Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes

Identifieur interne : 000719 ( Istex/Corpus ); précédent : 000718; suivant : 000720

Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes

Auteurs : Patrick Midoux ; Michel Monsigny

Source :

RBID : ISTEX:78F597C5553A58D20F360CE80E382DEB873465D7

Abstract

Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.

Url:
DOI: 10.1021/bc9801070

Links to Exploration step

ISTEX:78F597C5553A58D20F360CE80E382DEB873465D7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Fax: 33 (0)238 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:78F597C5553A58D20F360CE80E382DEB873465D7</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1021/bc9801070</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000719</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000719</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Fax: 33 (0)238 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Monsigny, Michel" sort="Monsigny, Michel" uniqKey="Monsigny M" first="Michel" last="Monsigny">Michel Monsigny</name>
<affiliation>
<mods:affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="ISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="1999-03-11">1999</date>
<date when="1999-05-17">1999</date>
<biblScope unit="vol">10</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="406">406</biblScope>
<biblScope unit="page" to="411">411</biblScope>
</imprint>
<idno type="ISSN">1043-1802</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1043-1802</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>polylysine</json:string>
<json:string>luciferase</json:string>
<json:string>histidylated</json:string>
<json:string>polyplexes</json:string>
<json:string>plasmid</json:string>
<json:string>luciferase activity</json:string>
<json:string>transfection</json:string>
<json:string>histidylated polylysine</json:string>
<json:string>acidic</json:string>
<json:string>pdna</json:string>
<json:string>polyfection</json:string>
<json:string>dmem</json:string>
<json:string>chloroquine</json:string>
<json:string>histidyl</json:string>
<json:string>vesicle</json:string>
<json:string>histidyl residue</json:string>
<json:string>fusogenic</json:string>
<json:string>peptide</json:string>
<json:string>bafilomycin</json:string>
<json:string>midoux</json:string>
<json:string>monsigny</json:string>
<json:string>chem</json:string>
<json:string>bioconjugate</json:string>
<json:string>cell lysates</json:string>
<json:string>lysates</json:string>
<json:string>bioconjugate chem</json:string>
<json:string>imidazole</json:string>
<json:string>fusogenic peptide</json:string>
<json:string>cationic</json:string>
<json:string>imidazole group</json:string>
<json:string>protonation</json:string>
<json:string>cytosol</json:string>
<json:string>acidic medium</json:string>
<json:string>atcc</json:string>
<json:string>relative light unit</json:string>
<json:string>hepg2</json:string>
<json:string>complete culture medium</json:string>
<json:string>endosomal</json:string>
<json:string>gene expression</json:string>
<json:string>gene transfer</json:string>
<json:string>transfection efficiency</json:string>
<json:string>polymer</json:string>
<json:string>mammalian cell</json:string>
<json:string>humidified atmosphere</json:string>
<json:string>acidic vesicle</json:string>
<json:string>hepg2 cell</json:string>
<json:string>molar ratio</json:string>
<json:string>cationic polymer</json:string>
<json:string>average degree</json:string>
<json:string>various cell line</json:string>
<json:string>form complex</json:string>
<json:string>cell culture</json:string>
<json:string>culture medium</json:string>
<json:string>firefly luciferase gene</json:string>
<json:string>plasmid molecule</json:string>
<json:string>amino group</json:string>
<json:string>efficient gene transfer</json:string>
<json:string>cell line</json:string>
<json:string>membrane destabilization</json:string>
<json:string>acidic compartment</json:string>
<json:string>drug delivery</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>MIDOUX Patrick</name>
<affiliations>
<json:string>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
<json:string>To whom correspondence should be addressed. Fax: 33 (0)238 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</json:string>
</affiliations>
</json:item>
<json:item>
<name>MONSIGNY Michel</name>
<affiliations>
<json:string>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-N3J84NW4-S</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.</abstract>
<qualityIndicators>
<score>9.198</score>
<pdfWordCount>4990</pdfWordCount>
<pdfCharCount>30206</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>6</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>832</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>184</abstractWordCount>
<abstractCharCount>1229</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bioconjugate Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1043-1802</json:string>
</issn>
<eissn>
<json:string>1520-4812</json:string>
</eissn>
<volume>10</volume>
<issue>3</issue>
<pages>
<first>406</first>
<last>411</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-N3J84NW4-S</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, organic</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
<json:string>2 - biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - organic chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmaceutical Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmacology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biotechnology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1021/bc9801070</json:string>
</doi>
<id>78F597C5553A58D20F360CE80E382DEB873465D7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 1999 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="e-published" when="1999-03-11">1999</date>
<date when="1999-05-17">1999</date>
<date type="Copyright" when="1999">1999</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
<author xml:id="author-0000" role="corresp">
<persName>
<surname>Midoux</surname>
<forename type="first">Patrick</forename>
</persName>
<affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans, rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<affiliation role="corresp"> To whom correspondence should be addressed. Fax: 33 (0)2 38 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Monsigny</surname>
<forename type="first">Michel</forename>
</persName>
<affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans, rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
</author>
<idno type="istex">78F597C5553A58D20F360CE80E382DEB873465D7</idno>
<idno type="ark">ark:/67375/TPS-N3J84NW4-S</idno>
<idno type="DOI">10.1021/bc9801070</idno>
</analytic>
<monogr>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="acspubs">bc</idno>
<idno type="coden">bcches</idno>
<idno type="pISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published" when="1999-03-11">1999</date>
<date when="1999-05-17">1999</date>
<biblScope unit="vol">10</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="406">406</biblScope>
<biblScope unit="page" to="411">411</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract>
<p>Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A
<hi rend="subscript">1</hi>
, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="zxx"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bc</journal-id>
<journal-id journal-id-type="coden">bcches</journal-id>
<journal-title-group>
<journal-title>Bioconjugate Chemistry</journal-title>
<abbrev-journal-title>Bioconjugate Chem.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1043-1802</issn>
<issn pub-type="epub">1520-4812</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/bc</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bc9801070</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Midoux</surname>
<given-names>Patrick</given-names>
</name>
<xref rid="bc9801070AF1">*</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Monsigny</surname>
<given-names>Michel</given-names>
</name>
</contrib>
<aff>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans, rue Charles-Sadron, F-45071 Orléans Cedex 02, France</aff>
</contrib-group>
<author-notes>
<corresp id="bc9801070AF1">  To whom correspondence should be addressed. Fax: 33 (0)2 38 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>11</day>
<month>03</month>
<year>1999</year>
</pub-date>
<pub-date pub-type="ppub">
<day>17</day>
<month>05</month>
<year>1999</year>
</pub-date>
<volume>10</volume>
<issue>3</issue>
<fpage>406</fpage>
<lpage>411</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>09</month>
<year>1998</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>12</month>
<year>1998</year>
</date>
<date date-type="asap">
<day>11</day>
<month>03</month>
<year>1999</year>
</date>
<date date-type="issue-pub">
<day>17</day>
<month>05</month>
<year>1999</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 1999 American Chemical Society</copyright-statement>
<copyright-year>1999</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A
<sub>1</sub>
, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bc9801070</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="d7e112">
<title>Introduction</title>
<p>Poly-
<sc>l</sc>
-lysine, which strongly interacts with DNA, may be used to compact plasmid DNA (pDNA) in order to increase the uptake of foreign genes in mammalian cells with the aim to transfect them. The resulting polyplexesa polyplex is a cationic polymer/DNA complex (
<italic toggle="yes">
<xref rid="bc9801070b00001" ref-type="bibr"></xref>
</italic>
)are taken up by the cells via either a nonspecific endocytosis or a receptor-mediated endocytosis after polylysine substitution with a recognition signal (for reviews, see refs
<italic toggle="yes"> 2−5</italic>
). However, one of the main limiting factors for the transfection is the inefficacy of the delivery of plasmids into the cytosol from the endocytotic vesicles. Indeed, upon internalization, most of the plasmid molecules are sequestered for several hours into vesicles from where very few plasmid molecules can escape to reach the nuclear machinery. Polyfectionpolyfection is a polyplex-mediated transfectionwas shown to be much more efficient when cells were incubated in the presence of membrane-disrupting agents such as chloroquine (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc9801070b00006" ref-type="bibr"></xref>
<xref rid="bc9801070b00007" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc9801070b00008" ref-type="bibr"></xref>
</named-content>
</italic>
), glycerol (
<italic toggle="yes">
<xref rid="bc9801070b00009" ref-type="bibr"></xref>
</italic>
), or fusogenic peptides which destabilize the membrane of acidic vesicles containing polyplexes (
<italic toggle="yes">7</italic>
,
<italic toggle="yes"> 10−17</italic>
). Therefore, the designing of cationic polymers inducing pDNA compaction and membrane disruption in a slightly acidic medium will be good candidates to help the pDNA to enter the cells and to escape the endocytotic pathway leading to the delivery to lysosomes. Knowing that (i) the imidazole group of histidine has a p
<italic toggle="yes">K</italic>
around 6.0 and thus becomes cationic in a slightly acidic medium and (ii) poly-
<sc>l</sc>
-histidine mediates an acid-dependent fusion and leakage of negative charged liposomes (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc9801070b00018" ref-type="bibr"></xref>
,
<xref rid="bc9801070b00019" ref-type="bibr"></xref>
</named-content>
</italic>
), we planned to use a histidylated cationic polymer as a vector for transfecting cells. Because poly-
<sc>l</sc>
-histidine is not charged at pH 7.4 and does not form complexes with pDNA at neutral pH, polylysine was partially substituted with histidyl residues. </p>
<p>In the present work, we show that (i) histidylated poly-
<sc>l</sc>
-lysine was suitable to make complexes with pDNA and to efficiently transfect various cell lines in the absence of chloroquine or fusogenic peptides; (ii) the highest gene transfer efficiency was obtained with a polylysine (average degree of polymerization of 190) having 38 ± 5% of the ε-amino groups substituted with histidyl residues; (iii) the transfection was rather insensitive to the presence of serum in the culture medium; and (iv) the transfection efficiency depended on the protonation of the imidazole groups in the acid lumen of intracellular vesicles. </p>
</sec>
<sec id="d7e184">
<title>Materials and Methods</title>
<p>
<bold>Preparation of Partially Histidylated Polylysine (His-pLK)</bold>
. Poly-
<sc>l</sc>
-lysine and HBr 30000−50000 (pLK,
<xref rid="bc9801070b00001" ref-type="bibr"></xref>
DP = 190) (Bachem Feinchemikalien, Bubendorf, Switzerland) (1 g in 200 mL H
<sub>2</sub>
O) were passed through an anion-exchange column (Dowex 2 × 8,
<sup>-</sup>
OH form, 20−50 mesh) in order to remove bromide ions (
<italic toggle="yes">
<xref rid="bc9801070b00020" ref-type="bibr"></xref>
</italic>
). The eluate was neutralized with a 10%
<italic toggle="yes">p</italic>
-toluenesulfonic acid solution in water and freezed-dried. pLK
<italic toggle="yes">p</italic>
-toluenesulfonate salt (50 mg; 0.86 μmol) in 3 mL of dimethyl sulfoxide (Aldrich, Strasbourg, France) in the presence of diisopropylethylamine (42 μL; 288 μmol) (Aldrich) was reacted for 24 h at 20 °C with (Boc)His(Boc)-OH (32 mg; 96 μmol) (Novabiochem, Bad Soden, Germany) in the presence of benzotriazol-1-yl-oxy-tris-(dimethylamino) phosphonium hexafluorophosphate (Richelieu Biotechnologies, Saint Hyacinthe, Canada) (43 mg; 97 μmol). The N-protecting Boc groups were removed by acidic treatment by adding 20 mL of H
<sub>2</sub>
O/trifluoroacetic acid mixture (1:1; v/v) for 24 h at 20 °C. Water and trifluoroacetic acid were removed under reduced pressure. The polymer was precipitated by adding 10 vol of 2-propanol and spun down by centrifugation (1800
<italic toggle="yes">g</italic>
for 15 min). The pellet was washed with 2-propanol, collected by centrifugation (1800
<italic toggle="yes">g</italic>
for 15 min), solubilized in distilled water, and freeze-dried. The average number of His molecules bound per pLK molecule was determined by
<sup>1</sup>
H NMR spectroscopy at 300 MHz in D
<sub>2</sub>
O according to
<italic toggle="yes">x</italic>
= 6(
<italic toggle="yes">h</italic>
<sub>8.7</sub>
/
<italic toggle="yes">h</italic>
<sub>Lys</sub>
)DP, where
<italic toggle="yes">h</italic>
<sub>8.7</sub>
was the value of the integration of the signal at 8.7 ppm corresponding to the proton (1H C
<sub>12</sub>
) of His (Figure
<xref rid="bc9801070f00001"></xref>
),
<italic toggle="yes">h</italic>
<sub>Lys</sub>
was in the range 1.3−1.9 ppm corresponding to the 6 methylene protons (C
<sub>3</sub>
, C
<sub>4</sub>
and C
<sub>5</sub>
) of lysine residues (Figure
<xref rid="bc9801070f00001"></xref>
), and DP was the degree of polymerization of pLK. The number of His residues bound per pLK molecule was 70. Histidylated polylysine was fluoresceinylated by using fluoresceinyl isothiocyanate (FITC isomer I, Molecular Probe, La Jolla, CA) as previously described (
<italic toggle="yes">
<xref rid="bc9801070b00007" ref-type="bibr"></xref>
</italic>
).
<fig id="bc9801070f00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Schematic structure of histidylated polylysine. i = DP; R = NH
<sub>3</sub>
<sup>+</sup>
or His.</p>
</caption>
<graphic xlink:href="bc9801070f00001.eps" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Cells and Cell Culture</bold>
. COS-7 (SV40 transformed kidney cells of African green monkey, ATCC CRL 1651, ATCC, Rockville, MA), 293-T7 (human embryonic kidney producing T7 RNA polymerase) (
<italic toggle="yes">
<xref rid="bc9801070b00021" ref-type="bibr"></xref>
</italic>
), and Rb1 (rabbit smooth muscle cells) (
<italic toggle="yes">
<xref rid="bc9801070b00022" ref-type="bibr"></xref>
</italic>
) cells were cultured in DMEM (Gibco, Renfrewshire, U.K.) supplemented with 10% heat inactivated fetal bovine serum (FBS, Gibco); HeLa cells (ATCC CCL 2.1) in DMEM with 5% FBS; B16 cells (murine melanoma cells, ATCC CRL 6322) in DMEM with 10% heat-inactivated new borne calf serum (Gibco); HepG2 (human hepatoma cells, ATCC HB 8065), MCF-7 cells (human breast adenocarcinoma cells, ATCC HTB22), and HOS cells (human osteosarcoma cells, ATCC CRL 1543) in MEM (Gibco) with 10% heat inactivated FBS; 16HBE cells (human airway epithelial cells) in DMEM with 10% heat-inactivated FBS in fibronectin-coated culture plates; A549 cells (human nonsmall cell lung carcinoma cells, ATCC CCL 185) in RPMI with 10% heat-inactivated FBS. All culture media were supplemented with 2 mM
<sc>l</sc>
-glutamine (Merck, Darmstadt, Germany) and antibiotics (100 units/mL penicillin and 100 μg/mL streptomycin, Eurobio, France). Cells were grown at 37 °C in a humidified atmosphere containing 5% CO
<sub>2</sub>
and 95% air. Cells were harvested by treatment with PET [PBS with 0.02% (w/v) EDTA and 2.5 μg/mL trypsin] at 37 °C for 5 min. Cells were mycoplasma free as evidenced by bisbenzimidazole (Hoechst 33258) (
<italic toggle="yes">
<xref rid="bc9801070b00023" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<bold>Plasmids</bold>
. pSV2
<italic toggle="yes">LUC</italic>
plasmid (5 kb) was an expression vector encoding the firefly luciferase gene under the control of the SV40 T large antigen promoter (
<italic toggle="yes">
<xref rid="bc9801070b00024" ref-type="bibr"></xref>
</italic>
). pUT650 plasmid (5.15 kb) (CAYLA, Toulouse, France) was an expression vector encoding the firefly luciferase gene under the control of the human cytomegalovirus promoter. Supercoiled DNA plasmids were isolated by a standard alkaline lysis method followed by CsCl gradient centrifugation in the presence of ethidium bromide, extensive extraction with
<italic toggle="yes">n</italic>
-butanol, and precipitation with ethanol. </p>
<p>
<bold>Polyfection</bold>
. Polyplexes (histidylated polylysine or polylysine/pDNA complexes) were prepared by adding, under agitation, polymers in 0.3 mL of serum-free DMEM, pH 7.4 to 5 μg (1.5 pmol) of plasmid in 0.7 mL of serum-free DMEM. The mixed solution was kept for 30 min at 20 °C before use. Adherent cell lines [(2−4) × 10
<sup>5</sup>
cells] were plated (day 0) into 4 cm
<sup>2</sup>
culture dishes (12-well culture plates). On day 1, the medium was removed and 1 mL of a solution containing a polyplex supplemented with 1% FBS, unless otherwise specified, was added into each well. After 4 h of incubation at 37 °C in a humidified atmosphere (95% air, 5% CO
<sub>2</sub>
), the medium was removed and cells were further incubated at 37 °C in 2 mL of the relevant complete culture medium in a humidified atmosphere (95% air, 5% CO
<sub>2</sub>
). When used, chloroquine (100 μM) was added to the transfection solution, which was immediately supplemented with 1% FBS and put into each well. When used, the fusogenic peptide (E5CA, GLFEAIAEFIGGWEGLIEGCA) (
<italic toggle="yes">
<xref rid="bc9801070b00007" ref-type="bibr"></xref>
</italic>
) (10 μM) was added and the transfection solution was immediately supplemented with 1% FBS and put into each well. </p>
<p>Polyethylenimine (PEI 25 kDa from Aldrich) (4.5 mg) was dissolved in 10 mL of H
<sub>2</sub>
O, neutralized with HCl, and sterilized by filtration. Polyplexes were prepared by mixing 10 μL of PEI in 50 μL of 0.15 M NaCl with 5 μg (1.5 pmol) plasmid in 50 μL 0.15 M NaCl. The mixed solution was kept for 30 min at 20 °C. Then, the solution supplemented with 1 mL of DMEM containing 10% FBS was added into each well. After 4 h of incubation at 37 °C in a humidified atmosphere (95% air, 5% CO
<sub>2</sub>
), the medium was removed and cells were further incubated at 37 °C in 2 mL of the relevant complete culture medium in a humidified atmosphere (95% air, 5% CO
<sub>2</sub>
). </p>
<p>
<bold>Luciferase Assay</bold>
. Luciferase gene expression was measured by monitoring its luminescence activity according to De Wet et al. (
<italic toggle="yes">
<xref rid="bc9801070b00025" ref-type="bibr"></xref>
</italic>
). The medium was discarded, and the cells were washed three times with PBS. The homogenization buffer (200 μL of 8 mM MgCl
<sub>2</sub>
, 1 mM DTT, 1 mM EDTA, 1% Triton X100, 15% glycerol, 25 mM Tris-phosphate buffer, pH 7.8) was poured into each well, and the tissue culture plates were kept for 15 min at 20 °C. The solution was recovered and further spun down (5 min at 800
<italic toggle="yes">g</italic>
). A total of 95 μL of a 2 mM ATP solution in the homogenization buffer without Triton X100 was added to 60 μL of supernatant, and the solution was shaken with a vortex. The luminescence was recorded for 4 s in a Lumat LB 9501 luminometer (Berthold, Wildbach, Germany) upon addition of 150 μL of a 167 mM luciferin solution in water. Measurements were done in duplicate. The data shown correspond to the number of relative light units (RLU) from 10
<sup>6</sup>
cells. The number of RLU of 1 pg/mL of luciferase was 2000 under these assay conditions. </p>
<p>
<bold>ζ</bold>
<bold> Potential Measurement</bold>
. Polyplexes were prepared in 10 mM NaCl, 1 mM MOPS, and 0.1 mM EDTA, at pH 7.2 to a pDNA final concentration of 10 μg/mL. ζ potential was measured by using a ZetaSizer 3000 (Malvern Instruments, Orsay, France) with the following parameters: viscosity, 1.014 cP; dielectric constant, 79; temp, 25 °C;
<italic toggle="yes">F</italic>
(Ka), 1.50 (Smoluchowsky); current, 10 mA. </p>
</sec>
<sec id="d7e379">
<title>Results</title>
<p>
<bold>Polyfection by Using Histidylated Polylysine</bold>
. Histidylated polylysine containing 84 histidyl residues (His
<sub>84</sub>
-pLK) (Figure
<xref rid="bc9801070f00001"></xref>
) was complexed in 1 mL of serum-free DMEM at pH 7.4 with pUT650 plasmid encoding the luciferase gene, and the polyplexes were used to transfect HepG2 cells. The luciferase activity in the cell lysates was compared to that obtained after polyfection with pLK/pUT650 complexes in the absence and in the presence of either chloroquine or E5CA, a fusogenic peptide. Regarding to the luciferase activity, the polyfection was very efficient with His
<sub>84</sub>
-pLK/pDNA complexes and very inefficient with pLK/pDNA complexes. The luciferase activity was 4.5 orders of magnitude (10
<sup>7</sup>
RLU/10
<sup>6</sup>
cells) higher than with pLK/pDNA complexes (200 RLU/10
<sup>6</sup>
cells); it was 3.5 (2 × 10
<sup>7</sup>
RLU/10
<sup>6</sup>
cells) and 3 (10
<sup>7</sup>
RLU/10
<sup>6</sup>
cells) orders of magnitude higher than with pLK/pDNA complexes in the presence of chloroquine and the fusogenic peptide, respectively (Figure
<xref rid="bc9801070f00002"></xref>
). The luciferase activity was maximal when the cells were incubated for about 3−4 h in the presence of His
<sub>84</sub>
-pLK/pDNA complexes (data not shown); increasing the incubation period (up to 24 h) did not increase the luciferase activity. It is noteworthy to emphasize that no cytoxicity was observed whatever the incubation duration (from 4 to 24 h) in the presence of the polyplexes. The amount of plasmid was varied between 0.05 and 10 μg, keeping constant the histidylated polylysine/pDNA ratio equal to 4:1 (weight by weight), the number of cells per well [(2−3) × 10
<sup>5</sup>
cells in a 4 cm
<sup>2</sup>
well] and the volume (1 mL) of the solution containing the polyplexes. The polyfection was maximal in the presence of 5 μg of plasmid. Increasing the amount of plasmid did not increase the luciferase activity (Figure
<xref rid="bc9801070f00002"></xref>
inset). Increasing the number of cells per well did not increase the luciferase activity.
<fig id="bc9801070f00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Histidylated polylysine mediated polyfection. Polyplexes were prepared by mixing either His
<sub>84</sub>
-pLK (40 μg) or pLK (5 μg) in 0.3 mL of serum-free DMEM with 10 μg (3 pmol) of pUT650 plasmid in 0.7 mL of serum-free DMEM. The solution was kept for 30 min at 20 °C. When it is relevant the solution was made 100 μM in chloroquine or 10 μM in E5CA. HepG2 cells (3 × 10
<sup>5</sup>
cells plated in a 4 cm
<sup>2</sup>
well) were incubated for 4 h at 37 °C with polyplexes in the presence of 5% FBS. Then cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells. (Inset) Concentration dependence of polyfection with His
<sub>84</sub>
-pLK/pDNA complexes.</p>
</caption>
<graphic xlink:href="bc9801070f00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Optimal Number of Histidyl Residues on One Polylysine Molecule</bold>
. HepG2 cells were transfected by using polyplexes made with pUT650 and polylysine substituted with different number of histidyl residues. The luciferase activity in cell lysates was maximal with polylysine substituted with 72 ± 9 histidyl residues/pLK molecule corresponding to 38 ± 5% substitution of the polylysine ε-amino groups (Figure
<xref rid="bc9801070f00003"></xref>
). When polyfection was performed with pLK containing 20 histidyl residues, the luciferase activity was 10-fold lower than with pLK substituted with 70 histidyl residues.
<fig id="bc9801070f00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Histidylated polylysine mediated polyfection:influence of the His/pLK ratio. Polyplexes were prepared by mixing pLK substituted with histidyl residues in 0.3 mL of serum-free DMEM with 10 μg (3 pmol) of pUT650 plasmid in 0.7 mL of serum-free DMEM. The solution was kept for 30 min at 20 °C. HepG2 cells (3 × 10
<sup>5</sup>
cells plated in a 4 cm
<sup>2</sup>
well) were incubated for 4 h at 37 °C with polyplexes in the presence of 1% FBS. Then, cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells.</p>
</caption>
<graphic xlink:href="bc9801070f00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Influence of the Histidylated Polylysine/pDNA Molar Ratio</bold>
. The luciferase activity was maximal with polyplexes made by complexing 10 μg of plasmid with 30 (polymer/pDNA molar ratio of 183) to 40 μg (polymer/pDNA molar ratio of 244) of His
<sub>84</sub>
-pLK (Figure
<xref rid="bc9801070f00004"></xref>
). Increasing the molar ratio did not increase the luciferase activity. The efficiency decreased 10-fold when the molar ratio was down to 122 (20 μg of His
<sub>84</sub>
-pLK) and was completely inefficient when the molar ratio was lower than 60 (10 μg of His
<sub>84</sub>
-pLK). Under conditions optimal for transfection, polyplexes were positively charged with a ζ potential of +24 mV (Figure
<xref rid="bc9801070f00004"></xref>
).
<fig id="bc9801070f00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Histidylated polylysine mediated polyfection:influence of the polymer/pDNA ratio and ζ potentials of polyplexes. Polyplexes were prepared by mixing 10 μg (3 pmol) of pUT650 plasmid in 0.7 mL of serum-free DMEM with different amounts of histidylated polylysine (His
<sub>84</sub>
-pLK) in 0.3 mL of serum-free DMEM. The solution was kept for 30 min at 20 °C. HOS cells (2 × 10
<sup>5</sup>
cells/4 cm
<sup>2</sup>
) were incubated for 4 h at 37 °C with polyplexes in the presence of 5% FBS. Then cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells.</p>
</caption>
<graphic xlink:href="bc9801070f00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Influence of the Serum Concentration</bold>
. Polyfection with His
<sub>70</sub>
-pLK was not impaired in the presence of serum. The luciferase activity was 2-fold greater in the presence of 5 and 10% FBS than in the presence of 1% FBS, and it was as large in the presence of 20% FBS as in the presence of 1% FBS (Figure
<xref rid="bc9801070f00005"></xref>
).
<fig id="bc9801070f00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Histidylated polylysine mediated polyfection:influence of the serum. HepG2 cells (3 × 10
<sup>5</sup>
cells/4 cm
<sup>2</sup>
well) were incubated for 4 h at 37 °C with 5 μg/mL of the polyplexes (His
<sub>70</sub>
-pLK/pUT650) in the presence of various amount of FBS. Then, cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells.</p>
</caption>
<graphic xlink:href="bc9801070f00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Gene Transfer into Various Cell Lines</bold>
. The transfection of different mammalian cell lines including human hepatoma cells (HepG2), human breast adenocarcinoma cells (MCF-7), human epidermoid carcinoma cells (HeLa), human osteosarcoma cells (HOS), human airway epithelial cells (16HBE), murine melanoma cells (B16), and simian kidney cells (COS) was assessed by using His
<sub>70</sub>
-pLK/pUT650 complexes and rabbit smooth muscle cells (Rb-1) by using His
<sub>70</sub>
-pLK/pSV2
<italic toggle="yes">LUC</italic>
complexes. All the cell lines (except COS cells) were efficiently transfected with luciferase activity ranging from 2 × 10
<sup>6</sup>
to 10
<sup>7</sup>
RLU/10
<sup>6</sup>
cells (Figure
<xref rid="bc9801070f00006"></xref>
). The transfection was compared with that obtained with PEI/pDNA complexes (Table
<xref rid="bc9801070t00001"></xref>
). Depending on the cell line, the transfection by His-pLK/pDNA complexes was as effective or less effective (up to 20-fold) than with PEI/pDNA complexes.
<fig id="bc9801070f00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Histidylated polylysine mediated polyfection of various cell lines. Polyplexes were prepared by mixing His
<sub>70</sub>
-pLK (30 μg) in 0.3 mL serum-free DMEM with 10 μg (3 pmol) of plasmid (pUT650 or pSV2
<italic toggle="yes">LUC</italic>
for Rb-1 cells) in 0.7 mL of serum-free DMEM. The mixed solution was kept for 30 min at 20 °C. Cell lines [(2−3) × 10
<sup>5</sup>
cells/4 cm
<sup>2</sup>
well] were incubated for 4 h at 37 °C with polyplexes in the presence of 10% FBS. Then, cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells.</p>
</caption>
<graphic xlink:href="bc9801070f00006.tif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bc9801070t00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Comparison of the Transfection Efficiency by Using Either Histidylated Polylysine or Polyethyleni- mine as DNA Carriers
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">cells</oasis:entry>
<oasis:entry colname="2">PEI/His-pLK</oasis:entry>
<oasis:entry colname="3">cells</oasis:entry>
<oasis:entry colname="4">PEI/His-pLK </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">B16 </oasis:entry>
<oasis:entry colname="2">5.8 </oasis:entry>
<oasis:entry colname="3">A549 </oasis:entry>
<oasis:entry colname="4">21 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">293 </oasis:entry>
<oasis:entry colname="2">0.6 </oasis:entry>
<oasis:entry colname="3">Rb-1 </oasis:entry>
<oasis:entry colname="4">17</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Cells (2 × 10
<sup>5</sup>
cells/4 cm
<sup>2</sup>
well) were transfected for 4 h at 37 °C with 5 μg/mL (pUT650 or pSV2
<italic toggle="yes">LUC</italic>
for Rb-1 cells) complexed with either His-pLK or PEI in the presence of 10% FBS. Then, cells were washed and incubated in complete culture medium containing 10% FBS. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. PEI/His-pLK represents the ratio of the luciferase activity into cells transfected by PEI polyplexes to the luciferase activity into cells transfected by His-pLK polyplexes.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<bold>Influence of the Endosomal pH</bold>
. Histidylated polylysine is supposed to increase the delivery of pDNA into the cytosol via membrane destabilization of acidic endocytotic vesicles containing His
<sub>70</sub>
-pLK/pDNA complexes following the protonation of the imidazole groups. This was assessed by transfecting cells in the absence or in the presence of bafilomycin A
<sub>1</sub>
, an inhibitor of vacuolar ATPase endosomal proton pump (
<italic toggle="yes">
<xref rid="bc9801070b00026" ref-type="bibr"></xref>
</italic>
). When the polyfection of Rb-1 cells by His
<sub>70</sub>
-pLK/pSV2
<italic toggle="yes">LUC</italic>
complexes was performed in the presence of 200 nM bafilomycin A
<sub>1</sub>
, the luciferase activity into cells was about 3 order of magnitude lower than in the absence of bafilomycin A
<sub>1</sub>
(Figure
<xref rid="bc9801070f00007"></xref>
). A flow cytometry analysis showed that, in the absence of bafilomycin A
<sub>1</sub>
, the polyplexes were in acidic compartment as evidenced by a 1.8-fold increase of the cell fluorescence intensity after a postincubation in the presence of monensin (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc9801070b00027" ref-type="bibr"></xref>
,
<xref rid="bc9801070b00028" ref-type="bibr"></xref>
</named-content>
</italic>
); conversely, the fluorescence intensity of cells incubated in the presence of bafilomycin A
<sub>1</sub>
did not increase upon a postincubation in the presence of monensin (data not shown). Therefore, the decrease of the transfection efficiency of histidylated polylysine/pDNA complexes in the presence of bafilomycin A
<sub>1</sub>
, indicated that the protonation of the imidazole groups in acidic medium was involved in the polyfection process.
<fig id="bc9801070f00007" position="float" orientation="portrait">
<label>7</label>
<caption>
<p>Influence of bafilomycin A1 on the polyfection efficiency. Rb-1 cells (2 × 10
<sup>5</sup>
cells/4 cm
<sup>2</sup>
well) were incubated at 37 °C in the presence of 1 mL His
<sub>70</sub>
-pLK/pSV2
<italic toggle="yes">LUC</italic>
complexes (5 μg of pDNA) and in the absence or in the presence of 200 nM bafilomycin A
<sub>1</sub>
. After 4 h, the cells were washed and incubated in complete culture medium containing 10%. The gene expression was determined 48 h later by assaying the luciferase activity in cell lysates. RLU, the number of relative light units, represents the luciferase activity in 10
<sup>6</sup>
cells.</p>
</caption>
<graphic xlink:href="bc9801070f00007.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
</sec>
<sec id="d7e709">
<title>Discussion</title>
<p>The introduction in mammalian cells of a foreign gene as a plasmid DNA by nonviral vectors requires the entry of the plasmid into the cell and then into the nucleus. The compaction of a pDNA in the presence of polylysine increases its uptake by the cells via making the endocytotic process more easy. Once complexed and taken up by cells, plasmids are sequestered for several hours in vesicular compartments from where they cannot escape to reach the nucleus. The delivery of the pDNA into the cytosol should be obtained from early acidic vesicles formed during polyplex uptake under the condition that the endosomal membrane is disrupted by devices bound to the plasmid-associated carrier working at a weakly acidic medium. In this study, we show that partial substitution of poly-
<sc>l</sc>
-lysine with histidyl residues results in a cationic polymer that forms complexes with a plasmid DNA at pH 7.4. These complexes actively transfect cells in culture in the absence of any helper compounds such as chloroquine or a fusogenic peptide. Optimal conditions for transfection were found when polylysine was substituted with 72 ± 9 histidyl residues, corresponding to a polylysine substitution level of 38 ± 5%; the efficiency was 10-fold lower when polylysine substitution was down to 10%. The polyfection was efficient when the global charge of the polyplexes was slightly positive (ζ potential = +24 mV), which likely increased their binding on the cell surface and facilitated their uptake by the cells. </p>
<p>The polyplexes are internalized by the cells in acidic compartments. The mechanism of polyfection mediated by histidylated polyplexes is not yet known, but it is supposed that a subsequent delivery of pDNA into the cytosol occurs by the membrane destabilization of acidic vesicles containing polyplexes, upon the protonation of imidazole groups. Although, there is no evidence that the DNA leaves endocytotic vesicles, this statement is supported by (i) the fact that poly-
<sc>l</sc>
-histidine induces fusion of lipid bilayers (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc9801070b00018" ref-type="bibr"></xref>
,
<xref rid="bc9801070b00019" ref-type="bibr"></xref>
</named-content>
</italic>
) and (ii) the fact that bafilomycin A
<sub>1</sub>
which is known to impair the acidification of the lumen of the endosomes, made polyfection inefficient. Poly-
<sc>l</sc>
-histidine destabilizes lipid bilayers in a slightly acidic medium and induces fusion upon protonation of the imidazole groups by increasing interactions between this polymeric polycation and the membrane phospholipids (
<italic toggle="yes">
<xref rid="bc9801070b00018" ref-type="bibr"></xref>
</italic>
). In acidic medium, poly-
<sc>l</sc>
-histidine is more fusogenic than polylysine: efficient fusion of negatively charged liposomes (phosphatidylserine liposomes) occurs at a ratio of the positive charge of poly-
<sc>l</sc>
-histidine to the negative charge of the liposomes equal to 0.2 while it occurs at a ratio equal to 1 in the case polylysine. Recently, we have reported that the amphipatic peptide H5WYG (GLFHAIAHFIHGGWHGLIHGWYG) containing five histidyl residues, which does not adopt a helical structure in acidic medium, permeabilizes cell membranes in such an acidic medium (pH 6.4) (
<italic toggle="yes">
<xref rid="bc9801070b00017" ref-type="bibr"></xref>
</italic>
). In addition, this peptide increased the expression efficiency when a gene is transferred into cells as glycosylated polylysine/pDNA complexes; the transfection was also inhibited in the presence of bafilomycin A
<sub>1</sub>
(
<italic toggle="yes">
<xref rid="bc9801070b00017" ref-type="bibr"></xref>
</italic>
). These results suggest that the generation of cationic charges via the protonation of several imidazole groups bound to pDNA inside the endosomes consecutively to the acidification of their lumen is a suitable approach to modify the intracellular routing of pDNA, especially its delivery into cytosol. Therefore, the mechanism involved for polyfection with histidylated polylysine could be different from that of polyethylenimine which is supposed to act as a buffer, preventing acidification of the endosomal lumen and inducing the swelling of these vesicles, leading to a membrane destabilization (
<italic toggle="yes">
<xref rid="bc9801070b00029" ref-type="bibr"></xref>
</italic>
). </p>
<p>The transfection efficiency by using histidylated polylysine/pDNA complexes was greater than by using polylysine/pDNA complexes in the presence of either chloroquine or the fusogenic peptide E5CA. Chloroquine concentrates in the acidic compartments and prevents the delivery of the endosomal content to lysosomes; it induces the formation of large endosome-derived vacuoles. In addition, it allows the dissociation of pDNA/polylysine conjugate complexes (
<italic toggle="yes">
<xref rid="bc9801070b00008" ref-type="bibr"></xref>
</italic>
). Anionic permeabilizing peptides, adopting an α-helical structure at pH <5.5, may destabilize the membrane of weakly acidic vesicles containing the polyplexes leading to the delivery of pDNA into the cytosol. Histidylated polyplexes were efficient for all cell types tested while the efficiency of anionic peptides such as E5CA depends on several parameters in relation with the cell type. These parameters include the number of vesicles containing both polylysine/pDNA complexes and peptides separately taken up, the peptide concentration, and the luminal pH of the vesicles. In addition, histidylated polylysine may destabilize membranes as well as H5WYG peptide at a pH less acidic than E5CA peptide and thus may be effective in early endosomes at pH around 6.4; at this pH, anionic peptides were inefficient. </p>
<p>Chloroquine and fusogenic peptides cannot be used in vivo. Indeed, (i) they are small molecules which are cleared soon after their injection; (ii) chloroquine must concentrate in acidic vesicles and reach a high concentration before being able to induce an efficient transfection (
<italic toggle="yes">
<xref rid="bc9801070b00008" ref-type="bibr"></xref>
</italic>
); (iii) polyplex solution to be injected cannot contain a high concentration of chloroquine, because above 1 mM chloroquine, polyplexes start to dissociate (
<italic toggle="yes">
<xref rid="bc9801070b00008" ref-type="bibr"></xref>
</italic>
); (iv) the effect of anionic peptides bearing negative charges at neutral pH is inhibited in the presence of serum probably because they bind to serum proteins, and in addition, the effect is diminished when they are chemically linked to polyplexes. With histidylated polylysine, the membrane-disrupting device is bound to the plasmid and the transfection efficiency was not significantly reduced in the presence of serum up to 20%. </p>
<p>In conclusion, histidylated polylysine, a synthetic compound, easy to prepare and to purify, is a good nonviral vector for gene transfer into mammalian cells. Histidylated polylysine gives polyplex formulation suitable for transferring gene in vivo. In addition, histidylated polylysine may be substituted with recognition signal molecules in order to deliver the gene into cells which specifically express a related receptor; this aspect is currently under development in our laboratory. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We express our gratitude to Dr. A. B. Brasier (Massachusetts General Hospital, Boston, MA) for pSV2
<italic toggle="yes">LUC</italic>
plasmid, Dr. D. C. Gruenert (Gene Therapy Core Center, University of California, San Francisco), Dr. M. Nachtigal (University of South Carolina, Columbia, SC), and Dr. L. Huang (University of Pittsburgh, Pittburgh, PA) for 16HBE, Rb-1, and 293-T7 cells, respectively. We thank Mahajoub Bello-Roufaï for ζ potential measurements and Sophie Fauvin and Suzanne Nuques for their skillful technical helps in cell culture and transfections. We thank Françoise Fargette for the preparation of plasmids and Henri Labbé for his skillfull assistance in NMR spectroscopy. This work was partly supported by grants from ANRS (ANRS No. 97003), Ministère de la Recherche et de la Technologie (ACCSV14 No. 9514104), Ligue Nationale Contre le Cancer, Biotechnocentre and EU (BIO4-CT97-2216). Michel Monsigny is Professor at the University of Orléans. Patrick Midoux is Research Director at INSERM. </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bc9801070b00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Felgner</surname>
<given-names>P. L.</given-names>
</name>
<name name-style="western">
<surname>Barenholz</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Behr</surname>
<given-names>J. P.</given-names>
</name>
<name name-style="western">
<surname>Cheng</surname>
<given-names>S. H.</given-names>
</name>
<name name-style="western">
<surname>Cullis</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Jessee</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Seymour</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Szoka</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Thierry</surname>
<given-names>A. R.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>G.</given-names>
</name>
<article-title>Nomenclature for synthetic gene delivery systems</article-title>
<source>Hum. Gene Ther.</source>
<year>1997</year>
<volume>8</volume>
<fpage>511</fpage>
<lpage>512</lpage>
<pub-id pub-id-type="doi">10.1089/hum.1997.8.5-511</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C</given-names>
</name>
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Mayer</surname>
<given-names>R.</given-names>
</name>
<article-title>Glycoconjugates as carriers for specific delivery of therapeutic drugs and genes</article-title>
<source>Adv. Drug Delivery Rev.</source>
<year>1994</year>
<volume>14</volume>
<fpage>1</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/0169-409X(94)90003-5</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Curiel</surname>
<given-names>D. T.</given-names>
</name>
<name name-style="western">
<surname>Cotten</surname>
<given-names>M.</given-names>
</name>
<article-title>Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis</article-title>
<source>Adv. Drug Delivery Rev.</source>
<year>1994</year>
<volume>14</volume>
<fpage>113</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="doi">10.1016/0169-409X(94)90008-6</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frese</surname>
<given-names>J.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>C. H.</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>G. Y.</given-names>
</name>
<article-title>Targeting of genes to the liver with glycoprotein carriers</article-title>
<source>Adv. Drug Delivery Rev.</source>
<year>1994</year>
<volume>14</volume>
<fpage>137</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1016/0169-409X(94)90009-4</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Cristiano</surname>
<given-names>R. J.</given-names>
</name>
<name name-style="western">
<surname>Curiel</surname>
<given-names>D. T.</given-names>
</name>
<article-title>Strategies to accomplish gene delivery via the receptor-mediated endocytosis pathway</article-title>
<source>Cancer Gene Ther.</source>
<year>1996</year>
<volume>3</volume>
<fpage>49</fpage>
<lpage>57</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zenke</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Steinlein</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Cotten</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Beug</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Birnstiel</surname>
<given-names>M. L.</given-names>
</name>
<article-title>Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1990</year>
<volume>87</volume>
<fpage>3655</fpage>
<lpage>3659</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.87.10.3655</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Mendes</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Legrand</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Raimond</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Mayer</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C.</given-names>
</name>
<article-title>Specific gene transfer mediated by lactosylated poly-l-lysine into hepatoma cells</article-title>
<source>Nucleic Acids Res.</source>
<year>1993</year>
<volume>21</volume>
<fpage>871</fpage>
<lpage>878</lpage>
<pub-id pub-id-type="doi">10.1093/nar/21.4.871</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Erbacher</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<article-title>Putative role of chloroquine in gene transfer into a human hepatoma cell line by pDNA/lactosylated polylysine complexes</article-title>
<source>Exp. Cell Res.</source>
<year>1996</year>
<volume>225</volume>
<fpage>186</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1006/excr.1996.0169</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zauner</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Kichler</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Schmidt</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Sinski</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<article-title>Glycerol enhancement of ligand-polylysine/DNA transfection</article-title>
<source>BioTechniques</source>
<year>1996</year>
<volume>20</volume>
<fpage>905</fpage>
<lpage>913</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Plank</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Zatloukal</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Cotten</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Birnstiel</surname>
<given-names>M. L.</given-names>
</name>
<article-title>Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1992</year>
<volume>89</volume>
<fpage>7934</fpage>
<lpage>7938</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.89.17.7934</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Plank</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Zatloukal</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Cotten</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Mechtler</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<article-title>Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand</article-title>
<source>Bioconjugate Chem.</source>
<year>1992</year>
<volume>3</volume>
<fpage>533</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="doi">10.1021/bc00018a012</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Plank</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Oberhauser</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Mechtler</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Koch</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<article-title>The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems</article-title>
<source>J. Biol. Chem.</source>
<year>1994</year>
<volume>269</volume>
<fpage>12918</fpage>
<lpage>12924</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Haensler</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Szoka</surname>
<given-names>F. C.</given-names>
</name>
<article-title>Polyamidoamine cascade polymers mediate efficient transfection of cells in culture</article-title>
<source>Bioconjugate Chem.</source>
<year>1993</year>
<volume>4</volume>
<fpage>372</fpage>
<lpage>379</lpage>
<pub-id pub-id-type="doi">10.1021/bc00023a012</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gottschalk</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Sparrow</surname>
<given-names>J. T.</given-names>
</name>
<name name-style="western">
<surname>Hauer</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Mims</surname>
<given-names>M. P.</given-names>
</name>
<name name-style="western">
<surname>Leland</surname>
<given-names>F. E.</given-names>
</name>
<name name-style="western">
<surname>Woo</surname>
<given-names>S. L. C.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>L. C.</given-names>
</name>
<article-title>A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells</article-title>
<source>Gene Ther.</source>
<year>1996</year>
<volume>3</volume>
<fpage>448</fpage>
<lpage>457</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zauner</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Blaas</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Kuechler</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Wagner</surname>
<given-names>E.</given-names>
</name>
<article-title>Rhinovirus-mediated endosomal release of transfection complexes</article-title>
<source>J. Virol.</source>
<year>1995</year>
<volume>69</volume>
<fpage>1085</fpage>
<lpage>1092</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wymn</surname>
<given-names>T. B.</given-names>
</name>
<name name-style="western">
<surname>Nicol</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Zelphati</surname>
<given-names>O.</given-names>
</name>
<name name-style="western">
<surname>Scaria</surname>
<given-names>P. V.</given-names>
</name>
<name name-style="western">
<surname>Plank</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Szoka</surname>
<given-names>F. C.</given-names>
</name>
<article-title>Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers</article-title>
<source>Biochemistry</source>
<year>1997</year>
<volume>36</volume>
<fpage>3008</fpage>
<lpage>3017</lpage>
<pub-id pub-id-type="doi">10.1021/bi9618474</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Kichler</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Boutin</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Maurizot</surname>
<given-names>J. C.</given-names>
</name>
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<article-title>Membrane permeabilization and efficient gene transfer by a peptide containing several histidines</article-title>
<source>Bioconjugate Chem.</source>
<year>1998</year>
<volume>9</volume>
<fpage>260</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.1021/bc9701611</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wang</surname>
<given-names>C.-Y.</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<article-title>Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes</article-title>
<source>Biochemistry</source>
<year>1984</year>
<volume>23</volume>
<fpage>4409</fpage>
<lpage>4416</lpage>
<pub-id pub-id-type="doi">10.1021/bi00314a026</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Uster</surname>
<given-names>P. S.</given-names>
</name>
<name name-style="western">
<surname>Deamer</surname>
<given-names>W. D.</given-names>
</name>
<article-title>pH-dependent fusion of liposomes using titratable polycations</article-title>
<source>Biochemistry</source>
<year>1985</year>
<volume>24</volume>
<fpage>1</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1021/bi00322a001</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Derrien</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Petit</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Negre</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Mayer</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C.</given-names>
</name>
<article-title>Muramyl dipeptide bound to poly-l-lysine substituted with mannose and gluconoyl residues as macrophage activators</article-title>
<source>Glycoconjugate J.</source>
<year>1989</year>
<volume>6</volume>
<fpage>241</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1007/BF01050652</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Brisson</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>He</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<article-title>Delivery of a PCR amplified DNA fragment into cells: a model for using synthetic genes for gene therapy</article-title>
<source>Gene Ther.</source>
<year>1997</year>
<volume>4</volume>
<fpage>449</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="doi">10.1038/sj.gt.3300413</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00022">
<mixed-citation>
<name name-style="western">
<surname>Nachtigal</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>Nagpal</surname>
<given-names>M. L.</given-names>
</name>
,
<name name-style="western">
<surname>Greenspan</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Nachtigal</surname>
<given-names>S. A.</given-names>
</name>
,
<name name-style="western">
<surname>and Legrand</surname>
<given-names>A.</given-names>
</name>
(1989) Characterization of a continuous smooth muscle cell line derived from rabbit aorta.
<italic toggle="yes"> In Vitro Cell</italic>
.
<italic toggle="yes"> Dev</italic>
.
<italic toggle="yes"> Biol</italic>
.
<italic toggle="yes"> 25</italic>
, 892−898.
<pub-id pub-id-type="doi">10.1007/BF02624001</pub-id>
</mixed-citation>
</ref>
<ref id="bc9801070b00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chen</surname>
<given-names>T. R.</given-names>
</name>
<article-title>In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoeschst 33258 stain</article-title>
<source>Exp. Cell Res.</source>
<year>1977</year>
<volume>104</volume>
<fpage>255</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1016/0014-4827(77)90089-1</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brasier</surname>
<given-names>A. R.</given-names>
</name>
<name name-style="western">
<surname>Tate</surname>
<given-names>J. E.</given-names>
</name>
<name name-style="western">
<surname>Habener</surname>
<given-names>J. F.</given-names>
</name>
<article-title>Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines</article-title>
<source>BioTechniques</source>
<year>1989</year>
<volume>7</volume>
<fpage>1116</fpage>
<lpage>1123</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>De Wet</surname>
<given-names>J. R.</given-names>
</name>
<name name-style="western">
<surname>Wood</surname>
<given-names>K. V.</given-names>
</name>
<name name-style="western">
<surname>De Luca</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Helinsky</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Subramani</surname>
<given-names>S.</given-names>
</name>
<article-title>Firefly luciferase gene: structure and expression in mammalian cells</article-title>
<source>Mol. Cell. Biol.</source>
<year>1987</year>
<volume>7</volume>
<fpage>725</fpage>
<lpage>737</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bowman</surname>
<given-names>E. J.</given-names>
</name>
<name name-style="western">
<surname>Siebers</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Altendorf</surname>
<given-names>K.</given-names>
</name>
<article-title>Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, aminal cells, and plant cells</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1988</year>
<volume>85</volume>
<fpage>7972</fpage>
<lpage>7976</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.85.21.7972</pub-id>
</element-citation>
</ref>
<ref id="bc9801070b00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Monsigny</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
<article-title>Uptake of neoglycoproteins via membrane lectin(s) of L1210 cells evidenced by quantitative flow cytofluorometry and drug targeting</article-title>
<source>Biol. Cell</source>
<year>1984</year>
<volume>51</volume>
<fpage>187</fpage>
<lpage>196</lpage>
</element-citation>
</ref>
<ref id="bc9801070b00028">
<mixed-citation>
<name name-style="western">
<surname>Midoux</surname>
<given-names>P.</given-names>
</name>
,
<name name-style="western">
<surname>Roche</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>and Monsigny</surname>
<given-names>M.</given-names>
</name>
(1987) Quantitation of the binding, uptake, and degradation of fluoresceinylated neoglycoproteins by flow cytometry.
<italic toggle="yes"> Cytometry</italic>
<italic toggle="yes">8</italic>
, 327−334.
<pub-id pub-id-type="doi">10.1002/cyto.990080314</pub-id>
</mixed-citation>
</ref>
<ref id="bc9801070b00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Boussif</surname>
<given-names>O.</given-names>
</name>
<name name-style="western">
<surname>Lezoualc‘h</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Zanta</surname>
<given-names>M. A.</given-names>
</name>
<name name-style="western">
<surname>Mergny</surname>
<given-names>M. D.</given-names>
</name>
<name name-style="western">
<surname>Scherman</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Demeinex</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Behr</surname>
<given-names>J. P.</given-names>
</name>
<article-title>A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1995</year>
<volume>92</volume>
<fpage>7297</fpage>
<lpage>72301</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.92.16.7297</pub-id>
</element-citation>
</ref>
<ref id="bc9801070n00001">
<mixed-citation>
<comment>Abbreviations: DP, average degree of polymerization; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetate; FBS, fetal bovine serum; His, histidyl residue; PBS, phosphate-buffered saline; pLK, poly-
<sc>l</sc>
-lysine.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="family">MIDOUX</namePart>
<namePart type="given">Patrick</namePart>
<affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<affiliation> To whom correspondence should be addressed. Fax: 33 (0)238 69 00 94. Phone: 38 (0)2 38 25 55 95. E-mail: midoux@cnrs-orleans.fr.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">MONSIGNY</namePart>
<namePart type="given">Michel</namePart>
<affiliation>Centre de Biophysique Moléculaire, Glycobiologie CNRS UPR4301 and University of Orléans,rue Charles-Sadron, F-45071 Orléans Cedex 02, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">1999-03-11</dateCreated>
<dateIssued encoding="w3cdtf">1999-05-17</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<abstract>Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 ± 5% of the ε-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1043-1802</identifier>
<identifier type="eISSN">1520-4812</identifier>
<identifier type="acspubs">bc</identifier>
<identifier type="coden">BCCHES</identifier>
<identifier type="uri">pubs.acs.org/bc</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>406</start>
<end>411</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">78F597C5553A58D20F360CE80E382DEB873465D7</identifier>
<identifier type="ark">ark:/67375/TPS-N3J84NW4-S</identifier>
<identifier type="DOI">10.1021/bc9801070</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 1999 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">ACS</recordContentSource>
<recordOrigin>Copyright © 1999 American Chemical Society</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>eps</extension>
<original>true</original>
<mimetype>image/x-eps</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-N3J84NW4-S/annexes.eps</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/78F597C5553A58D20F360CE80E382DEB873465D7/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000719 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000719 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:78F597C5553A58D20F360CE80E382DEB873465D7
   |texte=   Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021