Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Histidine-rich peptides and polymers for nucleic acids delivery

Identifieur interne : 001877 ( Istex/Corpus ); précédent : 001876; suivant : 001878

Histidine-rich peptides and polymers for nucleic acids delivery

Auteurs : Chantal Pichon ; Christine Gonçalves ; Patrick Midoux

Source :

RBID : ISTEX:E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC

English descriptors

Abstract

Abstract: Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.

Url:
DOI: 10.1016/S0169-409X(01)00221-6

Links to Exploration step

ISTEX:E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Histidine-rich peptides and polymers for nucleic acids delivery</title>
<author>
<name sortKey="Pichon, Chantal" sort="Pichon, Chantal" uniqKey="Pichon C" first="Chantal" last="Pichon">Chantal Pichon</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, Christine" sort="Goncalves, Christine" uniqKey="Goncalves C" first="Christine" last="Gonçalves">Christine Gonçalves</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: midoux@cnrs-orleans.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0169-409X(01)00221-6</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001877</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001877</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Histidine-rich peptides and polymers for nucleic acids delivery</title>
<author>
<name sortKey="Pichon, Chantal" sort="Pichon, Chantal" uniqKey="Pichon C" first="Chantal" last="Pichon">Chantal Pichon</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, Christine" sort="Goncalves, Christine" uniqKey="Goncalves C" first="Christine" last="Gonçalves">Christine Gonçalves</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: midoux@cnrs-orleans.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Advanced Drug Delivery Reviews</title>
<title level="j" type="abbrev">ADR</title>
<idno type="ISSN">0169-409X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="75">75</biblScope>
<biblScope unit="page" to="94">94</biblScope>
</imprint>
<idno type="ISSN">0169-409X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0169-409X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Acidic</term>
<term>Acidic medium</term>
<term>Antisense</term>
<term>Biochemistry</term>
<term>Bioconjug</term>
<term>Biol</term>
<term>Biological activity</term>
<term>Cationic</term>
<term>Cationic polymers</term>
<term>Cell nucleus</term>
<term>Cell surface</term>
<term>Chem</term>
<term>Chloroquine</term>
<term>Complexed</term>
<term>Confocal microscope</term>
<term>Cytosol</term>
<term>Cytosolic</term>
<term>Cytosolic delivery</term>
<term>Destabilization</term>
<term>Drug delivery reviews</term>
<term>E5wyg</term>
<term>Egfp</term>
<term>Electrostatic interactions</term>
<term>Encoding</term>
<term>Endosomal membrane</term>
<term>Endosomes</term>
<term>Endothelial cells</term>
<term>Extracellular medium</term>
<term>Fusogenic</term>
<term>Fusogenic peptides</term>
<term>Gene</term>
<term>Gene delivery</term>
<term>Gene expression</term>
<term>Gene transfer</term>
<term>Glycosylated</term>
<term>Glycosylated polylysines</term>
<term>H5wyg</term>
<term>H5wyg peptide</term>
<term>Hela cells</term>
<term>Hepes</term>
<term>Hepes buffer</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>Histidine</term>
<term>Histidyl</term>
<term>Histidyl residues</term>
<term>Histidylated</term>
<term>Histidylated oligolysine</term>
<term>Histidylated oligolysines</term>
<term>Histidylated polylysine</term>
<term>Histidylated polylysines</term>
<term>Imidazole</term>
<term>Imidazole protonation</term>
<term>Imidazole protonation mediates</term>
<term>Interpeptide bonds</term>
<term>Lactosylated</term>
<term>Lipid</term>
<term>Liposome</term>
<term>Luciferase</term>
<term>Luciferase activity</term>
<term>Melittin</term>
<term>Membrane</term>
<term>Membrane permeabilization</term>
<term>Midoux</term>
<term>Molar ratio</term>
<term>Molecular weight</term>
<term>Monsigny</term>
<term>Natl</term>
<term>Nuclear delivery</term>
<term>Nuclear import</term>
<term>Nuclear localization signal</term>
<term>Nuclear pores</term>
<term>Nucleic</term>
<term>Nucleic acids</term>
<term>Oligolysine</term>
<term>Oligonucleotides</term>
<term>Pcmvluc</term>
<term>Pdna</term>
<term>Pdna complexes</term>
<term>Pdna delivery</term>
<term>Peptide</term>
<term>Permeabilization</term>
<term>Phosphate buffer saline</term>
<term>Physiological salt concentration</term>
<term>Pichon</term>
<term>Plasma membrane</term>
<term>Plasmid</term>
<term>Polyethylenimine</term>
<term>Polyfection</term>
<term>Polylysine</term>
<term>Polylysine conjugate</term>
<term>Polylysines</term>
<term>Polymer</term>
<term>Polyplexes</term>
<term>Polyplexes stability</term>
<term>Positive charges</term>
<term>Proc</term>
<term>Propidium</term>
<term>Propidium iodide</term>
<term>Protonation</term>
<term>Qels measurements</term>
<term>Relative light units</term>
<term>Right target cells</term>
<term>Roche</term>
<term>Serum proteins</term>
<term>Transfecting cells</term>
<term>Transfection</term>
<term>Transmission electron microscopy</term>
<term>Unpackaging</term>
<term>Uorescence</term>
<term>Uorescence intensity</term>
<term>Vesicle</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>pdna</json:string>
<json:string>polylysine</json:string>
<json:string>polyplexes</json:string>
<json:string>peptide</json:string>
<json:string>transfection</json:string>
<json:string>h5wyg</json:string>
<json:string>histidylated</json:string>
<json:string>cationic</json:string>
<json:string>cytosol</json:string>
<json:string>plasmid</json:string>
<json:string>pichon</json:string>
<json:string>chem</json:string>
<json:string>drug delivery reviews</json:string>
<json:string>endosomes</json:string>
<json:string>midoux</json:string>
<json:string>permeabilization</json:string>
<json:string>gene transfer</json:string>
<json:string>imidazole</json:string>
<json:string>acidic</json:string>
<json:string>antisense</json:string>
<json:string>monsigny</json:string>
<json:string>protonation</json:string>
<json:string>polymer</json:string>
<json:string>luciferase</json:string>
<json:string>uorescence</json:string>
<json:string>gene delivery</json:string>
<json:string>histidyl</json:string>
<json:string>bioconjug</json:string>
<json:string>histidine</json:string>
<json:string>nucleic acids</json:string>
<json:string>cytosolic</json:string>
<json:string>oligonucleotides</json:string>
<json:string>complexed</json:string>
<json:string>hepg2</json:string>
<json:string>fusogenic</json:string>
<json:string>polyfection</json:string>
<json:string>polylysines</json:string>
<json:string>e5wyg</json:string>
<json:string>liposome</json:string>
<json:string>polyethylenimine</json:string>
<json:string>hepes buffer</json:string>
<json:string>histidyl residues</json:string>
<json:string>cell nucleus</json:string>
<json:string>polylysine conjugate</json:string>
<json:string>biol</json:string>
<json:string>egfp</json:string>
<json:string>histidylated polylysine</json:string>
<json:string>acidic medium</json:string>
<json:string>hepes</json:string>
<json:string>unpackaging</json:string>
<json:string>uorescence intensity</json:string>
<json:string>roche</json:string>
<json:string>biological activity</json:string>
<json:string>nucleic</json:string>
<json:string>acad</json:string>
<json:string>natl</json:string>
<json:string>imidazole protonation</json:string>
<json:string>luciferase activity</json:string>
<json:string>lactosylated</json:string>
<json:string>lipid</json:string>
<json:string>destabilization</json:string>
<json:string>chloroquine</json:string>
<json:string>proc</json:string>
<json:string>propidium iodide</json:string>
<json:string>propidium</json:string>
<json:string>cationic polymers</json:string>
<json:string>melittin</json:string>
<json:string>biochemistry</json:string>
<json:string>oligolysine</json:string>
<json:string>membrane permeabilization</json:string>
<json:string>pcmvluc</json:string>
<json:string>plasma membrane</json:string>
<json:string>encoding</json:string>
<json:string>glycosylated</json:string>
<json:string>vesicle</json:string>
<json:string>hepg2 cells</json:string>
<json:string>nuclear pores</json:string>
<json:string>gene expression</json:string>
<json:string>histidylated polylysines</json:string>
<json:string>endosomal membrane</json:string>
<json:string>fusogenic peptides</json:string>
<json:string>nuclear import</json:string>
<json:string>gene</json:string>
<json:string>membrane</json:string>
<json:string>physiological salt concentration</json:string>
<json:string>electrostatic interactions</json:string>
<json:string>nuclear delivery</json:string>
<json:string>pdna complexes</json:string>
<json:string>serum proteins</json:string>
<json:string>transmission electron microscopy</json:string>
<json:string>molecular weight</json:string>
<json:string>right target cells</json:string>
<json:string>histidylated oligolysines</json:string>
<json:string>molar ratio</json:string>
<json:string>qels measurements</json:string>
<json:string>interpeptide bonds</json:string>
<json:string>cytosolic delivery</json:string>
<json:string>positive charges</json:string>
<json:string>confocal microscope</json:string>
<json:string>phosphate buffer saline</json:string>
<json:string>polyplexes stability</json:string>
<json:string>transfecting cells</json:string>
<json:string>endothelial cells</json:string>
<json:string>relative light units</json:string>
<json:string>pdna delivery</json:string>
<json:string>cell surface</json:string>
<json:string>imidazole protonation mediates</json:string>
<json:string>histidylated oligolysine</json:string>
<json:string>hela cells</json:string>
<json:string>h5wyg peptide</json:string>
<json:string>nuclear localization signal</json:string>
<json:string>extracellular medium</json:string>
<json:string>glycosylated polylysines</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Chantal Pichon</name>
<affiliations>
<json:string>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christine Gonçalves</name>
<affiliations>
<json:string>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Patrick Midoux</name>
<affiliations>
<json:string>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</json:string>
<json:string>E-mail: midoux@cnrs-orleans.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gene delivery</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cationic polymers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Non-viral vector</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Polylysine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Histidine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fusogenic peptides</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Endosomal release</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Membrane permeabilization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Antisense oligonucleotides</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-VXZTZK2T-M</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Review article</json:string>
</originalGenre>
<abstract>Abstract: Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.</abstract>
<qualityIndicators>
<score>8.944</score>
<pdfWordCount>9845</pdfWordCount>
<pdfCharCount>64476</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>20</pdfPageCount>
<pdfPageSize>546 x 744 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>162</abstractWordCount>
<abstractCharCount>1192</abstractCharCount>
<keywordCount>9</keywordCount>
</qualityIndicators>
<title>Histidine-rich peptides and polymers for nucleic acids delivery</title>
<pmid>
<json:string>11733118</json:string>
</pmid>
<pii>
<json:string>S0169-409X(01)00221-6</json:string>
</pii>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Advanced Drug Delivery Reviews</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0169-409X</json:string>
</issn>
<pii>
<json:string>S0169-409X(00)X0080-4</json:string>
</pii>
<volume>53</volume>
<issue>1</issue>
<pages>
<first>75</first>
<last>94</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2001</json:string>
</date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Christine Goncalves</json:string>
<json:string>In</json:string>
<json:string>P. Midoux</json:string>
<json:string>Charles Sadron</json:string>
<json:string>Patrick Midoux</json:string>
</persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>C. Pichon et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-VXZTZK2T-M</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - pharmacology & pharmacy</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - pharmacology & pharmacy</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmaceutical Science</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - industries agroalimentaires</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0169-409X(01)00221-6</json:string>
</doi>
<id>E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Histidine-rich peptides and polymers for nucleic acids delivery</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2001 Elsevier Science B.V.</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="review-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Fig. 1: Peptide-induced membrane permeabilization. (a) Stable EGFP expressing HeLa cells exhibit a high fluorescence intensity. (b) Cells having destabilized plasma membrane are evidenced upon labeling with propidium iodide. HeLa cells (8×105 cells) in phosphate buffer saline, pH 7.4 were mixed with 15 nM propidium iodide and either (c and d) 3.3 μM melittin or (g and h) 38 μM H5WYG was added. (e and f) HeLa cells in phosphate buffer saline, pH 6.2 were mixed with 15 nM propidium iodide and 38 μM H5WYG. The cell fluorescence intensity was recorded immediately after the peptide addition by using FACSort cytometer (Becton Dickinson) during 10 min both in (FL1 a, c, e and g) the green (520 nm) and (FL3 b, d, f and h) red (650 nm) channels.</note>
<note type="content">Fig. 2: Schematic structures of histidylated polylysines (HpK; dp 190) or histidylated oligolysine (HoK; dp 19).</note>
<note type="content">Fig. 3: Size and charge of His-polyplexes. A pDNA of 5 kb (20 μg in 150 μl of 10 mM Hepes buffer, pH 8.0) was mixed with 60 μg HpK in 60 μl of the same buffer. After 30 min at 20°C, 80 μg of the N-hydroxysuccinimide derivative of PEG 5000 (PEG/HpK molar ratio of 18) in 10 μl dimethysulfoxide was added. Two hours later, 1 ml of either: (a) distilled water or; (b) PBS was added. QELS measurement was performed after 1 h by using a ZetaSizer 3000. The ζ potential of polyplexes was measured at low salt concentration by using the ZetaSizer 3000. Transmission electron microscopy. Five μl of this sample was deposited on a carbon-coated grid activated by a glow-discharge in the presence of pentylamine, washed with 2% uranyl acetate, blotted and dried. Observation was done in the dark-field mode with a LEO-Zeiss 902 electron microscope, filtering out inelastic electrons with the electron spectrometer for better imaging. Scale bar=100 nm.</note>
<note type="content">Fig. 4: Influence of fetal bovine serum on histidylated polyplexes size and ζ potential. HpK/pDNA complexes (3:1 weight ratio) were prepared in 100 μl water containing 5% glucose. After 30 min at 20°C, they were diluted with 900 μl of 0.15 M NaCl 5 mM Hepes buffer, pH 7.4 containing various amounts of serum. One hour later, QELS measurements were performed upon 10 times dilution. Inset Polyplexes in serum were isolated by ultracentrifugation on 50% (w/v) sucrose cushion and ζ potential measurements were performed in 5 mM Hepes buffer, pH 7.4. Adapted from [22].</note>
<note type="content">Fig. 5: Size of PEG-HoK/ODN complexes. PEG-HoK (380 μg; 40 μM) was added to 82 μg GEM-91 (10 μM) in 1 ml of 10 mM Hepes buffer, pH 7.4. The solution was mixed and kept 30 min at 20°C. Then the solution was made 0.15 M NaCl and the size distribution of polyplexes was measured by QELS. Transmission Electron Microscopy. The sample was processed and observed as described in the legend of Fig. 3. Scale bar=100 nm.</note>
<note type="content">Fig. 6: HoK induces cytosolic and nuclear delivery of PS-ODN. A549 cells were incubated for 4 h at 37°C with 0.125 μM Flu-PS-ODN either (a) in the absence of HoK or (b) in the presence of 20 μM HoK. Cells were fixed with 2% p-formaldehyde and visualized with a confocal microscope. Images were acquired with identical settings. Adapted from Ref. [21].</note>
<note type="content">Fig. 7: Inhibition of luciferase gene expression by GEM-91. pRET-Luc cells were treated for 4 h at 37°C in DMEM supplemented with 2% serum containing 1 μM GEM-91, in the absence of HoK or in the presence of 20 μM of either HoK or AcHoK. Then, serum was raised to 6% and cells were further incubated for 18 h. Luciferase gene expression was measured by luminescence. Results shown typical of experiments carried out in triplicate and repeated at least twice. Data are means of triplicate experiments±standard deviation. Adapted from Ref. [21].</note>
<note type="content">Fig. 8: Imidazole protonation in HpK. The chemical shifts of imidazole C2–H of either HpK (dp=190; His=109), N-AcHpK (dp=190; AcHis=100) or histidine was measured by 1H NMR spectroscopy as a function of the pH medium. Inset: Imidazole protonation in N-AcHpK/pDNA complexes. ζ potential was measured in 5 mM Hepes buffer of various pH. Adapted from Ref. [22].</note>
<note type="content">Fig. 9: Cytosolic delivery of ODN requires endosome acidification. A549 cells were incubated for 4 h at 37°C with 0.1 μM Flu-PS-ODN and 20 μM HoK either (A) in the absence or (B) in the presence of 800 nM bafilomycin A1. Then, the medium was removed and cells were further incubated for 30 min at 37°C in fresh complete medium containing 200 nM bafilomycin A1. Cells were fixed with 2% p-formaldehyde and visualized with a confocal microscope.</note>
<note type="content">Fig. 10: Polyplexes stability. Polyplexes (20 μg pDNA in 140 μl 10 mM Hepes buffer, pH 7.4 with 30 μg polymer in 60 μl 10 mM Hepes buffer, pH 7.4) were prepared and diluted in 0.7 ml phosphate buffer saline, pH 7.4 containing ethidium bromide (14 μM). The enhancement of the fluorescence intensity (λex=530 nm; λem=610 nm) upon addition of aliquots of a 0.2-mM polyanion (dextran sulfate; 500 000 kDa) solution, measured the polyplexes dissociation.</note>
<note type="content">Fig. 11: DTT releases pDNA from a disulfide-containing polylysine conjugate. pSV2luc plasmid (20 μg in 280 μl 10 mM Hepes buffer, pH 7.4) was mixed with either (A) disulfide-containing polylysine (80 μg) or (B) polylysine (40 μg) in 120 μl 10 mM Hepes buffer, pH 7.4. After 30 min at 20°C, polyplexes (50 μl; 2.5 μg plasmid) were incubated at 37°C for various times in the presence of 0.1 M DTT. Samples (20 μl) were analyzed by 0.8% agarose gel electrophoresis. *pSV2luc plasmid.</note>
<note type="content">Fig. 12: Polyfection mediated by a disulfide-containing polylysine conjugate. (A) 293-T7 cells and (B) HepG2 cells were incubated for 4 h at 37°C with pCMVluc complexed with either disulfide-containing polylysine or polylysine in the presence of 10% FCS and 100 μM chloroquine. The luciferase activity was measured after 48 h culture and expressed as the relative light units (RLU) per 106 cells.</note>
<note type="content">Table 1: Effect of H5WYG on the polyfection with pCMVLuc/LacpLK complexesa</note>
<note type="content">Table 2: Comparative evaluation of polyfection with histidylated polylysinesa</note>
<note type="content">Table 3: ODN transfer with histidylated polylysine of dp 19 (HoK)a</note>
<note type="content">Table 4: Influence of endosome acidification</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Histidine-rich peptides and polymers for nucleic acids delivery</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Chantal</forename>
<surname>Pichon</surname>
</persName>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Christine</forename>
<surname>Gonçalves</surname>
</persName>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Patrick</forename>
<surname>Midoux</surname>
</persName>
<email>midoux@cnrs-orleans.fr</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +33-2-3825-5595; fax: +33-2-3825-7807</p>
</note>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
</author>
<idno type="istex">E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC</idno>
<idno type="ark">ark:/67375/6H6-VXZTZK2T-M</idno>
<idno type="DOI">10.1016/S0169-409X(01)00221-6</idno>
<idno type="PII">S0169-409X(01)00221-6</idno>
</analytic>
<monogr>
<title level="j">Advanced Drug Delivery Reviews</title>
<title level="j" type="abbrev">ADR</title>
<idno type="pISSN">0169-409X</idno>
<idno type="PII">S0169-409X(00)X0080-4</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="75">75</biblScope>
<biblScope unit="page" to="94">94</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Gene delivery</term>
</item>
<item>
<term>Cationic polymers</term>
</item>
<item>
<term>Non-viral vector</term>
</item>
<item>
<term>Polylysine</term>
</item>
<item>
<term>Histidine</term>
</item>
<item>
<term>Fusogenic peptides</term>
</item>
<item>
<term>Endosomal release</term>
</item>
<item>
<term>Membrane permeabilization</term>
</item>
<item>
<term>Antisense oligonucleotides</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="GR2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="GR3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="GR4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="GR7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="GR8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="GR9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="GR10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="GR11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="GR12"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="rev">
<item-info>
<jid>ADR</jid>
<aid>1039</aid>
<ce:pii>S0169-409X(01)00221-6</ce:pii>
<ce:doi>10.1016/S0169-409X(01)00221-6</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Histidine-rich peptides and polymers for nucleic acids delivery</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Chantal</ce:given-name>
<ce:surname>Pichon</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Christine</ce:given-name>
<ce:surname>Gonçalves</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Patrick</ce:given-name>
<ce:surname>Midoux</ce:surname>
<ce:cross-ref refid="COR1"></ce:cross-ref>
<ce:e-address type="email">midoux@cnrs-orleans.fr</ce:e-address>
</ce:author>
<ce:affiliation>
<ce:textfn>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Corresponding author. Tel.: +33-2-3825-5595; fax: +33-2-3825-7807</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Gene delivery</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Cationic polymers</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Non-viral vector</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Polylysine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Histidine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Fusogenic peptides</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Endosomal release</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Membrane permeabilization</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Antisense oligonucleotides</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Histidine-rich peptides and polymers for nucleic acids delivery</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Histidine-rich peptides and polymers for nucleic acids delivery</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chantal</namePart>
<namePart type="family">Pichon</namePart>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Gonçalves</namePart>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Midoux</namePart>
<affiliation>Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans cedex 02, France</affiliation>
<affiliation>E-mail: midoux@cnrs-orleans.fr</affiliation>
<description>Corresponding author. Tel.: +33-2-3825-5595; fax: +33-2-3825-7807</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Nucleic acids transfer into mammalian cells requires devices to improve their escape from endocytic vesicles where they are mainly confined following cellular uptake. In this review, we describe histidine-rich molecules that enable the transfer of plasmid and oligonucleotides (ODN) in human and non-human cultured cells. An histidine-rich peptide which permeabilizes biological membrane at pH 6.4, favored the transfection mediated by lactosylated polylysine/pDNA complexes. Histidylated polylysine forms cationic particles of 100 nm with a plasmid and yielded a transfection of 3–4.5 orders of magnitude higher than polylysine. The biological activity of antisense ODN was increased more than 20-fold when it was complexed with highly histidylated oligolysine into small cationic spherical particles of 35 nm. Evidence that imidazole protonation mediates the effect of these molecules in endosomes are provided. We also describe a disulfide-containing polylysine conjugate capable of mediating DNA unpackaging in a reductive medium and to increase the transfection efficiency. Overall, these molecules constitute interesting devices for developing non-viral gene delivery systems.</abstract>
<note type="content">Fig. 1: Peptide-induced membrane permeabilization. (a) Stable EGFP expressing HeLa cells exhibit a high fluorescence intensity. (b) Cells having destabilized plasma membrane are evidenced upon labeling with propidium iodide. HeLa cells (8×105 cells) in phosphate buffer saline, pH 7.4 were mixed with 15 nM propidium iodide and either (c and d) 3.3 μM melittin or (g and h) 38 μM H5WYG was added. (e and f) HeLa cells in phosphate buffer saline, pH 6.2 were mixed with 15 nM propidium iodide and 38 μM H5WYG. The cell fluorescence intensity was recorded immediately after the peptide addition by using FACSort cytometer (Becton Dickinson) during 10 min both in (FL1 a, c, e and g) the green (520 nm) and (FL3 b, d, f and h) red (650 nm) channels.</note>
<note type="content">Fig. 2: Schematic structures of histidylated polylysines (HpK; dp 190) or histidylated oligolysine (HoK; dp 19).</note>
<note type="content">Fig. 3: Size and charge of His-polyplexes. A pDNA of 5 kb (20 μg in 150 μl of 10 mM Hepes buffer, pH 8.0) was mixed with 60 μg HpK in 60 μl of the same buffer. After 30 min at 20°C, 80 μg of the N-hydroxysuccinimide derivative of PEG 5000 (PEG/HpK molar ratio of 18) in 10 μl dimethysulfoxide was added. Two hours later, 1 ml of either: (a) distilled water or; (b) PBS was added. QELS measurement was performed after 1 h by using a ZetaSizer 3000. The ζ potential of polyplexes was measured at low salt concentration by using the ZetaSizer 3000. Transmission electron microscopy. Five μl of this sample was deposited on a carbon-coated grid activated by a glow-discharge in the presence of pentylamine, washed with 2% uranyl acetate, blotted and dried. Observation was done in the dark-field mode with a LEO-Zeiss 902 electron microscope, filtering out inelastic electrons with the electron spectrometer for better imaging. Scale bar=100 nm.</note>
<note type="content">Fig. 4: Influence of fetal bovine serum on histidylated polyplexes size and ζ potential. HpK/pDNA complexes (3:1 weight ratio) were prepared in 100 μl water containing 5% glucose. After 30 min at 20°C, they were diluted with 900 μl of 0.15 M NaCl 5 mM Hepes buffer, pH 7.4 containing various amounts of serum. One hour later, QELS measurements were performed upon 10 times dilution. Inset Polyplexes in serum were isolated by ultracentrifugation on 50% (w/v) sucrose cushion and ζ potential measurements were performed in 5 mM Hepes buffer, pH 7.4. Adapted from [22].</note>
<note type="content">Fig. 5: Size of PEG-HoK/ODN complexes. PEG-HoK (380 μg; 40 μM) was added to 82 μg GEM-91 (10 μM) in 1 ml of 10 mM Hepes buffer, pH 7.4. The solution was mixed and kept 30 min at 20°C. Then the solution was made 0.15 M NaCl and the size distribution of polyplexes was measured by QELS. Transmission Electron Microscopy. The sample was processed and observed as described in the legend of Fig. 3. Scale bar=100 nm.</note>
<note type="content">Fig. 6: HoK induces cytosolic and nuclear delivery of PS-ODN. A549 cells were incubated for 4 h at 37°C with 0.125 μM Flu-PS-ODN either (a) in the absence of HoK or (b) in the presence of 20 μM HoK. Cells were fixed with 2% p-formaldehyde and visualized with a confocal microscope. Images were acquired with identical settings. Adapted from Ref. [21].</note>
<note type="content">Fig. 7: Inhibition of luciferase gene expression by GEM-91. pRET-Luc cells were treated for 4 h at 37°C in DMEM supplemented with 2% serum containing 1 μM GEM-91, in the absence of HoK or in the presence of 20 μM of either HoK or AcHoK. Then, serum was raised to 6% and cells were further incubated for 18 h. Luciferase gene expression was measured by luminescence. Results shown typical of experiments carried out in triplicate and repeated at least twice. Data are means of triplicate experiments±standard deviation. Adapted from Ref. [21].</note>
<note type="content">Fig. 8: Imidazole protonation in HpK. The chemical shifts of imidazole C2–H of either HpK (dp=190; His=109), N-AcHpK (dp=190; AcHis=100) or histidine was measured by 1H NMR spectroscopy as a function of the pH medium. Inset: Imidazole protonation in N-AcHpK/pDNA complexes. ζ potential was measured in 5 mM Hepes buffer of various pH. Adapted from Ref. [22].</note>
<note type="content">Fig. 9: Cytosolic delivery of ODN requires endosome acidification. A549 cells were incubated for 4 h at 37°C with 0.1 μM Flu-PS-ODN and 20 μM HoK either (A) in the absence or (B) in the presence of 800 nM bafilomycin A1. Then, the medium was removed and cells were further incubated for 30 min at 37°C in fresh complete medium containing 200 nM bafilomycin A1. Cells were fixed with 2% p-formaldehyde and visualized with a confocal microscope.</note>
<note type="content">Fig. 10: Polyplexes stability. Polyplexes (20 μg pDNA in 140 μl 10 mM Hepes buffer, pH 7.4 with 30 μg polymer in 60 μl 10 mM Hepes buffer, pH 7.4) were prepared and diluted in 0.7 ml phosphate buffer saline, pH 7.4 containing ethidium bromide (14 μM). The enhancement of the fluorescence intensity (λex=530 nm; λem=610 nm) upon addition of aliquots of a 0.2-mM polyanion (dextran sulfate; 500 000 kDa) solution, measured the polyplexes dissociation.</note>
<note type="content">Fig. 11: DTT releases pDNA from a disulfide-containing polylysine conjugate. pSV2luc plasmid (20 μg in 280 μl 10 mM Hepes buffer, pH 7.4) was mixed with either (A) disulfide-containing polylysine (80 μg) or (B) polylysine (40 μg) in 120 μl 10 mM Hepes buffer, pH 7.4. After 30 min at 20°C, polyplexes (50 μl; 2.5 μg plasmid) were incubated at 37°C for various times in the presence of 0.1 M DTT. Samples (20 μl) were analyzed by 0.8% agarose gel electrophoresis. *pSV2luc plasmid.</note>
<note type="content">Fig. 12: Polyfection mediated by a disulfide-containing polylysine conjugate. (A) 293-T7 cells and (B) HepG2 cells were incubated for 4 h at 37°C with pCMVluc complexed with either disulfide-containing polylysine or polylysine in the presence of 10% FCS and 100 μM chloroquine. The luciferase activity was measured after 48 h culture and expressed as the relative light units (RLU) per 106 cells.</note>
<note type="content">Table 1: Effect of H5WYG on the polyfection with pCMVLuc/LacpLK complexesa</note>
<note type="content">Table 2: Comparative evaluation of polyfection with histidylated polylysinesa</note>
<note type="content">Table 3: ODN transfer with histidylated polylysine of dp 19 (HoK)a</note>
<note type="content">Table 4: Influence of endosome acidification</note>
<subject>
<genre>Keywords</genre>
<topic>Gene delivery</topic>
<topic>Cationic polymers</topic>
<topic>Non-viral vector</topic>
<topic>Polylysine</topic>
<topic>Histidine</topic>
<topic>Fusogenic peptides</topic>
<topic>Endosomal release</topic>
<topic>Membrane permeabilization</topic>
<topic>Antisense oligonucleotides</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Advanced Drug Delivery Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>ADR</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0169-409X</identifier>
<identifier type="PII">S0169-409X(00)X0080-4</identifier>
<part>
<date>2001</date>
<detail type="issue">
<title>Polymeric Materials for Advanced Drug Delivery</title>
</detail>
<detail type="volume">
<number>53</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>132</end>
</extent>
<extent unit="pages">
<start>75</start>
<end>94</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC</identifier>
<identifier type="ark">ark:/67375/6H6-VXZTZK2T-M</identifier>
<identifier type="DOI">10.1016/S0169-409X(01)00221-6</identifier>
<identifier type="PII">S0169-409X(01)00221-6</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-VXZTZK2T-M/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001877 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001877 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E2DA5B1FD9DD590A0AC522A599B478CFD1D5B5AC
   |texte=   Histidine-rich peptides and polymers for nucleic acids delivery
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021