</sec>
<sec id="d7e381">
<title>Materials and Methods</title>
<p>
<italic toggle="yes">Materials.</italic>
Iodine-125 (100.7 mCi/mL) was purchased from Amersham Biochemical Inc. (Mississauga, ON). Protein A-coupled Sepharose was purchased from Pharmacia Inc. (Montreal, PQ). The LTD
<sub>4</sub>
receptor antagonist MK571 was kindly provided by A. W. Ford-Hutchinson (Merck-Frost Centre for Therapeutic Research, Point Claire-Dorval, PQ;
<italic toggle="yes">36</italic>
). Leukotriene C
<sub>4</sub>
(LTC
<sub>4</sub>
) was purchased from Cayman Chemical Co. (Ann Arbor, MI). The small cell lung cancer cells (H69 and H69/AR) and the MRP-specific monoclonal antibody (QCRL-1) were kind gifts from S. P. C. Cole (Cancer Research Laboratories, Queen's University, Kingston, ON). All other chemicals were of the highest commercial grade available. </p>
<p>
<italic toggle="yes">Cell Culture and Plasma Membrane Preparations.</italic>
Drug sensitive (H69) and resistant (H69/AR) cells were grown in RPMI 1640 medium containing 4 mM glutamine and 5% fetal calf serum (Hyclone). Resistant cells were cultured continuously in the presence of 0.8 μM doxorubicin; however, cells used for drug transport studies were grown in drug-free medium for 10 days prior to the date of the experiment. Plasma membranes from H69 and H69/AR cells were prepared as described by Lin et al. (
<italic toggle="yes">
<xref rid="bi9922188b00037" ref-type="bibr"></xref>
</italic>
). In brief, cells were collected by low-speed centrifugation and washed three times with ice-cold phosphate-buffered saline (PBS) (pH 7.4). Cells were homogenized in 50 mM mannitol, 5 mM Hepes, and 10 mM Tris-HCl (pH 7.4) (containing 2 mM PMSF and 3 μg/mL leupeptin) in a Dounce glass homogenizer. A calcium chloride solution was then added to the homogenate to a final concentration of 10 mM and the solution mixed by stirring to ensure even distribution of the cation. The slightly turbid supernatant solution that contains plasmalemma vesicles was pelleted by high-speed centrifugation at 100000
<italic toggle="yes">g</italic>
for 1 h at 4 °C using a Beckman SW28 rotor. For sucrose gradient purification, the membrane suspension was adjusted to a final sucrose concentration of 45% with the addition of sucrose powder. The gradient was set up in 14 mL polycarbonate tubes using 1 mL of 60% sucrose, 5 mL of membranes in 45% sucrose, 2.5 mL of 35% sucrose, and 2.5 mL of 30% sucrose. Samples were spun for 3 h at 35 000 rpm and 4 °C. Membranes floating at the 30, 35, and 45% interfaces were harvested and washed with 10 mM Tris-HCl (pH 7.4). The enriched plasma membrane fraction was resuspended in the same buffer containing 250 mM sucrose. Membranes were stored at −80 °C if not immediately used. Protein concentrations were determined by the Lowry method (
<italic toggle="yes">
<xref rid="bi9922188b00038" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Radioiodination and Photoaffinity Labeling.</italic>
The coupling method used in the synthesis of photoreactive drugs (IACI) has been previously described elsewhere (
<italic toggle="yes">
<xref rid="bi9922188b00039" ref-type="bibr"></xref>
</italic>
). Details of the synthesis will be described elsewhere. Iodination of IACI was carried out in the dark. Briefly, IACI (10 nmol) was dissolved in 20 μL of dimethyl sulfoxide (DMSO) and mixed with 10 μL of carrier-free Na
<sup>125</sup>
I (1 mCi, 0.5 nmol) and 10 μL of chloramine T (10 nmol) in 1 M K
<sub>2</sub>
HPO
<sub>4</sub>
(pH 7.4). The reaction was allowed to continue for 5 min and was stopped by the addition of sodium metabisulfite [50 μL of a 5% (w/v) solution]. The reaction mixture was loaded onto a C
<sub>18</sub>
cartridge (Sep-Pak, Waters-Millipore) prewashed with 10 mM K
<sub>2</sub>
HPO
<sub>4</sub>
(pH 7.4). The column was washed with 5 mL aliquots of 10 mM K
<sub>2</sub>
HPO
<sub>4</sub>
(pH 7.4) containing 10% (v/v) methanol until no significant radiolabel was detected. IACI was eluted with 2.5 mL of methanol and vacuum-dried in the dark. The dried residue was resuspended in DMSO and the concentration of the radioactive, photoactive drug determined by HPLC. </p>
<p>Either plasma membranes (10−20 μg) or intact cells (5 × 10
<sup>6</sup>
cells) were photoaffinity labeled with IACI. Briefly, membranes or cells were photoaffinity labeled by IACI (0.20−1.0 μM) in the absence or the presence of a molar excess of colchicine, chloroquine, doxorubicin, LTC
<sub>4</sub>
, or MK571. Membranes or cells were incubated at room temperature in the dark for 30 min and then transferred to ice for 10 min. Following the latter incubation, cells were irradiated for 10 min on ice with a UV source at 254 nm (Stratagene UV cross-linker, Stratagene, La Jolla, CA). The free photoactive drug was removed by centrifugation, and cells were lysed in 20 μL of 50 mM Tris (pH 7.4) containing 1% Nonidet P-40 (NP40), 5 mM MgCl
<sub>2</sub>
, and protease inhibitors (3 μg/mL leupeptin and 2 mM PMSF). Photoaffinity-labeled proteins were isolated by brief centrifugation at 4 °C and resolved on SDS−PAGE. It should be mentioned that incubation of cells or membranes with IACI but without UV irradiation did not result in the photoaffinity labeling of proteins (data not shown). </p>
<p>
<italic toggle="yes">Immunoprecipitation and SDS Gel Electrophoresis.</italic>
IACI photoaffinity-labeled cells were lysed in 50 mM Tris-HCl (pH 7.4) containing 0.5% CHAPS, 0.5% sodium deoxycholate, 150 mM NaCl, and protease inhibitors (3 μg/mL leupeptin and 2 mM PMSF). The cell lysates were clarified by centrifugation at 12000
<italic toggle="yes">g</italic>
and 4 °C. Equal amounts of cell lysate proteins were separately incubated overnight at 4 °C with 10 μg of QCRL-1, MRPr1, or MRPm6 monoclonal antibodies (Mabs) or an irrelevant IgG
<sub>2a</sub>
. Protein A-coupled Sepharose was added to cell lysates and the mixture allowed to incubate for 1 h at room temperature. After several washes in lysis buffer, proteins were released from the Sepharose beads with buffer I [10 mM Tris-HCl (pH 8.0) containing 2% SDS, 50 mM dithiothreitol (DTT), and 1 mM ethylenediaminetetraacetate (EDTA)] and buffer II (2× buffer I and 9 M urea). Immunopurified proteins were eluted and resolved by SDS−PAGE using the Laemmli or Fairbanks gel system (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00040" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00041" ref-type="bibr"></xref>
</named-content>
</italic>
). Gel slabs containing the immunoprecipitated proteins were fixed in 50% methanol, dried, and exposed to XAR Kodak film at −70 °C for 2−12 h. Alternatively, proteins were visualized by silver staining, using the NOVEX SilverXpress Silver Staining Kit. </p>
<p>
<italic toggle="yes">Proteolytic Digestion and HPLC.</italic>
Immunopurified photoaffinity-labeled MRP bands were cut out of dried SDS−PAGE gels and digested with increasing concentrations of
<italic toggle="yes">Staphylococcus aureus</italic>
V8 protease (1−20 μg/gel slice) in the well of a 15% Laemmli gel (
<italic toggle="yes">
<xref rid="bi9922188b00041" ref-type="bibr"></xref>
</italic>
) according to the method of Cleveland et al. (
<italic toggle="yes">
<xref rid="bi9922188b00042" ref-type="bibr"></xref>
</italic>
). For partial digestion of the IACI photoaffinity-labeled MRP, 100 μg of H69 and H69/AR plasma membrane samples was photolabeled with 0.2 μM IACI and immunoprecipitated overnight with QCRL-1 Mab as previously described (
<italic toggle="yes">
<xref rid="bi9922188b00043" ref-type="bibr"></xref>
</italic>
). Protein A-coupled Sepharose beads were washed in buffer A [0.1% TX-100, 0.03% SDS, 0.05 M Tris-HCl (pH 7.4), 5 mg/mL fraction V bovine serum albumin (BSA), and 150 mM NaCl] containing protease inhibitors (0.1 mM PMSF, 3 μg/mL leupeptin, pepstatin A, and aprotinin) followed by several washes without protease inhibitors. Mild trypsin digestion was carried out in the presence of 8 or 16 ng of trypsin at 37 °C for 5 min. Digestion was stopped with 10 μg/mL leupeptin, pepstatin A, aprotinin, and 1 mM PMSF followed by incubation for 5 min at 65 °C in SDS−PAGE sample buffer. Samples were resolved on Fairbanks gels, transferred to nitrocellulose membranes, and probed with QCRL-1, MRPm6, and MRPr1 monoclonal antibodies. Alternatively, partially digested fragments were immunoprecipitated separately with MRPr1 or MRPm6. Following an overnight immunoprecipitation, protein A-coupled Sepharose beads with MRP halves (85 and 111 kDa polypeptides) were washed and incubated with 40 μg of V8 protease in 50 mM Na
<sub>2</sub>
HPO
<sub>4</sub>
(pH 7.4). Digestion was allowed to proceed for 16 h at 37 °C, and samples were then resolved on Fairbanks gels (
<italic toggle="yes">
<xref rid="bi9922188b00041" ref-type="bibr"></xref>
</italic>
). </p>
<p>For a complete trypsin digestion, gel slices were rehydrated for 5 min in water prior to the elution of the IACI photoaffinity-labeled MRP, using the GE200 SixPacGel Eluter (Hoefer Scientific Instruments). The buffer of the eluted protein was changed to 50 mM ammonium bicarbonate (pH 8.0) by repeated washing using the Spin-X UF concentrators with a 100 000 kDa cutoff. The digestion commenced at 37 °C with the addition of 2 and 1 μg of trypsin for 14 and 4 h, respectively. The digested sample was vacuum-dried, resuspended in 250 μL of 1% trifluoroacetic acid in water, and resolved by reverse phase HPLC (Vydac 201HS54 C
<sub>18</sub>
RP column). The chromatographic procedure consisted of an 80 min gradient of 0 to 100% acetonitrile with 1% trifluoroacetic acid at a flow rate of 1 mL/min. Fractions were collected and checked for radioactivity. </p>
<p>
<italic toggle="yes">Drug Accumulation.</italic>
Drug sensitive and resistant cells (1 × 10
<sup>6</sup>
cells) were washed three times with PBS (pH 7.4) and incubated at 37 °C with 10 mM
<sc>d</sc>
-glucose or 10 mM 2-deoxyglucose and 100 nM sodium azide. One micromole of IACI was added, and drug accumulation in cells was assessed in 0 and 60 min incubations as previously described (
<italic toggle="yes">
<xref rid="bi9922188b00044" ref-type="bibr"></xref>
</italic>
). </p>
</sec>
<sec id="d7e522">
<title>Results</title>
<p>
<italic toggle="yes">Photoaffinity Labeling of the MRP with IACI.</italic>
The MRP has been shown to mediate the transport of conjugated cell metabolites and natural product toxins (
<italic toggle="yes">22</italic>
,
<italic toggle="yes">23</italic>
,
<italic toggle="yes"> 45</italic>
). Several studies have now demonstrated a direct binding between one such glutathione-containing compound, cysteinyl leukotriene (LTC
<sub>4</sub>
), and the MRP (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00011" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00046" ref-type="bibr"></xref>
</named-content>
</italic>
). However, MRP interaction with unmodified compounds remains unclear. In this study, we examined the photoaffinity labeling of plasma membrane proteins from a MRP-expressing cell line (H69/AR) by a photoactive quinoline-derived drug (IACI; Figure
<xref rid="bi9922188f00001"></xref>
). To determine if IACI binds directly to the MRP, plasma membranes from drug sensitive (H69) and resistant (H69/AR) SCLC cells were incubated in the presence of 0.20 μM IACI and UV irradiated (see Materials and Methods). The results in Figure
<xref rid="bi9922188f00002"></xref>
A show a 190 kDa protein photolabeled by IACI in H69/AR but not in H69 membranes. When similar membrane samples were photoaffinity labeled by [
<sup>125</sup>
I]iodoarylazidoprazosin or [
<sup>3</sup>
H]azidopine, shown previously to photolabel P-glycoprotein (
<italic toggle="yes">
<xref rid="bi9922188b00047" ref-type="bibr"></xref>
</italic>
), no 190 kDa protein was photoaffinity labeled (results not shown and ref
<italic toggle="yes">28</italic>
). These results suggest that neither iodoarylazidoprazosin nor azidopine photoaffinity labels the 190 kDa protein in H69/AR membranes. The identity of the 190 kDa protein as the MRP was confirmed by immunoprecipitation of IACI-photolabeled plasma membranes from H69/AR cells with the MRP-specific monoclonal antibody, QCRL-1. Figure
<xref rid="bi9922188f00002"></xref>
A shows that the IACI-photolabeled 190 kDa protein can specifically immunoprecipitate with QCRL-1 from H69/AR but not from H69 membranes. Moreover, no IACI photoaffinity-labeled 190 kDa protein was immunoprecipitated with an irrelevant antibody (Figure
<xref rid="bi9922188f00002"></xref>
A).
<fig id="bi9922188f00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Organic structure of
<italic toggle="yes">N</italic>
-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI).</p>
</caption>
<graphic xlink:href="bi9922188f00001.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi9922188f00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Photoaffinity labeling of MRP by IACI. Plasma membranes from drug sensitive (H69) and resistant (H69/AR) cells were photoaffinity labeled with 0.20 μM IACI and resolved on SDS−PAGE (A). Panel A also shows IACI photoaffinity-labeled membranes from H69 and H69/AR cells immunoprecipitated with MRP-specific Mab (QCRL-1) or an irrelevant IgG
<sub>2a</sub>
. Panel B shows total membranes from H69 and H69/AR cells after silver staining. Panel C shows the photoaffinity labeling of H69/AR membranes with increasing concentrations of IACI (from 0 to 4.0 μM). The inset of panel C shows the increase in the intensity of 190 kDa photolabeled protein which was excised and the radiolabel quantified. Panel D shows the photoaffinity-labeled proteins from H69 or H69/AR cells incubated in the absence or presence of excess (0.1−100 μM) noniodinated IACI.</p>
</caption>
<graphic xlink:href="bi9922188f00002.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To determine if photolabeling of the 190 kDa protein (or MRP) in membranes from H69/AR cells is due to nonspecific binding to an abundant protein, total membrane proteins from H69 and H69/AR cells were resolved by SDS−PAGE on a 6% Laemmli gel (
<italic toggle="yes">
<xref rid="bi9922188b00041" ref-type="bibr"></xref>
</italic>
) and visualized by silver staining. Comparison of H69 and H69/AR proteins did not show significant differences, except for the broad band at ∼190 kDa (Figure
<xref rid="bi9922188f00002"></xref>
B). Interestingly, the region where MRP photoaffinity labeling is observed, between 113 and 200 kDa (Figure
<xref rid="bi9922188f00002"></xref>
A), shows no photoaffinity labeling of some abundantly expressed proteins. High levels of protein expression are seen for both H69 and H69/AR cells between the 113 and 50 kDa molecular mass markers (Figure
<xref rid="bi9922188f00002"></xref>
B). This may account for some of the photolabeling of certain abundantly expressed proteins seen below the 113 kDa molecular mass marker. To further confirm the binding specificity of IACI toward the 190 kDa protein, H69/AR membranes were photoaffinity labeled with increasing concentrations (from 0.25 to 4.0 μM) of IACI. The inset of Figure
<xref rid="bi9922188f00002"></xref>
C shows that the photoaffinity labeling of the 190 kDa protein is saturable at 4.0 μM drug. Furthermore, the specificity of IACI toward the 190 kDa protein was confirmed by photolabeling in the presence of a molar excess (40−400-fold) of the uniodinated IACI. Lanes d and e of Figure
<xref rid="bi9922188f00002"></xref>
D show marked decrease in the extent of photolabeling of the 190 kDa protein in the presence of a molar excess of IACI. The photolabeling which is evident in some lower-molecular mass proteins was not significantly affected with excess uniodinated IACI (Figure
<xref rid="bi9922188f00002"></xref>
D). </p>
<p>
<italic toggle="yes">Inhibition of Photoaffinity Labeling of the MRP.</italic>
To determine if IACI binds to physiologically relevant site(s) in the MRP, membranes from H69/AR cells were photolabeled with IACI in the presence of a molar excess of colchicine, chloroquine, doxorubicin, MK571, and LTC
<sub>4</sub>
. The photoaffinity labeling of MRP was inhibited with a 160-fold molar excess of LTC
<sub>4</sub>
(Figure
<xref rid="bi9922188f00003"></xref>
A). Similarly, a molar excess (100−150-fold) of MK571 also led to a dramatic decrease in the extent of photolabeling of the MRP with IACI. Colchicine, chloroquine, and doxorubicin at 1000-fold molar excess were similar to MK571 at 150-fold and LTC
<sub>4</sub>
at 160-fold, consistent with the higher affinity of MK571 and LTC
<sub>4</sub>
for the MRP (Figure
<xref rid="bi9922188f00004"></xref>
A). The latter results are in accord with the previous findings that LTC
<sub>4</sub>
is the substrate with the highest affinity for MRP (
<italic toggle="yes">11</italic>
,
<italic toggle="yes"> 21</italic>
,
<italic toggle="yes"> 22</italic>
). Together, these results confirm the specificity of IACI toward MRP and suggest that IACI binding to MRP occurs at the same or overlapping site(s) as MK571 and LTC
<sub>4</sub>
.
<fig id="bi9922188f00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Effects of diverse drugs on the photoaffinity labeling of the MRP by IACI
<italic toggle="yes">.</italic>
H69 or H69/AR cells were photoaffinity labeled with IACI in the absence or presence of a molar excess (300−1000-fold) of colchicine (COL), chloroquine (CQ), doxorubicin (DOXO), MK571 (100−150-fold), and LTC
<sub>4</sub>
(80−160-fold). Panel B shows a plot of the relative decrease in the extent of photolabeling of the MRP with IACI in the presence of the drugs listed above.</p>
</caption>
<graphic xlink:href="bi9922188f00003.gif" position="float" orientation="portrait"></graphic>
</fig>
<fig id="bi9922188f00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Drug accumulation in H69 and H69/AR cells. Cells were preincubated in 10 mM glucose or 2-deoxyglucose and sodium azide prior to the addition of 1 μM IACI. Drug accumulation in cells was assessed 0 and 60 min after the addition of IACI. Cells were lysed, and the amounts of accumulated radiolabel were determined by fluorography. Each value is the mean ± the standard deviation of the two experiments carried out in triplicate.</p>
</caption>
<graphic xlink:href="bi9922188f00004.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">IACI Accumulation in H69 and H69/AR Cells.</italic>
Given the results described above, it was of interest to determine if IACI is a substrate for MRP transport function. Figure
<xref rid="bi9922188f00004"></xref>
shows the accumulation of IACI in H69 and H69/AR cells in the presence of 10 mM glucose. H69/AR cells exhibit lower steady-state levels of drug accumulation of IACI than H69 cells (Figure
<xref rid="bi9922188f00004"></xref>
). Moreover, preincubation of cells with 10 mM 2-deoxyglucose and 100 nM sodium azide, which depletes ATP levels, increased the level of accumulation of IACI in H69/AR cells to the same level as that of the H69 parental cells (Figure
<xref rid="bi9922188f00004"></xref>
). Taken together, these results show that the accumulation of IACI in MRP-expressing cells is ATP-dependent. </p>
<p>
<italic toggle="yes">Three Peptides of the MRP Are Photoaffinity Labeled by IACI.</italic>
Several reports on MRP secondary structure and topology have suggested the presence of five N-terminal transmembrane helices (MSD1), followed by an MDR-like core of six duplicated transmembrane domains and an ATP binding site (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00016" ref-type="bibr"></xref>
<xref rid="bi9922188b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). Limited proteolysis of MRP has revealed two trypsin sensitive sites (L1 and L2; see Figure
<xref rid="bi9922188f00005"></xref>
B) that connect MSD1 to MSD2 and MSD3, and MSD1 and MSD2 to MSD3 sequences (
<italic toggle="yes">
<xref rid="bi9922188b00048" ref-type="bibr"></xref>
</italic>
). The L2 sequence was shown to be more sensitive to trypsin cleavage than the L1 sequence (
<italic toggle="yes">
<xref rid="bi9922188b00048" ref-type="bibr"></xref>
</italic>
). Therefore, limited proteolysis of MRP with trypsin showed two polypeptides with molecular masses of 120 and 75−80 kDa containing MSD1, MSD2, and NBD1, and MSD3 and NBD2, respectively (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00016" ref-type="bibr"></xref>
<xref rid="bi9922188b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). However, further digestion with trypsin led to the cleavage of the 120 kDa polypeptide into two smaller peptides (40−60 and 57 kDa) that correspond to MSD1, and MSD2 and NBD1, respectively (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00016" ref-type="bibr"></xref>
<xref rid="bi9922188b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). Taking advantage of the trypsin sensitive sites in the MRP, it was of interest to map IACI photoaffinity-labeled peptides in the MRP. Figure
<xref rid="bi9922188f00005"></xref>
A shows the results of subjecting the IACI-photolabeled MRP to mild proteolysis with trypsin and the digested products resolved by SDS−PAGE. Lanes 3 and 4 of Figure
<xref rid="bi9922188f00005"></xref>
A show two major photoaffinity-labeled polypeptides that migrate with apparent molecular masses of 111 and 85 kDa. Figure
<xref rid="bi9922188f00005"></xref>
C shows Western blots of the same samples as in Figure
<xref rid="bi9922188f00005"></xref>
A probed with MRPr1, QCRL-1, and MRPm6 Mabs. The Mabs QCRL-1 and MRPm6 recognized the 85 kDa polypeptide, while MRPr1 recognized the 111 kDa fragment (Figure
<xref rid="bi9922188f00005"></xref>
C). These results are consistent with earlier proteolysis of MRP (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00016" ref-type="bibr"></xref>
<xref rid="bi9922188b00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
) whereby the 85 kDa polypeptide contains the QCRL-1 and MRPm6 epitopes while the 111 kDa polypeptide contains the MRPr1 epitope (
<italic toggle="yes">
<xref rid="bi9922188b00048" ref-type="bibr"></xref>
</italic>
). Therefore, the two photoaffinity-labeled polypeptides (111 and 85 kDa) correspond to the MRP sequence containing MSD1, MSD2, and NBD1, and MSD3 and NBD2, respectively. Probing the same nitrocellulose membrane with goat anti-mouse peroxidase second antibody alone did not show any reactive proteins (data not shown). Taken together, these results demonstrate the photoaffinity labeling of two different domains in the MRP.
<fig id="bi9922188f00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Photoaffinity labeling of two large polypeptides of the MRP by IACI. The MRP photoaffinity labeled by IACI was purified from H69/AR membranes and subjected to mild tryptic digestion. The photolabeled, radiolabeled products were split in two halves; one-half was resolved by SDS−PAGE (A), while the second half was resolved by SDS−PAGE and transferred to nitrocellulose for Western blotting (C). Lanes 2−4 of panel A show the signal from the purified IACI-photolabeled MRP incubated in the absence and in the presence of 8 and 16 ng of trypsin, respectively. Panel C shows the Western blot of the IACI-photolabeled MRP tryptic digest probed separately with MRPr1, QCRL-1, and MRPm6 Mabs. Panel B shows a schematic of the predicted MRP topology with the three monoclonal antibody epitopes listed above in the MRP relative to the protease hypersensitive sites (L1 and L2). The nucleotide binding domains (NBD1 and NBD2) and the extracellular glycosylation sites (**) are indicated on the schematic of MRP secondary structure (B).</p>
</caption>
<graphic xlink:href="bi9922188f00005.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To determine the number of IACI-photolabeled sites in the MRP, the photoaffinity-labeled MRP was immunopurified with QCRL-1 and subjected to in-gel digestion with increasing concentrations of
<italic toggle="yes">S. aureus</italic>
V8 protease (1−20 μg/gel slice). Figure
<xref rid="bi9922188f00006"></xref>
A shows the resultant proteolytic fragments migrating with apparent molecular masses of 6 and 4 kDa. Similarly, the IACI photoaffinity-labeled MRP was subjected to exhaustive trypsin digestion (see Materials and Methods), and the resulting digest was resolved by HPLC using reverse phase chromatography. Figure
<xref rid="bi9922188f00006"></xref>
B shows the eluted IACI-photolabeled, radiolabeled tryptic peptides resolved on a C
<sub>18</sub>
reverse phase column with a 0 to 100% acetonitrile gradient. The results in Figure
<xref rid="bi9922188f00006"></xref>
B show one minor peak eluting at 60% acetonitrile followed by two major peaks eluting at 65−72% acetonitrile.
<fig id="bi9922188f00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Complete proteolytic digestion of the IACI photoaffinity-labeled MRP yields two labeled peptides. The purified MRP photoaffinity labeled with IACI was subjected to complete in-gel or solution digestion. The in-gel-digested MRP products were resolved on 15% acrylamide SDS−PAGE, while the solution-digested products were resolved by reverse phase chromatography. Lanes 1−3 of panel A show an in-gel digestion of the IACI-photolabeled MRP with increasing concentrations of
<italic toggle="yes">S. aureus </italic>
V8 protease (1−20 μg/well). Panel B shows the separation of MRP photoaffinity-labeled tryptic peptides on a C
<sub>18</sub>
reverse phase column using a 0 to 100% acetonitrile gradient. The amount of radiolabel in each eluted fraction was plotted vs time of elution in the gradient. The peak signal at the beginning of the gradient represents the void volume.</p>
</caption>
<graphic xlink:href="bi9922188f00006.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To identify the origin of the 4 and 6 kDa IACI-photolabeled peptides relative to the two large photolabeled domains of the MRP, IACI-photolabeled 111 and 85 kDa polypeptides were purified and digested with
<italic toggle="yes">S. aureus</italic>
V8 protease. Lanes 2 and 3 of Figure
<xref rid="bi9922188f00007"></xref>
A show IACI-photolabeled 111 and 85 kDa polypeptides following immunoprecipitation with MRPr1 and MRPm6 Mabs, respectively. Exhaustive digestion of the 111 kDa polypeptide which corresponds to MSD1, MSD2, and NBD1 of the MRP resulted in two photolabeled peptides which migrate with apparent molecular masses of 4 and 6 kDa (Figure
<xref rid="bi9922188f00007"></xref>
B). However, digestion of the 85 kDa polypeptide, which corresponds to MSD3 and NBD2 of the MRP, resulted in only one photolabeled peptide of 6 kDa (Figure
<xref rid="bi9922188f00007"></xref>
B). Taken together, the results in Figure
<xref rid="bi9922188f00007"></xref>
suggest the presence of three IACI-labeled sites in the MRP.
<fig id="bi9922188f00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Proteolytic cleavage of the immunopurified IACI-photolabeled N- and C-halves of MRP. MRP-enriched membranes were photolabeled with IACI and subjected to mild tryptic cleavage. Lanes 1−3 of panel A show immunoprecipitation of native and trypsin-digested MRP with MRPm6 and MRPr1 Mabs, respectively. Panel B shows complete digestion of immunopurified IACI-photolabeled 111 and 85 kDa polypeptides with
<italic toggle="yes">S. aureus </italic>
V8 protease. The digested fragments were resolved on the Fairbanks gel system. The apparent molecular masses of standard proteins are indicated to the left of the gels.</p>
</caption>
<graphic xlink:href="bi9922188f00007.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
</sec>
<sec id="d7e737">
<title>Discussion</title>
<p>It is now believed that the overexpression of the MRP in tumor cell lines can confer resistance to certain natural product toxins (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00023" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00049" ref-type="bibr"></xref>
</named-content>
</italic>
). Moreover, MRP-mediated transport of normal cell metabolites has been demonstrated in intact cells and in MRP-enriched membrane vesicles (
<italic toggle="yes">11</italic>
,
<italic toggle="yes"> 21−23</italic>
). However, the mechanism of MRP drug binding and transport remains unclear:  (i) MRP's broad substrate specificity, (ii) MRP's ability to bind and transport unmodified drugs, (iii) the role of free GSH in MRP drug binding and transport, and (iv) MRP drug binding site(s). In this report, we have used a photoreactive quinoline-based drug (IACI) to examine MRP−drug interactions. Our results show the photoaffinity labeling of a 190 kDa protein by IACI only in drug resistant cells (H69/AR). The identity of the IACI-photolabeled protein, as the MRP, was confirmed by its binding to three MRP-specific monoclonal antibodies (QCRL-1, MRPr1, and MRPm6;
<italic toggle="yes">48</italic>
). The photolabeling of MRP in enriched membranes from H69/AR cells suggests direct binding between the MRP and unmodified IACI. Moreover, the addition of free GSH (up to 5 mM) did not cause a significant change in MRP photoaffinity labeling (results not shown). With respect to the role of GSH in MRP drug transport, ATP-dependent transport of unmodified vincristine into membrane vesicles was shown only in the presence of GSH (
<italic toggle="yes">
<xref rid="bi9922188b00030" ref-type="bibr"></xref>
</italic>
). Thus, although the authors of that study (
<italic toggle="yes">
<xref rid="bi9922188b00030" ref-type="bibr"></xref>
</italic>
) did not examine vincristine binding to the MRP, it is likely that drug transport but not drug binding required the presence of free GSH. Alternatively, GSH may be required for the binding and transport of certain classes of drugs. Future experiments will examine the effect of GSH and other MRP substrates on IACI transport in membrane vesicles from MRP-expressing cells. Taken together, these findings demonstrate direct binding between the MRP and the unmodified drug that is unaffected by GSH. </p>
<p>The questions of whether IACI is a relevant substrate for the MRP and whether the photoaffinity labeling of the MRP by IACI occurs at a physiologically relevant site(s) were addressed by drug transport and drug competition experiments. Our transport results show IACI is a substrate for MRP drug efflux as it accumulates less in MRP-expressing cells (H69/AR) than in the parental cells (H69). Furthermore, depletion of ATP levels by preincubating cells with sodium azide and 2-deoxyglucose restored IACI accumulation in H69/AR cells to the same level as in H69 cells. The possibility that differences in IACI accumulation between H69/AR and H69 cells are due to changes or ATP-dependent mechanisms other than the MRP cannot be ruled out completely on the basis of our drug transport data alone. However, along with the photoaffinity labeling results, described in this study, compelling evidence for MRP-mediated transport of IACI exists. The inhibition of MRP photolabeling by IACI with a molar excess of LTC
<sub>4</sub>
indicates that IACI binds to the MRP at a physiologically relevant site. Although little is known about MRP drug binding domain(s), we speculate that IACI binds to the same domain (or an overlapping one) as that of MK571 or LTC
<sub>4</sub>
. Alternatively, IACI may bind at another site that is allosterically linked to the LTC
<sub>4</sub>
binding domain. In a recent study by Stride et al. (
<italic toggle="yes">
<xref rid="bi9922188b00050" ref-type="bibr"></xref>
</italic>
), it was shown that substitution of the carboxyl third of the human MRP with that of mouse mrp sequences modulated MRP specificity to the anthracycline doxorubicin while LTC
<sub>4</sub>
transport was unaffected, thus confirming further the notion of more than one drug binding site in the MRP. In addition, support for multiple drug binding sites in the MRP comes from studies with another broad spectrum transporter (P-gp1) which is thought to encode three drug binding sites (
<italic toggle="yes">
<xref rid="bi9922188b00051" ref-type="bibr"></xref>
</italic>
). </p>
<p>Studies of MRP topology are in agreement with the two “6+6” transmembrane helices (or MSD2 and MSD3) and two NBDs characteristic of many ABC transporters, in addition to the hydrophobic N-terminal domain predicted to encode five transmembrane helices (MSD1) (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00017" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00018" ref-type="bibr"></xref>
</named-content>
</italic>
). A previous limited proteolysis study (
<italic toggle="yes">
<xref rid="bi9922188b00048" ref-type="bibr"></xref>
</italic>
) showed that the MRP contains two hypersensitive regions (L1 and L2) connecting MSD1 to MS2 and MSD3, and MSD1 and MSD2 to MSD3, respectively. In this study, we took advantage of the protease hypersensitive regions in MRP linker domains together with the positions of three monoclonal antibodies with known epitope sequences in the MRP to identify the photoaffinity labeling domains in the MRP. Mild trypsin digestion of IACI-photolabeled MRP produced two large photolabeled polypeptides with apparent molecular masses of ∼111 and ∼85 kDa on SDS−PAGE. On the basis of the locations of MRPr1, QCRL-1, and MRPm6 epitopes (at
<sup>238</sup>
GSDLWSLNKE
<sup>247</sup>
,
<sup>918</sup>
SSYSGD
<sup>924</sup>
, and
<sup>1511</sup>
PSDLLQQRGL
<sup>1520</sup>
, respectively;
<italic toggle="yes">48</italic>
) relative to one of the trypsin hypersensitive sites in the MRP linker domain (L2) (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00017" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00048" ref-type="bibr"></xref>
</named-content>
</italic>
), the 111 kDa polypeptide corresponds to the N-terminal MSD1 and MSD2 and NBD1. Similarly, the 85 kDa polypeptide should encode MSD3 and NBD2 as it reacted only with QCRL-1 and MRPm6 Mabs (see Figure
<xref rid="bi9922188f00005"></xref>
). Exhaustive digestion of the IACI-photolabeled MRP with V8 protease revealed two photolabeled peptides with apparent molecular masses of ∼6 and ∼4 kDa. However, digestion of purified 111 and 85 kDa polypeptides with V8 protease revealed three IACI-photolabeled peptides, two (6 and 4 kDa) from the 111 kDa polypeptide and one (6 kDa) from the 85 kDa polypeptide. Although the possibility that the 6 kDa peptide, from the 111 kDa fragment, results from incomplete digestion cannot be entirely ruled out, it is unlikely given the exhaustive nature of our digestion conditions. Furthermore, exhaustive digestion of the IACI- labeled MRP with trypsin showed two major and one minor peak (Figure
<xref rid="bi9922188f00006"></xref>
B), consistent with a total of three IACI-photolabeled peptides. The photoaffinity labeling of MRP at multiple sites is consistent with that observed with another membrane transporter protein, P-gp1 (
<italic toggle="yes">
<xref rid="bi9922188b00032" ref-type="bibr"></xref>
</italic>
). The exact amino acid sequence of P-gp1 drug binding sites is presently not known; however, several reports support the role of transmembrane helices 5 and 6 and 11 and 12 in drug binding and transport (
<italic toggle="yes">
<xref rid="bi9922188b00033" ref-type="bibr"></xref>
</italic>
). The photoaffinity labeling of three peptides in the MRP with IACI suggests MRP drug binding may involve three domains. Given the hydrophobic nature of MRP substrates and our knowledge of P-gp1 drug binding domains, it is tempting to speculate that the three IACI-photolabeled peptides correspond to the three membrane-spanning domains (MSD1−3) in the MRP. </p>
<p>Although it is likely that the drug binding domains in the MRP and the photoaffinity-labeled sites are different, earlier studies with P-gp1 have shown these sites to be the same or to overlap (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00032" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00033" ref-type="bibr"></xref>
</named-content>
</italic>
). Photoaffinity labeling studies of P-gp1 are in agreement with other molecular approaches. Indeed, results from the photoaffinity labeling studies were used as a starting point for mutational analyses of P-gp1 sequences. Furthermore, results from a recent study aimed at localizing MRP specificity domains toward anthracyclines suggested a role for the carboxyl third of the MRP (
<italic toggle="yes">
<xref rid="bi9922188b00050" ref-type="bibr"></xref>
</italic>
). The latter findings are consistent with our results in this report which show the photoaffinity labeling of the carboxyl third of MRP (MSD3 and NBD2) (
<italic toggle="yes">
<xref rid="bi9922188b00050" ref-type="bibr"></xref>
</italic>
). </p>
<p>A molar excess of colchicine and doxorubicin also caused a significant decrease in the extent of MRP photoaffinity labeling by IACI. These findings are interesting since earlier analysis of the cross resistance of MRP-expressing cells showed only low levels of cross resistance to colchicine (
<italic toggle="yes">
<xref rid="bi9922188b00052" ref-type="bibr"></xref>
</italic>
). Inhibition of photoaffinity labeling of IACI with MK571 and CQ is less surprising as both drugs share the quinoline moiety. The LTD
<sub>4</sub>
receptor antagonist, MK571 (
<italic toggle="yes">
<xref rid="bi9922188b00036" ref-type="bibr"></xref>
</italic>
), was recently shown to inhibit LTC
<sub>4</sub>
and
<italic toggle="yes">S</italic>
-(
<italic toggle="yes">p</italic>
-azidophenylacyl)glutathione labeling of the MRP (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00011" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00046" ref-type="bibr"></xref>
</named-content>
</italic>
) and to reverse MRP-mediated MDR (
<italic toggle="yes">
<xref rid="bi9922188b00035" ref-type="bibr"></xref>
</italic>
). Indeed, several quinoline-based drugs have been reported to interact directly and specifically with the MRP (
<italic toggle="yes">27</italic>
,
<italic toggle="yes"> 28</italic>
,
<italic toggle="yes"> 53</italic>
), hence establishing this group as another class of compounds that interact with MRP. Collectively, these findings are important as many therapeutically important drugs are quinoline-based drugs (
<italic toggle="yes">
<xref rid="bi9922188b00054" ref-type="bibr"></xref>
</italic>
). For example, quinoline-based drugs are extensively used in the treatment of parasitic infections such as malaria (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00055" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00056" ref-type="bibr"></xref>
</named-content>
</italic>
), and resistance to these drugs has rendered this first-choice drug treatment ineffective (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi9922188b00055" ref-type="bibr"></xref>
,
<xref rid="bi9922188b00056" ref-type="bibr"></xref>
</named-content>
</italic>
). Given these findings, we speculate about an MRP-like mechanism responsible for resistance in this parasite. </p>
<p>In conclusion, there is increasing evidence that the MRP mediates the transport of structurally diverse drugs through direct binding. Although several studies have demonstrated direct binding between the MRP and LTC
<sub>4</sub>
using a photoaffinity labeling assay, photoaffinity labeling of the MRP by [
<sup>3</sup>
H]LTC
<sub>4</sub>
was inefficient, requiring large amounts of membrane (200 μg/sample) and extremely long exposure times (more than 4 weeks in our hands). By contrast, photoaffinity labeling of the MRP by IACI was done using 20 μg of membranes/sample, and exposure for 2−12 h showed a strong signal for MRP. The availability of a photoactive radioiodinated drug that binds specifically to the MRP should facilitate future analysis of MRP−drug interactions. The photoaffinity labeling of the MRP at multiple sites which map to two domains in the MRP is consistent with protein−drug interactions seen with other members of the ABC family of drug transporters, such as P-gp1. Finally, we show that IACI binding to the MRP is inhibited by known substrates of MRP, LTC
<sub>4</sub>
, and other natural product drugs. We speculate that IACI binds to the same domain (or an overlapping domain) as that of LTC
<sub>4</sub>
or MK571. Work is in progress to determine if IACI photoaffinity labels the same or different sequences as MK571 and LTC
<sub>4</sub>
. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Joel Karwatsky for his careful reading of the manuscript. </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bi9922188b00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gottesman</surname>
<given-names>M. M.</given-names>
</name>
<name name-style="western">
<surname>Pastan</surname>
<given-names>I.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1993</year>
<volume>62</volume>
<fpage>385</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.62.070193.002125</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Endicott</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Ling</surname>
<given-names>V.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1989</year>
<volume>58</volume>
<fpage>137</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.58.070189.001033</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>Cancer Treat. Res.</source>
<year>1996</year>
<volume>87</volume>
<fpage>39</fpage>
<lpage>62</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ueda</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Cardarelli</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Gottesman</surname>
<given-names>M. M.</given-names>
</name>
<name name-style="western">
<surname>Pastan</surname>
<given-names>I.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1987</year>
<volume>84</volume>
<fpage>3004</fpage>
<lpage>3008</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.84.9.3004</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Grant</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Valdimarsson</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Hipfner</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Almquist</surname>
<given-names>K. C.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>Cancer Res.</source>
<year>1994</year>
<volume>54</volume>
<fpage>357</fpage>
<lpage>361</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00006">
<mixed-citation>
<name name-style="western">
<surname>Schinkel</surname>
<given-names>A. H.</given-names>
</name>
,
<name name-style="western">
<surname>Smit</surname>
<given-names>J. J. M.</given-names>
</name>
,
<name name-style="western">
<surname>van Tellingen</surname>
<given-names>O.</given-names>
</name>
,
<name name-style="western">
<surname>Beijnen</surname>
<given-names>J. H.</given-names>
</name>
,
<name name-style="western">
<surname>Wagenaar</surname>
<given-names>E.</given-names>
</name>
,
<name name-style="western">
<surname>van Deemter</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Mol</surname>
<given-names>C. A. A. M.</given-names>
</name>
,
<name name-style="western">
<surname>var der Valk</surname>
<given-names>M. A.</given-names>
</name>
,
<name name-style="western">
<surname>Robanus-Maandag</surname>
<given-names>E. C.</given-names>
</name>
,
<name name-style="western">
<surname>te Riele</surname>
<given-names>H. P. J.</given-names>
</name>
,
<name name-style="western">
<surname>Berns</surname>
<given-names>A. J. M.</given-names>
</name>
,
<name name-style="western">
<surname>and Borst</surname>
<given-names>P.</given-names>
</name>
(1994)
<italic toggle="yes">Cell</italic>
<italic toggle="yes">77</italic>
, 491−502.
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90212-7</pub-id>
</mixed-citation>
</ref>
<ref id="bi9922188b00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lorico</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Rappa</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Flavell</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Sartorelli</surname>
<given-names>A. C.</given-names>
</name>
<source>Cancer Res.</source>
<year>1996</year>
<volume>56</volume>
<fpage>5351</fpage>
<lpage>5355</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00008">
<mixed-citation>
<name name-style="western">
<surname>Wijnholds</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Evers</surname>
<given-names>R.</given-names>
</name>
,
<name name-style="western">
<surname>van</surname>
<given-names>L. M.</given-names>
</name>
,
<name name-style="western">
<surname>Mol</surname>
<given-names>C.</given-names>
</name>
,
<name name-style="western">
<surname>Zaman</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>Mayer</surname>
<given-names>U.</given-names>
</name>
,
<name name-style="western">
<surname>Beijnen</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>van</surname>
<given-names>d. V. M.</given-names>
</name>
,
<name name-style="western">
<surname>Krimpenfort</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>and Borst</surname>
<given-names>P.</given-names>
</name>
(1997)
<italic toggle="yes">Nat. Med.</italic>
<italic toggle="yes">3</italic>
, 1275−1279.
<pub-id pub-id-type="doi">10.1038/nm1197-1275</pub-id>
</mixed-citation>
</ref>
<ref id="bi9922188b00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ruetz</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Gros</surname>
<given-names>P.</given-names>
</name>
<source>Cell</source>
<year>1994</year>
<volume>77</volume>
<fpage>1071</fpage>
<lpage>1081</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90446-4</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Raggers</surname>
<given-names>R. J.</given-names>
</name>
<name name-style="western">
<surname>van Helvoort</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Evers</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>van Meer</surname>
<given-names>G.</given-names>
</name>
<source>J. Cell Sci.</source>
<year>1999</year>
<volume>112</volume>
<fpage>415</fpage>
<lpage>422</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Leier</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Jedlitschky</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Buchholz</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<name name-style="western">
<surname>Keppler</surname>
<given-names>D.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1994</year>
<volume>269</volume>
<fpage>27807</fpage>
<lpage>27810</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lorico</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Rappa</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Finch</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Yang</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Flavell</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Sartorelli</surname>
<given-names>A. C.</given-names>
</name>
<source>Cancer Res.</source>
<year>1997</year>
<volume>57</volume>
<fpage>5238</fpage>
<lpage>5242</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rappa</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Lorico</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Flavell</surname>
<given-names>R. A.</given-names>
</name>
<name name-style="western">
<surname>Sartorelli</surname>
<given-names>A. C.</given-names>
</name>
<source>Cancer Res.</source>
<year>1997</year>
<volume>57</volume>
<fpage>5232</fpage>
<lpage>5237</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Higgins</surname>
<given-names>C. F.</given-names>
</name>
<source>Cell</source>
<year>1995</year>
<volume>82</volume>
<fpage>693</fpage>
<lpage>696</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(95)90465-4</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stride</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Grant</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Loe</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Hipfner</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R.</given-names>
</name>
<source>Mol. Pharmacol.</source>
<year>1997</year>
<volume>52</volume>
<fpage>344</fpage>
<lpage>353</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bakos</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Hegedus</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Hollo</surname>
<given-names>Z.</given-names>
</name>
<name name-style="western">
<surname>Welker</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Tusnady</surname>
<given-names>G. E.</given-names>
</name>
<name name-style="western">
<surname>Zaman</surname>
<given-names>G. J.</given-names>
</name>
<name name-style="western">
<surname>Flens</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Varadi</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Sarkadi</surname>
<given-names>B.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>12322</fpage>
<lpage>12326</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.4.1877</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hipfner</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Almquist</surname>
<given-names>K. C.</given-names>
</name>
<name name-style="western">
<surname>Leslie</surname>
<given-names>E. M.</given-names>
</name>
<name name-style="western">
<surname>Gerlach</surname>
<given-names>J. H.</given-names>
</name>
<name name-style="western">
<surname>Grant</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P. C.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>23623</fpage>
<lpage>23630</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.272.38.23623</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kast</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Gros</surname>
<given-names>P.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1997</year>
<volume>272</volume>
<fpage>26479</fpage>
<lpage>26487</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.272.42.26479</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gao</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Yamazaki</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Loe</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Westlake</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Grant</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>10733</fpage>
<lpage>10740</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.273.17.10733</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00020">
<mixed-citation>
<name name-style="western">
<surname>Bakos</surname>
<given-names>E.</given-names>
</name>
,
<name name-style="western">
<surname>Evers</surname>
<given-names>R.</given-names>
</name>
,
<name name-style="western">
<surname>Szakacs</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>Tusnady</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>Welker</surname>
<given-names>E.</given-names>
</name>
,
<name name-style="western">
<surname>Szabo</surname>
<given-names>K.</given-names>
</name>
,
<name name-style="western">
<surname>de</surname>
<given-names>H. M.</given-names>
</name>
,
<name name-style="western">
<surname>van Deemter</surname>
<given-names>L.</given-names>
</name>
,
<name name-style="western">
<surname>Borst</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Varadi</surname>
<given-names>A.</given-names>
</name>
,
<name name-style="western">
<surname>and Sarkadi</surname>
<given-names>B.</given-names>
</name>
(1998)
<italic toggle="yes">J. Biol. Chem</italic>
.
<italic toggle="yes"> 273</italic>
, 32167−32175.
<pub-id pub-id-type="doi">10.1074/jbc.273.48.32167</pub-id>
</mixed-citation>
</ref>
<ref id="bi9922188b00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jedlitschky</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Leier</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Buchholz</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Barnouin</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Kurz</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Keppler</surname>
<given-names>D.</given-names>
</name>
<source>Cancer Res.</source>
<year>1996</year>
<volume>56</volume>
<fpage>988</fpage>
<lpage>994</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Loe</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Almquist</surname>
<given-names>K. C.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>9683</fpage>
<lpage>9689</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.44.27782</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zaman</surname>
<given-names>G. J. R.</given-names>
</name>
<name name-style="western">
<surname>Flens</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Vanleusden</surname>
<given-names>M. R.</given-names>
</name>
<name name-style="western">
<surname>Dehaas</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Mulder</surname>
<given-names>H. S.</given-names>
</name>
<name name-style="western">
<surname>Lankelma</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Pinedo</surname>
<given-names>H. M.</given-names>
</name>
<name name-style="western">
<surname>Scheper</surname>
<given-names>R. J.</given-names>
</name>
<name name-style="western">
<surname>Baas</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Broxterman</surname>
<given-names>H. J.</given-names>
</name>
<name name-style="western">
<surname>Borst</surname>
<given-names>P.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1994</year>
<volume>91</volume>
<fpage>8822</fpage>
<lpage>8826</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.91.19.8822</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ishikawa</surname>
<given-names>T.</given-names>
</name>
<source>Trends Biochem. Sci.</source>
<year>1992</year>
<volume>17</volume>
<fpage>463</fpage>
<lpage>468</lpage>
<pub-id pub-id-type="doi">10.1016/0968-0004(92)90489-V</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00025">
<mixed-citation>
<name name-style="western">
<surname>Jansen</surname>
<given-names>P. L. M.</given-names>
</name>
,
<name name-style="western">
<surname>and Oude Elferink</surname>
<given-names>R. P. J.</given-names>
</name>
(1993) in
<italic toggle="yes"> Defective Hepatic Anion Secretion in Mutant TR-Rats</italic>
, Raven, New York.</mixed-citation>
</ref>
<ref id="bi9922188b00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zaman</surname>
<given-names>G. J. R.</given-names>
</name>
<name name-style="western">
<surname>Lankelma</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Tellingen</surname>
<given-names>O. V.</given-names>
</name>
<name name-style="western">
<surname>Beijnen</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Dekker</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Paulusma</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Elferink</surname>
<given-names>R. P. J. O.</given-names>
</name>
<name name-style="western">
<surname>Baas</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Borst</surname>
<given-names>P.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1995</year>
<volume>92</volume>
<fpage>7690</fpage>
<lpage>7694</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.92.17.7690</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Vezmar</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Georges</surname>
<given-names>E.</given-names>
</name>
<source>Biochem. Pharmacol.</source>
<year>1988</year>
<volume>56</volume>
<fpage>733</fpage>
<lpage>742</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-2952(98)00217-2</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Vezmar</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Deady</surname>
<given-names>L. W.</given-names>
</name>
<name name-style="western">
<surname>Tilley</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Georges</surname>
<given-names>E.</given-names>
</name>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1997</year>
<volume>241</volume>
<fpage>104</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="doi">10.1006/bbrc.1997.7634</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nakamura</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Oka</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Aizawa</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Soda</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Fukuda</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Terashi</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Ikeda</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Mizuta</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Noguchi</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Kimura</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Tsuruo</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Kohno</surname>
<given-names>S.</given-names>
</name>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1999</year>
<volume>255</volume>
<fpage>618</fpage>
<lpage>624</lpage>
<pub-id pub-id-type="doi">10.1006/bbrc.1999.0245</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Loe</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Almquist</surname>
<given-names>K. C.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>9675</fpage>
<lpage>9682</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.44.27782</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chowdry</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Westheimer</surname>
<given-names>F. H.</given-names>
</name>
<source>Annu. Rev. Biochem.</source>
<year>1979</year>
<volume>48</volume>
<fpage>293</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.bi.48.070179.001453</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Greenberger</surname>
<given-names>L. M.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1993</year>
<volume>268</volume>
<fpage>11417</fpage>
<lpage>11425</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00033">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Loo</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Clarke</surname>
<given-names>D.</given-names>
</name>
<source>Methods Enzymol.</source>
<year>1998</year>
<volume>292</volume>
<fpage>480</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(98)92037-7</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cole</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R.</given-names>
</name>
<source>BioEssays</source>
<year>1998</year>
<volume>20</volume>
<fpage>931</fpage>
<lpage>940</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1521-1878(199811)20:11%3C931::AID-BIES8%3E3.0.CO;2-J</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gekeler</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Ise</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Sanders</surname>
<given-names>K. H.</given-names>
</name>
<name name-style="western">
<surname>Ulrich</surname>
<given-names>W. R.</given-names>
</name>
<name name-style="western">
<surname>Beck</surname>
<given-names>J.</given-names>
</name>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1995</year>
<volume>208</volume>
<fpage>345</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1006/bbrc.1995.1344</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Jones</surname>
<given-names>T. R.</given-names>
</name>
<name name-style="western">
<surname>Zamboni</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Belley</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Champion</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Charette</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Ford-Hutchison</surname>
<given-names>A. W.</given-names>
</name>
<name name-style="western">
<surname>Frenette</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Gauthier</surname>
<given-names>J.-Y.</given-names>
</name>
<name name-style="western">
<surname>Leger</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Masson</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>McFarlane</surname>
<given-names>C. S.</given-names>
</name>
<name name-style="western">
<surname>Piechuta</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Rokach</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Williams</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Young</surname>
<given-names>R. N.</given-names>
</name>
<name name-style="western">
<surname>DeHaven</surname>
<given-names>R. N.</given-names>
</name>
<name name-style="western">
<surname>Pong</surname>
<given-names>S. S.</given-names>
</name>
<source>Can. J. Physiol. Pharmacol.</source>
<year>1989</year>
<volume>67</volume>
<fpage>17</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1139/y89-004</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lin</surname>
<given-names>P. H.</given-names>
</name>
<name name-style="western">
<surname>Selinfreund</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Wakshull</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Wharton</surname>
<given-names>W.</given-names>
</name>
<source>Biochemistry</source>
<year>1987</year>
<volume>26</volume>
<fpage>731</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="doi">10.1021/bi00377a012</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lowry</surname>
<given-names>O. H.</given-names>
</name>
<name name-style="western">
<surname>Rosebrough</surname>
<given-names>N. J.</given-names>
</name>
<name name-style="western">
<surname>Farr</surname>
<given-names>A. L.</given-names>
</name>
<name name-style="western">
<surname>Randall</surname>
<given-names>R. J.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1951</year>
<volume>193</volume>
<fpage>265</fpage>
<lpage>275</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Desneves</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Thorn</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Berman</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Galatis</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>La Greca</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Sinding</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Foley</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Deady</surname>
<given-names>L. W.</given-names>
</name>
<name name-style="western">
<surname>Cowman</surname>
<given-names>A. F.</given-names>
</name>
<name name-style="western">
<surname>Tilley</surname>
<given-names>L.</given-names>
</name>
<source>Mol. Biochem. Parasitol.</source>
<year>1996</year>
<volume>82</volume>
<fpage>181</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1016/0166-6851(96)02732-6</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Fairbanks</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Steck</surname>
<given-names>T. L.</given-names>
</name>
<name name-style="western">
<surname>Wallach</surname>
<given-names>D. F. H.</given-names>
</name>
<source>Biochemistry</source>
<year>1971</year>
<volume>10</volume>
<fpage>2606</fpage>
<lpage>2617</lpage>
<pub-id pub-id-type="doi">10.1021/bi00789a030</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Laemmli</surname>
<given-names>U. K.</given-names>
</name>
<source>Nature</source>
<year>1970</year>
<volume>227</volume>
<fpage>680</fpage>
<lpage>685</lpage>
<pub-id pub-id-type="doi">10.1038/227680a0</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00042">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cleveland</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Fischer</surname>
<given-names>S. G.</given-names>
</name>
<name name-style="western">
<surname>Kirschner</surname>
<given-names>M. W.</given-names>
</name>
<name name-style="western">
<surname>Laemmli</surname>
<given-names>U. K.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1977</year>
<volume>252</volume>
<fpage>1102</fpage>
<lpage>1106</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Georges</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>J.-T.</given-names>
</name>
<name name-style="western">
<surname>Ling</surname>
<given-names>V.</given-names>
</name>
<source>J. Cell. Physiol.</source>
<year>1991</year>
<volume>148</volume>
<fpage>479</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="doi">10.1002/jcp.1041480321</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00044">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name name-style="western">
<surname>Lheureux</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Pouliot</surname>
<given-names>J.-F.</given-names>
</name>
<name name-style="western">
<surname>Heckel</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Bamberger</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Georges</surname>
<given-names>E.</given-names>
</name>
<source>Mol. Pharmacol.</source>
<year>1996</year>
<volume>50</volume>
<fpage>482</fpage>
<lpage>492</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00045">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Paul</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Breuninger</surname>
<given-names>L. M.</given-names>
</name>
<name name-style="western">
<surname>Tew</surname>
<given-names>K. D.</given-names>
</name>
<name name-style="western">
<surname>Shen</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Kruh</surname>
<given-names>G. D.</given-names>
</name>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1996</year>
<volume>93</volume>
<fpage>6929</fpage>
<lpage>6934</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.93.14.6929</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00046">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Leier</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Jedlitschky</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Buchholz</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Keppler</surname>
<given-names>D.</given-names>
</name>
<source>Eur. J. Biochem.</source>
<year>1994</year>
<volume>220</volume>
<fpage>599</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1994.tb18661.x</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00047">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Safa</surname>
<given-names>A.</given-names>
</name>
<source>Methods Enzymol.</source>
<year>1998</year>
<volume>292</volume>
<fpage>289</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(98)92023-7</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00048">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hipfner</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Almquist</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Stride</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S.</given-names>
</name>
<source>Cancer Res.</source>
<year>1996</year>
<volume>56</volume>
<fpage>3307</fpage>
<lpage>3314</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00049">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Almquist</surname>
<given-names>K. C.</given-names>
</name>
<name name-style="western">
<surname>Loe</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Hipfner</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Mackie</surname>
<given-names>J. E.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>Cancer Res.</source>
<year>1995</year>
<volume>55</volume>
<fpage>102</fpage>
<lpage>110</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00050">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stride</surname>
<given-names>B. D.</given-names>
</name>
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P. C.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>22877</fpage>
<lpage>22883</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.32.22877</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00051">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Shapiro</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Fox</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Lam</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Ling</surname>
<given-names>V.</given-names>
</name>
<source>Eur. J. Biochem.</source>
<year>1999</year>
<volume>259</volume>
<fpage>841</fpage>
<lpage>850</lpage>
<pub-id pub-id-type="doi">10.1046/j.1432-1327.1999.00098.x</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00052">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cole</surname>
<given-names>S. P.</given-names>
</name>
<name name-style="western">
<surname>Sparks</surname>
<given-names>K. E.</given-names>
</name>
<name name-style="western">
<surname>Fraser</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Loe</surname>
<given-names>D. W.</given-names>
</name>
<name name-style="western">
<surname>Grant</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Wilson</surname>
<given-names>G. M.</given-names>
</name>
<name name-style="western">
<surname>Deeley</surname>
<given-names>R. G.</given-names>
</name>
<source>Cancer Res.</source>
<year>1994</year>
<volume>54</volume>
<fpage>5902</fpage>
<lpage>5910</lpage>
</element-citation>
</ref>
<ref id="bi9922188b00053">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Priebe</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Krawczyk</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Kuo</surname>
<given-names>M. T.</given-names>
</name>
<name name-style="western">
<surname>Yamane</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Savaraj</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Ishikawa</surname>
<given-names>T.</given-names>
</name>
<source>Proc. Am. Assoc. Cancer Res.</source>
<year>1997</year>
<volume>38</volume>
<fpage>440</fpage>
</element-citation>
</ref>
<ref id="bi9922188b00054">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Baba</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Kawamura</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Makino</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Ohta</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Taketomi</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Sohda</surname>
<given-names>T.</given-names>
</name>
<source>J. Med. Chem.</source>
<year>1996</year>
<volume>39</volume>
<fpage>5176</fpage>
<lpage>5182</lpage>
<pub-id pub-id-type="doi">10.1021/jm9509408</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00055">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Foley</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Tilley</surname>
<given-names>L.</given-names>
</name>
<source>Int. J. Parasitol.</source>
<year>1997</year>
<volume>27</volume>
<fpage>231</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1016/S0020-7519(96)00152-X</pub-id>
</element-citation>
</ref>
<ref id="bi9922188b00056">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Foley</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Tilley</surname>
<given-names>L.</given-names>
</name>
<source>Pharmacol. Ther.</source>
<year>1998</year>
<volume>79</volume>
<fpage>55</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/S0163-7258(98)00012-6</pub-id>
</element-citation>
</ref>
<ref id="bi9922188n00001">
<mixed-citation>
<comment>Abbreviations:  MDR, multidrug resistance; P-gp, P-glycoprotein; MRP, multidrug resistance protein; SCLC, small cell lung cancer; SDS−PAGE, sodium dodecyl sulfate−polyacrylamide gel electrophoresis; ABC, ATP binding cassette.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†</title>
</titleInfo>
<name type="personal">
<namePart type="family">DAOUD</namePart>
<namePart type="given">Roni</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> Institute of Parasitology, McGill University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">DESNEVES</namePart>
<namePart type="given">Jose</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">DEADY</namePart>
<namePart type="given">Leslie W.</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> La Trobe University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">TILLEY</namePart>
<namePart type="given">Leann</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> La Trobe University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">SCHEPER</namePart>
<namePart type="given">Rik J.</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> Free University Hospital.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">GROS</namePart>
<namePart type="given">Philippe</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> Department of Biochemistry, McGill University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">GEORGES</namePart>
<namePart type="given">Elias</namePart>
<affiliation>Institute of Parasitology, Department of Biochemistry, McGill University, Macdonald Campus, Ste-Anne de Bellevue,Quebec, Canada, The School of Chemistry and The School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia,and Department of Pathology, Free University Hospital, Amsterdam, The Netherlands</affiliation>
<affiliation> Institute of Parasitology, McGill University.</affiliation>
<affiliation> To whom correspondence should be addressed:  Institute ofParasitology, McGill University, 21, 111 Lakeshore Road, Ste-Annede Bellevue, PQ H9X 3V9. Telephone:  (514) 398-8137. Fax:  (514)398-7857. E-mail:  Elias_Georges@maclan.McGill.CA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2000-04-26</dateCreated>
<dateIssued encoding="w3cdtf">2000-05-23</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<note type="footnote" ID="bi9922188AF2"> This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada to E.G. Research at the Institute of Parasitology is partially supported by a grant from the FCAR pour l'aide à la recherche.</note>
<abstract>Tumor cells overcome cytotoxic drug pressure by the overexpression of either or both transmembrane proteins, the P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). The MRP has been shown to mediate the transport of cytotoxic natural products, in addition to glutathione-, glucuronidate-, and sulfate-conjugated cell metabolites. However, the mechanism of MRP drug binding and transport is at present not clear. In this study, we have used a photoreactive quinoline-based drug, N-(hydrocinchonidin-8‘-yl)-4-azido-2-hydroxybenzamide (IACI), to show the photoaffinity labeling of the 190 kDa protein in membranes from the drug resistant SCLC H69/AR cells. The photoaffinity labeling of the 190 kDa protein by IACI was saturable and specific. The identity of the IACI-photolabeled protein as the MRP was confirmed by immunoprecipitation with the monoclonal antibody QCRL-1. Furthermore, a molar excess of leukotriene C4, doxorubicin, colchicine, and other quinoline-based drugs, including MK571, inhibited the photoaffinity labeling of the MRP. Drug transport studies showed lower IACI accumulation in MRP-expressing cells which was reversed by depleting ATP levels in H69/AR cells. Mild digestion of the purified IACI-photolabeled MRP with trypsin showed two large polypeptides (∼111 and ∼85 kDa). The 85 kDa polypeptide which contains the QCRL-1 and MRPm6 monoclonal antibody epitopes corresponds to the C-terminal half of the MRP (amino acids ∼900−1531) containing the third multiple spanning domain (MSD3) and the second nucleotide binding site. The 111 kDa polypeptide which contains the epitope sequence of the MRPr1 monoclonal antibody encodes the remainder of the MRP sequence (amino acids 1−900) containing the MSD1 and MSD2 plus the first nucleotide binding domain. Cleveland maps of purified IACI-labeled 85 and 111 kDa polypeptides revealed 6 kDa and ∼6 plus 4 kDa photolabeled peptides, respectively. In addition, resolution of the exhaustively digested IACI-photolabeled MRP by HPLC showed two major and one minor radiolabeled peaks that eluted late in the gradient (60 to 72% acetonitrile). Taken together, the results of this study show direct binding of IACI to the MRP at physiologically relevant sites. Moreover, IACI photolabels three small peptides which localize to the N- and C-halves of the MRP. Finally, IACI provides a sensitive and specific probe for studying MRP−drug interactions.</abstract>
<note type="footnote" ID="bi9922188AF2"> This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada to E.G. Research at the Institute of Parasitology is partially supported by a grant from the FCAR pour l'aide à la recherche.</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>6094</start>
<end>6102</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">36ABA24296CC0F5175E3849F9CFC34622FCCF8CA</identifier>
<identifier type="ark">ark:/67375/TPS-J0RG5SH4-V</identifier>
<identifier type="DOI">10.1021/bi9922188</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2000 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">ACS</recordContentSource>
<recordOrigin>Copyright © 2000 American Chemical Society</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-J0RG5SH4-V/annexes.gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001A05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:36ABA24296CC0F5175E3849F9CFC34622FCCF8CA
   |texte=   The Multidrug Resistance Protein Is Photoaffinity Labeled by a Quinoline-Based Drug at Multiple Sites†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021