Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes

Identifieur interne : 000B97 ( Istex/Corpus ); précédent : 000B96; suivant : 000B98

The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes

Auteurs : Patrick Erbacher ; Annie Claude Roche ; Michel Monsigny ; Patrick Midoux

Source :

RBID : ISTEX:D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A

English descriptors

Abstract

Abstract: A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the ϵ-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100 μg/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.

Url:
DOI: 10.1016/S0005-2736(96)00204-0

Links to Exploration step

ISTEX:D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
<author>
<name sortKey="Erbacher, Patrick" sort="Erbacher, Patrick" uniqKey="Erbacher P" first="Patrick" last="Erbacher">Patrick Erbacher</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roche, Annie Claude" sort="Roche, Annie Claude" uniqKey="Roche A" first="Annie Claude" last="Roche">Annie Claude Roche</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1016/S0005-2736(96)00204-0</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B97</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
<author>
<name sortKey="Erbacher, Patrick" sort="Erbacher, Patrick" uniqKey="Erbacher P" first="Patrick" last="Erbacher">Patrick Erbacher</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roche, Annie Claude" sort="Roche, Annie Claude" uniqKey="Roche A" first="Annie Claude" last="Roche">Annie Claude Roche</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">BBA - Biomembranes</title>
<title level="j" type="abbrev">BBAMEM</title>
<idno type="ISSN">0005-2736</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">1324</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="27">27</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
<idno type="ISSN">0005-2736</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0005-2736</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroquine</term>
<term>DP, degree of polymerization</term>
<term>FBS, fetal bovine serum</term>
<term>Gene therapy</term>
<term>Gene transfer</term>
<term>GlcA, gluconoyl residue</term>
<term>Lact, lactosyl residue</term>
<term>PBS, phosphate-buffered saline, pH 7.4</term>
<term>Polylysine</term>
<term>pLK, poly-l-lysine.</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Average number</term>
<term>Biochimica</term>
<term>Biol</term>
<term>Biophysica</term>
<term>Biophysica acta</term>
<term>Cell lines</term>
<term>Chloroquine</term>
<term>Complete retardation</term>
<term>Complexed</term>
<term>Dmem</term>
<term>Electrostatic interactions</term>
<term>Erbacher</term>
<term>Gene expression</term>
<term>Gene transfer</term>
<term>Gibco</term>
<term>Glca</term>
<term>Glca molecules</term>
<term>Glca residues</term>
<term>Glcaplk</term>
<term>Glcaplkrdna</term>
<term>Gluconoyl</term>
<term>Gluconoyl residues</term>
<term>Gluconoylated</term>
<term>Gluconoylated polylysine</term>
<term>Grml</term>
<term>Hepg2</term>
<term>Hepg2 cells</term>
<term>Humidified atmosphere</term>
<term>Lact</term>
<term>Lactosyl</term>
<term>Lactosyl residues</term>
<term>Lactosylated</term>
<term>Lactosylated polylysine</term>
<term>Lowest polymer</term>
<term>Luciferase</term>
<term>Luciferase activity</term>
<term>Midoux</term>
<term>Molar</term>
<term>Molar ratio</term>
<term>Monsigny</term>
<term>Negative charges</term>
<term>Plasmid</term>
<term>Plasmid complexed</term>
<term>Plkrpsv2</term>
<term>Pmol</term>
<term>Polylysine</term>
<term>Polymer</term>
<term>Polymerrdna</term>
<term>Polymerrdna molar ratio</term>
<term>Positive charges</term>
<term>Psv2</term>
<term>Recognition signals</term>
<term>Small number</term>
<term>Transfected</term>
<term>Transfection</term>
<term>Transfection efficiency</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the ϵ-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100 μg/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>glca</json:string>
<json:string>lact</json:string>
<json:string>polylysine</json:string>
<json:string>plasmid</json:string>
<json:string>transfection</json:string>
<json:string>hepg2</json:string>
<json:string>pmol</json:string>
<json:string>gluconoylated</json:string>
<json:string>chloroquine</json:string>
<json:string>glcaplk</json:string>
<json:string>psv2</json:string>
<json:string>complexed</json:string>
<json:string>dmem</json:string>
<json:string>hepg2 cells</json:string>
<json:string>luciferase</json:string>
<json:string>transfection efficiency</json:string>
<json:string>plkrpsv2</json:string>
<json:string>gluconoylated polylysine</json:string>
<json:string>transfected</json:string>
<json:string>erbacher</json:string>
<json:string>positive charges</json:string>
<json:string>lactosylated</json:string>
<json:string>luciferase activity</json:string>
<json:string>biochimica</json:string>
<json:string>biophysica</json:string>
<json:string>acta</json:string>
<json:string>biophysica acta</json:string>
<json:string>complete retardation</json:string>
<json:string>gluconoyl</json:string>
<json:string>grml</json:string>
<json:string>gene transfer</json:string>
<json:string>plasmid complexed</json:string>
<json:string>glcaplkrdna</json:string>
<json:string>cell lines</json:string>
<json:string>polymerrdna</json:string>
<json:string>molar</json:string>
<json:string>biol</json:string>
<json:string>monsigny</json:string>
<json:string>gibco</json:string>
<json:string>midoux</json:string>
<json:string>lactosyl</json:string>
<json:string>humidified atmosphere</json:string>
<json:string>small number</json:string>
<json:string>gluconoyl residues</json:string>
<json:string>polymer</json:string>
<json:string>lactosyl residues</json:string>
<json:string>lowest polymer</json:string>
<json:string>average number</json:string>
<json:string>electrostatic interactions</json:string>
<json:string>molar ratio</json:string>
<json:string>lactosylated polylysine</json:string>
<json:string>polymerrdna molar ratio</json:string>
<json:string>glca residues</json:string>
<json:string>recognition signals</json:string>
<json:string>gene expression</json:string>
<json:string>glca molecules</json:string>
<json:string>negative charges</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Patrick Erbacher</name>
<affiliations>
<json:string>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Annie Claude Roche</name>
<affiliations>
<json:string>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michel Monsigny</name>
<affiliations>
<json:string>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Patrick Midoux</name>
<affiliations>
<json:string>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gene therapy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gene transfer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Polylysine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chloroquine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>DP, degree of polymerization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FBS, fetal bovine serum</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GlcA, gluconoyl residue</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Lact, lactosyl residue</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PBS, phosphate-buffered saline, pH 7.4</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pLK, poly-l-lysine.</value>
</json:item>
</subject>
<articleId>
<json:string>77019</json:string>
</articleId>
<arkIstex>ark:/67375/6H6-TCLJ2VHZ-5</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the ϵ-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100 μg/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.</abstract>
<qualityIndicators>
<score>8.584</score>
<pdfWordCount>5470</pdfWordCount>
<pdfCharCount>31284</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>595 x 763 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>132</abstractWordCount>
<abstractCharCount>1025</abstractCharCount>
<keywordCount>10</keywordCount>
</qualityIndicators>
<title>The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
<pmid>
<json:string>9059495</json:string>
</pmid>
<pii>
<json:string>S0005-2736(96)00204-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>BBA - Biomembranes</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1997</publicationDate>
<issn>
<json:string>0005-2736</json:string>
</issn>
<pii>
<json:string>S0005-2736(00)X0037-5</json:string>
</pii>
<volume>1324</volume>
<issue>1</issue>
<pages>
<first>27</first>
<last>36</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1997</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Orleans</json:string>
<json:string>University of South Carolina</json:string>
<json:string>Research Directors INSERM</json:string>
<json:string>‘Association</json:string>
</orgName>
<orgName_funder>
<json:string>‘Association</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>P. De Villartay</json:string>
<json:string>Annie Claude</json:string>
<json:string>E. Le Floch</json:string>
<json:string>Marie-Therese Bousser</json:string>
<json:string>Ždata</json:string>
<json:string>Suzanne Nuques</json:string>
<json:string>Henri Labbe</json:string>
<json:string>Philippe Bouchard</json:string>
<json:string>In</json:string>
<json:string>Orleans Cedex</json:string>
<json:string>P.O. Couraud</json:string>
<json:string>Data</json:string>
<json:string>D. Klatzman</json:string>
<json:string>Žfor</json:string>
<json:string>J. Balzarini</json:string>
<json:string>Biochemistry</json:string>
<json:string>F. Lavelle</json:string>
<json:string>M. Nachtigal</json:string>
<json:string>La Pitie</json:string>
</persName>
<placeName>
<json:string>SC.</json:string>
<json:string>Paris</json:string>
<json:string>Switzerland</json:string>
<json:string>Columbia</json:string>
<json:string>Germany</json:string>
<json:string>Renfrewshire</json:string>
<json:string>UK</json:string>
<json:string>Darmstadt</json:string>
<json:string>HEL</json:string>
<json:string>Strasbourg</json:string>
<json:string>Leuven</json:string>
<json:string>France</json:string>
<json:string>Belgium</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>P. Erbacher et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-TCLJ2VHZ-5</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biophysics</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Cell Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1997</copyrightDate>
<doi>
<json:string>10.1016/S0005-2736(96)00204-0</json:string>
</doi>
<id>D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©1997 Elsevier Science B.V.</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>1997</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Fig. 1: Structure of partially gluconoylated polylysine.</note>
<note type="content">Fig. 2: Analysis of the strength of the polymer/DNA interaction. pSV2LUC (1.5 pmol) was complexed with either (■) pLK (2.5 μg; 43 pmol), (○) GlcA74pLK (6 μg; 108 pmol) or (•) GlcA110pLK (10 μg; 170 pmol) in 1 ml of PBS for 30 min at 20°C. Then, the NaCl concentration was increased up to 2 M by addition of aliquots of a 4 M NaCl solution in PBS. After 15 min at 20°C, each solution was passed through a nitrocellulose filter and the amount of free DNA in filtrates was determined upon adding DAPI by measuring the fluorescence intensity with a spectrofluorometer (λexc=360 nm; λem=450 nm). The percentage of GlcApLK/DNA complex was calculated as described in Section 2.</note>
<note type="content">Fig. 3: Gene transfer into HepG2 cells with GlcApLK/pSV2LUC complexes. (A) Influence of the number of GlcA molecules bound per pLK molecule (GlcA/pLK). Complexes were formed between pSV2LUC (1.5 pmol) in 0.7 ml of DMEM and pLK bearing either 0, 17, 31, 40, 50, 59, 74, 90, 105 or 127 GlcA in 0.3 ml of DMEM. HepG2 cells (4×105) were transfected at 37°C for 4 h in 1 ml of DMEM containing a complex, 1% FBS and 100 μM chloroquine. (B) Influence of the polymer to plasmid molar ratio (GlcApLK/DNA). HepG2 cells (4×105) were transfected at 37°C for 4 h in 1 ml of DMEM containing 1% FBS, 100 μM chloroquine and pSV2LUC (1.5 pmol) complexed with various amounts of GlcA74pLK. Gene expression in (A) and (B) was determined 48 h later by assaying the luciferase activity in cell lysates.</note>
<note type="content">Fig. 4: Concentration-dependent solubility of the polymer/plasmid complexes. Complexes were formed by mixing pSV2LUC (1.5–30 pmol; 5–100 μg/ml) with the minimal amount of polymer leading to a complete retardation of all the plasmid in agarose gel electrophoresis, i.e., either (•) pLK (polymer/DNA molar ratio =28), (○) GlcA74-pLK (polymer/DNA molar ratio =74), (▿) Lact30-pLK (polymer/DNA molar ratio =52), (□) Lact60-pLK (polymer/DNA molar ratio =114) or (▾) Lact30, -GlcA50-pLK (polymer/DNA molar ratio =78) in 1 ml of PBS. The solutions were kept for 30 min at 20°C and then their turbidity assessed by measuring the absorbance at 610 nm.</note>
<note type="content">Fig. 5: Gene transfer with lactosylated and gluconoylated polylysine/plasmid complexes. HepG2 cells were transfected at 37°C for 4 h in 1 ml of DMEM containing 1% FBS, 100 μM chloroquine and pSV2LUC (1.5 pmol) complexed with the minimal amount of polymer leading to a complete retardation of all the plasmid in agarose gel electrophoresis, i.e., either pLK (2.5 μg; 43 pmol), Lact30pLK (5 μg; 78 pmol), Lact30-, GlcA30pLK (6 μg; 98 pmol), Lact30-, GlcA50pLK (7.5 μg; 117 pmol), Lact30-, GlcA80pLK (10 μg; 156 pmol), Lact60pLK (12.5 μg; 170 pmol) or GlcA74pLK (6 μg; 108 pmol). Gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. Lact and GlcA were the number of lactosyl and gluconoyl residues per polylysine molecule, respectively.</note>
<note type="content">Fig. 6: Charge ratio in polymer/plasmid complexes. Influence of the polylysine substitution level on the NH3+/nucleotide ratio in complexes between pSV2LUC and either (○) GlcAxpLK (0</note>
<note type="content">Table 1: Efficiency of gene transfer with GlcA74pLK/plasmid complexes into various cell lines</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Patrick</forename>
<surname>Erbacher</surname>
</persName>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Annie Claude</forename>
<surname>Roche</surname>
</persName>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Michel</forename>
<surname>Monsigny</surname>
</persName>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Patrick</forename>
<surname>Midoux</surname>
</persName>
<note type="correspondence">
<p>Corresponding author. Fax: +33 2 38 690094.</p>
</note>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
</author>
<idno type="istex">D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A</idno>
<idno type="ark">ark:/67375/6H6-TCLJ2VHZ-5</idno>
<idno type="DOI">10.1016/S0005-2736(96)00204-0</idno>
<idno type="PII">S0005-2736(96)00204-0</idno>
<idno type="article-id">77019</idno>
</analytic>
<monogr>
<title level="j">BBA - Biomembranes</title>
<title level="j" type="abbrev">BBAMEM</title>
<idno type="pISSN">0005-2736</idno>
<idno type="PII">S0005-2736(00)X0037-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997"></date>
<biblScope unit="volume">1324</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="27">27</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1997</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the ϵ-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100 μg/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Gene therapy</term>
</item>
<item>
<term>Gene transfer</term>
</item>
<item>
<term>Polylysine</term>
</item>
<item>
<term>Chloroquine</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>DP, degree of polymerization</term>
</item>
<item>
<term>FBS, fetal bovine serum</term>
</item>
<item>
<term>GlcA, gluconoyl residue</term>
</item>
<item>
<term>Lact, lactosyl residue</term>
</item>
<item>
<term>PBS, phosphate-buffered saline, pH 7.4</term>
</item>
<item>
<term>pLK, poly-l-lysine.</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1996-09-13">Modified</change>
<change when="1997">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>BBAMEM</jid>
<aid>77019</aid>
<ce:pii>S0005-2736(96)00204-0</ce:pii>
<ce:doi>10.1016/S0005-2736(96)00204-0</ce:doi>
<ce:copyright year="1997" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Patrick</ce:given-name>
<ce:surname>Erbacher</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Annie Claude</ce:given-name>
<ce:surname>Roche</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Michel</ce:given-name>
<ce:surname>Monsigny</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Patrick</ce:given-name>
<ce:surname>Midoux</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Fax: +33 2 38 690094.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="16" month="7" year="1996"></ce:date-received>
<ce:date-revised day="13" month="9" year="1996"></ce:date-revised>
<ce:date-accepted day="24" month="9" year="1996"></ce:date-accepted>
<ce:abstract class="author">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para view="all" id="simple-para.0050">A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the
<ce:italic>ϵ</ce:italic>
-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100
<ce:italic>μ</ce:italic>
g/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Gene therapy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Gene transfer</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Polylysine</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Chloroquine</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>DP, degree of polymerization</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>FBS, fetal bovine serum</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>GlcA, gluconoyl residue</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Lact, lactosyl residue</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>PBS, phosphate-buffered saline, pH 7.4</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>pLK, poly-
<ce:small-caps>l</ce:small-caps>
-lysine.</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Erbacher</namePart>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie Claude</namePart>
<namePart type="family">Roche</namePart>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Monsigny</namePart>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Midoux</namePart>
<affiliation>Glycobiologie, Centre de Biophysique Moléculaire, CNRS et Université d'Orléans, 1 rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<description>Corresponding author. Fax: +33 2 38 690094.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
<dateModified encoding="w3cdtf">1996-09-13</dateModified>
<copyrightDate encoding="w3cdtf">1997</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A polylysine partially substituted with polyhydroxyalkanoyl residues and specially with gluconoyl residues was developed in order to increase the transfection efficiency by decreasing the strength of the electrostatic interactions between the DNA and the cationic polymer. Partially gluconoylated polylysine/DNA complexes were more easily dissociated in solution and their transfection efficiency in the presence of chloroquine, evaluated with HepG2 cells, a human hepatocarcinoma line, was higher when 43±4% of the ϵ-amino groups of polylysine were blocked with gluconoyl residues. Partially gluconoylated polylysine/plasmid complexes were efficient in transfecting different adherent as well as non-adherent cell lines. Partially gluconoylated polylysine formed highly soluble (above 100 μg/ml in DNA) complexes with DNA plasmids. In addition, partially gluconoylated polylysine bearing few lactosyl residues increased the transfection efficiency of HepG2 cells which express a galactose-specific membrane lectin.</abstract>
<note type="content">Fig. 1: Structure of partially gluconoylated polylysine.</note>
<note type="content">Fig. 2: Analysis of the strength of the polymer/DNA interaction. pSV2LUC (1.5 pmol) was complexed with either (■) pLK (2.5 μg; 43 pmol), (○) GlcA74pLK (6 μg; 108 pmol) or (•) GlcA110pLK (10 μg; 170 pmol) in 1 ml of PBS for 30 min at 20°C. Then, the NaCl concentration was increased up to 2 M by addition of aliquots of a 4 M NaCl solution in PBS. After 15 min at 20°C, each solution was passed through a nitrocellulose filter and the amount of free DNA in filtrates was determined upon adding DAPI by measuring the fluorescence intensity with a spectrofluorometer (λexc=360 nm; λem=450 nm). The percentage of GlcApLK/DNA complex was calculated as described in Section 2.</note>
<note type="content">Fig. 3: Gene transfer into HepG2 cells with GlcApLK/pSV2LUC complexes. (A) Influence of the number of GlcA molecules bound per pLK molecule (GlcA/pLK). Complexes were formed between pSV2LUC (1.5 pmol) in 0.7 ml of DMEM and pLK bearing either 0, 17, 31, 40, 50, 59, 74, 90, 105 or 127 GlcA in 0.3 ml of DMEM. HepG2 cells (4×105) were transfected at 37°C for 4 h in 1 ml of DMEM containing a complex, 1% FBS and 100 μM chloroquine. (B) Influence of the polymer to plasmid molar ratio (GlcApLK/DNA). HepG2 cells (4×105) were transfected at 37°C for 4 h in 1 ml of DMEM containing 1% FBS, 100 μM chloroquine and pSV2LUC (1.5 pmol) complexed with various amounts of GlcA74pLK. Gene expression in (A) and (B) was determined 48 h later by assaying the luciferase activity in cell lysates.</note>
<note type="content">Fig. 4: Concentration-dependent solubility of the polymer/plasmid complexes. Complexes were formed by mixing pSV2LUC (1.5–30 pmol; 5–100 μg/ml) with the minimal amount of polymer leading to a complete retardation of all the plasmid in agarose gel electrophoresis, i.e., either (•) pLK (polymer/DNA molar ratio =28), (○) GlcA74-pLK (polymer/DNA molar ratio =74), (▿) Lact30-pLK (polymer/DNA molar ratio =52), (□) Lact60-pLK (polymer/DNA molar ratio =114) or (▾) Lact30, -GlcA50-pLK (polymer/DNA molar ratio =78) in 1 ml of PBS. The solutions were kept for 30 min at 20°C and then their turbidity assessed by measuring the absorbance at 610 nm.</note>
<note type="content">Fig. 5: Gene transfer with lactosylated and gluconoylated polylysine/plasmid complexes. HepG2 cells were transfected at 37°C for 4 h in 1 ml of DMEM containing 1% FBS, 100 μM chloroquine and pSV2LUC (1.5 pmol) complexed with the minimal amount of polymer leading to a complete retardation of all the plasmid in agarose gel electrophoresis, i.e., either pLK (2.5 μg; 43 pmol), Lact30pLK (5 μg; 78 pmol), Lact30-, GlcA30pLK (6 μg; 98 pmol), Lact30-, GlcA50pLK (7.5 μg; 117 pmol), Lact30-, GlcA80pLK (10 μg; 156 pmol), Lact60pLK (12.5 μg; 170 pmol) or GlcA74pLK (6 μg; 108 pmol). Gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. Lact and GlcA were the number of lactosyl and gluconoyl residues per polylysine molecule, respectively.</note>
<note type="content">Fig. 6: Charge ratio in polymer/plasmid complexes. Influence of the polylysine substitution level on the NH3+/nucleotide ratio in complexes between pSV2LUC and either (○) GlcAxpLK (0</note>
<note type="content">Table 1: Efficiency of gene transfer with GlcA74pLK/plasmid complexes into various cell lines</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Gene therapy</topic>
<topic>Gene transfer</topic>
<topic>Polylysine</topic>
<topic>Chloroquine</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>DP, degree of polymerization</topic>
<topic>FBS, fetal bovine serum</topic>
<topic>GlcA, gluconoyl residue</topic>
<topic>Lact, lactosyl residue</topic>
<topic>PBS, phosphate-buffered saline, pH 7.4</topic>
<topic>pLK, poly-l-lysine.</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>BBA - Biomembranes</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BBAMEM</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
</originInfo>
<identifier type="ISSN">0005-2736</identifier>
<identifier type="PII">S0005-2736(00)X0037-5</identifier>
<part>
<date>1997</date>
<detail type="volume">
<number>1324</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>170</end>
</extent>
<extent unit="pages">
<start>27</start>
<end>36</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A</identifier>
<identifier type="ark">ark:/67375/6H6-TCLJ2VHZ-5</identifier>
<identifier type="DOI">10.1016/S0005-2736(96)00204-0</identifier>
<identifier type="PII">S0005-2736(96)00204-0</identifier>
<identifier type="ArticleID">77019</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1997 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1997</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-TCLJ2VHZ-5/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D7ACD0DAE2EEB15A4EF5F8B9A2B7A73CD7B7616A
   |texte=   The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021