Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin

Identifieur interne : 000931 ( Istex/Corpus ); précédent : 000930; suivant : 000932

Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin

Auteurs : Mary M. Chen ; Lirong Shi ; David J. Sullivan Jr.

Source :

RBID : ISTEX:A7690AAB8E28AAE2A58875F301E538AB5298FD21

English descriptors

Abstract

Abstract: Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by Haemoproteus columbae and Schistosoma mansoni to that of Plasmodium falciparum hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both P. falciparum and H. columbae heme polymers had a symmetrical shape unlike the amorphous S. mansoni heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus, Haemoproteus, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.

Url:
DOI: 10.1016/S0166-6851(00)00365-0

Links to Exploration step

ISTEX:A7690AAB8E28AAE2A58875F301E538AB5298FD21

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
<author>
<name sortKey="Chen, Mary M" sort="Chen, Mary M" uniqKey="Chen M" first="Mary M." last="Chen">Mary M. Chen</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Lirong" sort="Shi, Lirong" uniqKey="Shi L" first="Lirong" last="Shi">Lirong Shi</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sullivan Jr, David J" sort="Sullivan Jr, David J" uniqKey="Sullivan Jr D" first="David J." last="Sullivan Jr.">David J. Sullivan Jr.</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dsulliva@jhsph.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A7690AAB8E28AAE2A58875F301E538AB5298FD21</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0166-6851(00)00365-0</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000931</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000931</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
<author>
<name sortKey="Chen, Mary M" sort="Chen, Mary M" uniqKey="Chen M" first="Mary M." last="Chen">Mary M. Chen</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Lirong" sort="Shi, Lirong" uniqKey="Shi L" first="Lirong" last="Shi">Lirong Shi</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sullivan Jr, David J" sort="Sullivan Jr, David J" uniqKey="Sullivan Jr D" first="David J." last="Sullivan Jr.">David J. Sullivan Jr.</name>
<affiliation>
<mods:affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dsulliva@jhsph.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular & Biochemical Parasitology</title>
<title level="j" type="abbrev">MOLBIO</title>
<idno type="ISSN">0166-6851</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">113</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="8">8</biblScope>
</imprint>
<idno type="ISSN">0166-6851</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0166-6851</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>FEISEM, field emission inlens scanning electron microscopy</term>
<term>FTIR=Fourier-transform infrared</term>
<term>H2O2, hydrogen peroxide</term>
<term>Haemoproteus columbae</term>
<term>Heme polymer</term>
<term>Hemozoin</term>
<term>Plasmodium falciparum</term>
<term>Quinoline</term>
<term>SDS, sodium dodecyl sulfate</term>
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Antimalarial</term>
<term>Chloroquine</term>
<term>Columbae</term>
<term>Columbae heme polymers</term>
<term>Degradation</term>
<term>Erythrocyte</term>
<term>Falciparum</term>
<term>Falciparum heme polymer</term>
<term>Feisem</term>
<term>Haemoproteus</term>
<term>Heme</term>
<term>Heme monomer</term>
<term>Heme pigments</term>
<term>Heme polymer</term>
<term>Heme polymer extension</term>
<term>Heme polymer formation</term>
<term>Heme polymers</term>
<term>Hemozoin</term>
<term>Mansoni</term>
<term>Monomer</term>
<term>Parasite</term>
<term>Parasitology</term>
<term>Plasmodium</term>
<term>Polymer</term>
<term>Quinoline</term>
<term>Quinoline inhibition</term>
<term>Quinolines</term>
<term>Schistosoma</term>
<term>Schistosoma mansoni</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by Haemoproteus columbae and Schistosoma mansoni to that of Plasmodium falciparum hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both P. falciparum and H. columbae heme polymers had a symmetrical shape unlike the amorphous S. mansoni heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus, Haemoproteus, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>heme</json:string>
<json:string>polymer</json:string>
<json:string>falciparum</json:string>
<json:string>columbae</json:string>
<json:string>mansoni</json:string>
<json:string>heme polymers</json:string>
<json:string>heme polymer</json:string>
<json:string>chloroquine</json:string>
<json:string>plasmodium</json:string>
<json:string>quinoline</json:string>
<json:string>haemoproteus</json:string>
<json:string>feisem</json:string>
<json:string>hemozoin</json:string>
<json:string>quinolines</json:string>
<json:string>parasite</json:string>
<json:string>schistosoma</json:string>
<json:string>falciparum heme polymer</json:string>
<json:string>antimalarial</json:string>
<json:string>erythrocyte</json:string>
<json:string>parasitology</json:string>
<json:string>heme pigments</json:string>
<json:string>heme polymer extension</json:string>
<json:string>heme monomer</json:string>
<json:string>degradation</json:string>
<json:string>heme polymer formation</json:string>
<json:string>columbae heme polymers</json:string>
<json:string>schistosoma mansoni</json:string>
<json:string>quinoline inhibition</json:string>
<json:string>monomer</json:string>
<json:string>signature peaks</json:string>
<json:string>haemoproteus columbae</json:string>
<json:string>mansoni heme polymer</json:string>
<json:string>polymer extension</json:string>
<json:string>mansoni pigment</json:string>
<json:string>pigment formation</json:string>
<json:string>columbae gametocytes</json:string>
<json:string>heme polymer pigments</json:string>
<json:string>total heme content</json:string>
<json:string>chloroquine inhibition</json:string>
<json:string>hydrogen peroxide</json:string>
<json:string>further extension</json:string>
<json:string>plasmodium falciparum</json:string>
<json:string>columbae heme polymer</json:string>
<json:string>different levels</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Mary M. Chen</name>
<affiliations>
<json:string>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lirong Shi</name>
<affiliations>
<json:string>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David J. Sullivan, Jr.</name>
<affiliations>
<json:string>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</json:string>
<json:string>E-mail: dsulliva@jhsph.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hemozoin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Heme polymer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Quinoline</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Plasmodium falciparum</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Schistosoma mansoni</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Haemoproteus columbae</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FEISEM, field emission inlens scanning electron microscopy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FTIR=Fourier-transform infrared</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>H2O2, hydrogen peroxide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>SDS, sodium dodecyl sulfate</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-Q51W98V0-3</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by Haemoproteus columbae and Schistosoma mansoni to that of Plasmodium falciparum hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both P. falciparum and H. columbae heme polymers had a symmetrical shape unlike the amorphous S. mansoni heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus, Haemoproteus, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.</abstract>
<qualityIndicators>
<score>8.55</score>
<pdfWordCount>4438</pdfWordCount>
<pdfCharCount>27946</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>552 x 768 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>176</abstractWordCount>
<abstractCharCount>1305</abstractCharCount>
<keywordCount>10</keywordCount>
</qualityIndicators>
<title>Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
<pmid>
<json:string>11254949</json:string>
</pmid>
<pii>
<json:string>S0166-6851(00)00365-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Molecular & Biochemical Parasitology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0166-6851</json:string>
</issn>
<pii>
<json:string>S0166-6851(00)X0077-1</json:string>
</pii>
<volume>113</volume>
<issue>1</issue>
<pages>
<first>1</first>
<last>8</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2001</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Johns Hopkins General Clinical Research Center, NIH/NCRR</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Theodore Nash</json:string>
<json:string>Thaddeus Graczyk</json:string>
<json:string>Kloetzel</json:string>
<json:string>David J. Sullivan</json:string>
<json:string>Fred Lewis</json:string>
<json:string>Elaine Florio</json:string>
<json:string>Bohle</json:string>
<json:string>A. Extension</json:string>
<json:string>Lewert</json:string>
<json:string>Ted Pella</json:string>
<json:string>Michael Cran</json:string>
<json:string>Mette</json:string>
<json:string>Elmer Series</json:string>
<json:string>D.J. Sullivan</json:string>
</persName>
<placeName>
<json:string>Columbia</json:string>
<json:string>Baltimore</json:string>
<json:string>MD</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[23]</json:string>
<json:string>[18]</json:string>
<json:string>[6]</json:string>
<json:string>[22]</json:string>
<json:string>[20,21]</json:string>
<json:string>[8]</json:string>
<json:string>[17]</json:string>
<json:string>[1]</json:string>
<json:string>[10]</json:string>
<json:string>[16]</json:string>
<json:string>[3]</json:string>
<json:string>[5]</json:string>
<json:string>[15]</json:string>
<json:string>Moore et al.</json:string>
<json:string>[6,7]</json:string>
<json:string>M.M. Chen et al.</json:string>
<json:string>[14]</json:string>
<json:string>[9]</json:string>
<json:string>[2]</json:string>
<json:string>[24]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-Q51W98V0-3</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - parasitology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - mycology & parasitology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Parasitology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - ecologie animale, vegetale et microbienne</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0166-6851(00)00365-0</json:string>
</doi>
<id>A7690AAB8E28AAE2A58875F301E538AB5298FD21</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2001 Elsevier Science B.V.</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Fig. 1: Pigment in H. columbae gametocytes. A thin blood film of nucleated erythrocytes from the Rock dove pigeon, Columbia livia, infected with H. columbae gametocytes was photographed at 1000× magnification. Approximately 20 black pigment granules are visible diffusely within a gametocyte.</note>
<note type="content">Fig. 2: FTIR spectra of heme polymers from P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) show the signature peaks for the heme polymer at 1207 and 1660 cm−1 from stretching of the carbon–oxygen bond of the proprionate carbonyl group by iron.</note>
<note type="content">Fig. 3: FEISEM of heme polymer purified from parasites. P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) heme polymers have distinct three-dimensional shapes and sizes, as seen at approximately 100 000×.</note>
<note type="content">Fig. 4: (A) Inhibition of heme polymer extension by the quinolines. Control incubations of heme (H) alone and heme polymer (HP) alone were purified alongside incubations of H+HP without and with quinoline drugs. All parasite heme polymers function as a template for heme polymer extension by heme monomer that is inhibitable by chloroquine (CQ), amodiaquine (AQ) and quinidine (QD). P. falciparum (filled bars), β-hematin (empty bars), S. mansoni (dotted bars), and H. columbae (slanted bars) values for purified heme polymer are S.E.M. of triplicate samples. (B) Inhibition of heme polymer extension by increasing concentrations of chloroquine. P. falciparum (filled squares, HZ), β-hematin (empty squares, β-H) heme polymer templates had lower concentrations of chloroquine that inhibited half of new polymer extension than S. mansoni (filled triangles, S), and H. columbae (empty triangles, HPr). Lines are best fit with no difference in rate of decrease for all heme polymers but with a statistically significant higher y axis value for P. falciparum and β-hematin as compared to S. mansoni and H. columbae (P<0.00001).</note>
<note type="content">Fig. 5: FEISEM of heme polymer extension assay products. Test tube extension of P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) heme polymer depicted a spiculated addition that did not resemble original template as seen with FEISEM in Fig. 3.</note>
<note type="content">Fig. 6: Degradation of heme polymers by H2O2. Heme polymer content of trophozoite lysates and the purified pigments were equalized to 10 nmol before incubations in an acid pH overnight with H2O2 in concentrations ranging from 5 to 100 mM. The concentration of H2O2 degrading half of the heme polymers is summarized as a single value. 2 mM H2O2 completely degrades heme monomer in 1–2 h. Results are S.E.M. of triplicate samples repeated on at least two separate days.</note>
<note type="content">Fig. 7: FEISEM of heme polymer degradation by H2O2 at a pH of 5.0. The morphology shows pitting with P. falciparum (a), decrease in size with spicule formation with β-hematin (b), decrease in size with S. mansoni (c), and more pitting with H. columbae (d).</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Mary M.</forename>
<surname>Chen</surname>
</persName>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Lirong</forename>
<surname>Shi</surname>
</persName>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">David J.</forename>
<surname>Sullivan, Jr.</surname>
</persName>
<email>dsulliva@jhsph.edu</email>
<note type="correspondence">
<p>Corresponding author. Tel: +1-410-6141562; fax: +1-410-9550105</p>
</note>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
</author>
<idno type="istex">A7690AAB8E28AAE2A58875F301E538AB5298FD21</idno>
<idno type="ark">ark:/67375/6H6-Q51W98V0-3</idno>
<idno type="DOI">10.1016/S0166-6851(00)00365-0</idno>
<idno type="PII">S0166-6851(00)00365-0</idno>
</analytic>
<monogr>
<title level="j">Molecular & Biochemical Parasitology</title>
<title level="j" type="abbrev">MOLBIO</title>
<idno type="pISSN">0166-6851</idno>
<idno type="PII">S0166-6851(00)X0077-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">113</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="8">8</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by Haemoproteus columbae and Schistosoma mansoni to that of Plasmodium falciparum hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both P. falciparum and H. columbae heme polymers had a symmetrical shape unlike the amorphous S. mansoni heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus, Haemoproteus, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Hemozoin</term>
</item>
<item>
<term>Heme polymer</term>
</item>
<item>
<term>Quinoline</term>
</item>
<item>
<term>Plasmodium falciparum</term>
</item>
<item>
<term>Schistosoma mansoni</term>
</item>
<item>
<term>Haemoproteus columbae</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>FEISEM, field emission inlens scanning electron microscopy</term>
</item>
<item>
<term>FTIR=Fourier-transform infrared</term>
</item>
<item>
<term>H2O2, hydrogen peroxide</term>
</item>
<item>
<term>SDS, sodium dodecyl sulfate</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-10-30">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4a" NDATA="IMAGE" name="gr4a"></istex:entity>
<istex:entity SYSTEM="gr4b" NDATA="IMAGE" name="gr4b"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>MOLBIO</jid>
<aid>3668</aid>
<ce:pii>S0166-6851(00)00365-0</ce:pii>
<ce:doi>10.1016/S0166-6851(00)00365-0</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>
<ce:italic>Haemoproteus</ce:italic>
and
<ce:italic>Schistosoma</ce:italic>
synthesize heme polymers similar to
<ce:italic>Plasmodium</ce:italic>
hemozoin and β-hematin</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Mary M.</ce:given-name>
<ce:surname>Chen</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Lirong</ce:given-name>
<ce:surname>Shi</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>David J.</ce:given-name>
<ce:surname>Sullivan</ce:surname>
<ce:suffix>Jr.</ce:suffix>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>dsulliva@jhsph.edu</ce:e-address>
</ce:author>
<ce:affiliation>
<ce:textfn>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel: +1-410-6141562; fax: +1-410-9550105</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="28" month="7" year="2000"></ce:date-received>
<ce:date-revised day="30" month="10" year="2000"></ce:date-revised>
<ce:date-accepted day="2" month="11" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by
<ce:italic>Haemoproteus columbae</ce:italic>
and
<ce:italic>Schistosoma mansoni</ce:italic>
to that of
<ce:italic>Plasmodium</ce:italic>
<ce:italic>falciparum</ce:italic>
hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both
<ce:italic>P. falciparum</ce:italic>
and
<ce:italic>H. columbae</ce:italic>
heme polymers had a symmetrical shape unlike the amorphous
<ce:italic>S. mansoni</ce:italic>
heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus,
<ce:italic>Haemoproteus</ce:italic>
, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Hemozoin</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Heme polymer</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Quinoline</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>Plasmodium falciparum</ce:italic>
</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>Schistosoma mansoni</ce:italic>
</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>
<ce:italic>Haemoproteus columbae</ce:italic>
</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>FEISEM, field emission inlens scanning electron microscopy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>FTIR=Fourier-transform infrared</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>H
<ce:inf>2</ce:inf>
O
<ce:inf>2</ce:inf>
, hydrogen peroxide</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>SDS, sodium dodecyl sulfate</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>and</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary M.</namePart>
<namePart type="family">Chen</namePart>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lirong</namePart>
<namePart type="family">Shi</namePart>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David J.</namePart>
<namePart type="family">Sullivan, Jr.</namePart>
<affiliation>The W. Harry Feinstone Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, Room 5005 Hygiene Boulevard, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205 USA</affiliation>
<affiliation>E-mail: dsulliva@jhsph.edu</affiliation>
<description>Corresponding author. Tel: +1-410-6141562; fax: +1-410-9550105</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2000-10-30</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Many parasites digest hemoglobin as an amino acid source, but only a few produce heme polymer pigment instead of catabolizing heme via heme oxygenase. This work compares purified heme polymers produced by Haemoproteus columbae and Schistosoma mansoni to that of Plasmodium falciparum hemozoin and synthetic β-hematin. Fourier-transform infrared spectroscopy identifies the signature peaks of the common iron–carboxylate bond characteristic in all four heme polymers. However, all pigments could be distinguished by quite different three-dimensional structure visualized by Field Emission Inlens Scanning Electron Microscopy. Both P. falciparum and H. columbae heme polymers had a symmetrical shape unlike the amorphous S. mansoni heme polymer and β-hematin. All four heme pigments serve as templates for heme polymer extension, which was inhibitable by chloroquine and other quinoline antimalarials. The polymers showed different levels of resistance to hydrogen peroxide degradation. This work identifies another genus, Haemoproteus, capable of intracellular heme polymer formation. The different three-dimensional structures of each pigment implicate genus specific formation of heme polymer, variation of inhibition of polymer extension by the quinolines and degradation by hydrogen peroxide.</abstract>
<note type="content">Fig. 1: Pigment in H. columbae gametocytes. A thin blood film of nucleated erythrocytes from the Rock dove pigeon, Columbia livia, infected with H. columbae gametocytes was photographed at 1000× magnification. Approximately 20 black pigment granules are visible diffusely within a gametocyte.</note>
<note type="content">Fig. 2: FTIR spectra of heme polymers from P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) show the signature peaks for the heme polymer at 1207 and 1660 cm−1 from stretching of the carbon–oxygen bond of the proprionate carbonyl group by iron.</note>
<note type="content">Fig. 3: FEISEM of heme polymer purified from parasites. P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) heme polymers have distinct three-dimensional shapes and sizes, as seen at approximately 100 000×.</note>
<note type="content">Fig. 4: (A) Inhibition of heme polymer extension by the quinolines. Control incubations of heme (H) alone and heme polymer (HP) alone were purified alongside incubations of H+HP without and with quinoline drugs. All parasite heme polymers function as a template for heme polymer extension by heme monomer that is inhibitable by chloroquine (CQ), amodiaquine (AQ) and quinidine (QD). P. falciparum (filled bars), β-hematin (empty bars), S. mansoni (dotted bars), and H. columbae (slanted bars) values for purified heme polymer are S.E.M. of triplicate samples. (B) Inhibition of heme polymer extension by increasing concentrations of chloroquine. P. falciparum (filled squares, HZ), β-hematin (empty squares, β-H) heme polymer templates had lower concentrations of chloroquine that inhibited half of new polymer extension than S. mansoni (filled triangles, S), and H. columbae (empty triangles, HPr). Lines are best fit with no difference in rate of decrease for all heme polymers but with a statistically significant higher y axis value for P. falciparum and β-hematin as compared to S. mansoni and H. columbae (P<0.00001).</note>
<note type="content">Fig. 5: FEISEM of heme polymer extension assay products. Test tube extension of P. falciparum (a), β-hematin (b), S. mansoni (c), and H. columbae (d) heme polymer depicted a spiculated addition that did not resemble original template as seen with FEISEM in Fig. 3.</note>
<note type="content">Fig. 6: Degradation of heme polymers by H2O2. Heme polymer content of trophozoite lysates and the purified pigments were equalized to 10 nmol before incubations in an acid pH overnight with H2O2 in concentrations ranging from 5 to 100 mM. The concentration of H2O2 degrading half of the heme polymers is summarized as a single value. 2 mM H2O2 completely degrades heme monomer in 1–2 h. Results are S.E.M. of triplicate samples repeated on at least two separate days.</note>
<note type="content">Fig. 7: FEISEM of heme polymer degradation by H2O2 at a pH of 5.0. The morphology shows pitting with P. falciparum (a), decrease in size with spicule formation with β-hematin (b), decrease in size with S. mansoni (c), and more pitting with H. columbae (d).</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Hemozoin</topic>
<topic>Heme polymer</topic>
<topic>Quinoline</topic>
<topic>Plasmodium falciparum</topic>
<topic>Schistosoma mansoni</topic>
<topic>Haemoproteus columbae</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>FEISEM, field emission inlens scanning electron microscopy</topic>
<topic>FTIR=Fourier-transform infrared</topic>
<topic>H2O2, hydrogen peroxide</topic>
<topic>SDS, sodium dodecyl sulfate</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular & Biochemical Parasitology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MOLBIO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0166-6851</identifier>
<identifier type="PII">S0166-6851(00)X0077-1</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>113</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>188</end>
</extent>
<extent unit="pages">
<start>1</start>
<end>8</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">A7690AAB8E28AAE2A58875F301E538AB5298FD21</identifier>
<identifier type="ark">ark:/67375/6H6-Q51W98V0-3</identifier>
<identifier type="DOI">10.1016/S0166-6851(00)00365-0</identifier>
<identifier type="PII">S0166-6851(00)00365-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-Q51W98V0-3/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000931 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000931 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A7690AAB8E28AAE2A58875F301E538AB5298FD21
   |texte=   Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021