Serveur d'exploration Covid et maladies cardiovasculaires

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.

Identifieur interne : 000062 ( Main/Corpus ); précédent : 000061; suivant : 000063

Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.

Auteurs : Ulka Sachdev ; Ricardo Ferrari ; Xiangdong Cui ; Abish Pius ; Amrita Sahu ; Michael Reynolds ; Hong Liao ; Ping Sun ; Sunita Shinde ; Fabrisia Ambrosio ; Sruti Shiva ; Patricia Loughran ; Melanie Scott

Source :

RBID : pubmed:32641037

English descriptors

Abstract

BACKGROUND

We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ.

METHODS

C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot.

RESULTS

CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR.

CONCLUSION

Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.


DOI: 10.1186/s10020-020-00190-2
PubMed: 32641037
PubMed Central: PMC7341481

Links to Exploration step

pubmed:32641037

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.</title>
<author>
<name sortKey="Sachdev, Ulka" sort="Sachdev, Ulka" uniqKey="Sachdev U" first="Ulka" last="Sachdev">Ulka Sachdev</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA. Sachdevu2@upmc.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Ricardo" sort="Ferrari, Ricardo" uniqKey="Ferrari R" first="Ricardo" last="Ferrari">Ricardo Ferrari</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Xiangdong" sort="Cui, Xiangdong" uniqKey="Cui X" first="Xiangdong" last="Cui">Xiangdong Cui</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pius, Abish" sort="Pius, Abish" uniqKey="Pius A" first="Abish" last="Pius">Abish Pius</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Amrita" sort="Sahu, Amrita" uniqKey="Sahu A" first="Amrita" last="Sahu">Amrita Sahu</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reynolds, Michael" sort="Reynolds, Michael" uniqKey="Reynolds M" first="Michael" last="Reynolds">Michael Reynolds</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Hong" sort="Liao, Hong" uniqKey="Liao H" first="Hong" last="Liao">Hong Liao</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ping" sort="Sun, Ping" uniqKey="Sun P" first="Ping" last="Sun">Ping Sun</name>
<affiliation>
<nlm:affiliation>Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Surgery 11/20/2018-11/19/202, Visiting scholar, University of Pittsburgh, Pittsburgh, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shinde, Sunita" sort="Shinde, Sunita" uniqKey="Shinde S" first="Sunita" last="Shinde">Sunita Shinde</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ambrosio, Fabrisia" sort="Ambrosio, Fabrisia" uniqKey="Ambrosio F" first="Fabrisia" last="Ambrosio">Fabrisia Ambrosio</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shiva, Sruti" sort="Shiva, Sruti" uniqKey="Shiva S" first="Sruti" last="Shiva">Sruti Shiva</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loughran, Patricia" sort="Loughran, Patricia" uniqKey="Loughran P" first="Patricia" last="Loughran">Patricia Loughran</name>
<affiliation>
<nlm:affiliation>Center for Biologic Imaging (CBI), University of Pittsburgh Medical Center, Biomedical Sciences Tower, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, Melanie" sort="Scott, Melanie" uniqKey="Scott M" first="Melanie" last="Scott">Melanie Scott</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32641037</idno>
<idno type="pmid">32641037</idno>
<idno type="doi">10.1186/s10020-020-00190-2</idno>
<idno type="pmc">PMC7341481</idno>
<idno type="wicri:Area/Main/Corpus">000062</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000062</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.</title>
<author>
<name sortKey="Sachdev, Ulka" sort="Sachdev, Ulka" uniqKey="Sachdev U" first="Ulka" last="Sachdev">Ulka Sachdev</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA. Sachdevu2@upmc.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Ricardo" sort="Ferrari, Ricardo" uniqKey="Ferrari R" first="Ricardo" last="Ferrari">Ricardo Ferrari</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cui, Xiangdong" sort="Cui, Xiangdong" uniqKey="Cui X" first="Xiangdong" last="Cui">Xiangdong Cui</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pius, Abish" sort="Pius, Abish" uniqKey="Pius A" first="Abish" last="Pius">Abish Pius</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Amrita" sort="Sahu, Amrita" uniqKey="Sahu A" first="Amrita" last="Sahu">Amrita Sahu</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reynolds, Michael" sort="Reynolds, Michael" uniqKey="Reynolds M" first="Michael" last="Reynolds">Michael Reynolds</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liao, Hong" sort="Liao, Hong" uniqKey="Liao H" first="Hong" last="Liao">Hong Liao</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ping" sort="Sun, Ping" uniqKey="Sun P" first="Ping" last="Sun">Ping Sun</name>
<affiliation>
<nlm:affiliation>Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Surgery 11/20/2018-11/19/202, Visiting scholar, University of Pittsburgh, Pittsburgh, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shinde, Sunita" sort="Shinde, Sunita" uniqKey="Shinde S" first="Sunita" last="Shinde">Sunita Shinde</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ambrosio, Fabrisia" sort="Ambrosio, Fabrisia" uniqKey="Ambrosio F" first="Fabrisia" last="Ambrosio">Fabrisia Ambrosio</name>
<affiliation>
<nlm:affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shiva, Sruti" sort="Shiva, Sruti" uniqKey="Shiva S" first="Sruti" last="Shiva">Sruti Shiva</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loughran, Patricia" sort="Loughran, Patricia" uniqKey="Loughran P" first="Patricia" last="Loughran">Patricia Loughran</name>
<affiliation>
<nlm:affiliation>Center for Biologic Imaging (CBI), University of Pittsburgh Medical Center, Biomedical Sciences Tower, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scott, Melanie" sort="Scott, Melanie" uniqKey="Scott M" first="Melanie" last="Scott">Melanie Scott</name>
<affiliation>
<nlm:affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular medicine (Cambridge, Mass.)</title>
<idno type="eISSN">1528-3658</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Autophagosomes (metabolism)</term>
<term>Autophagy (drug effects)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Caspase 1 (metabolism)</term>
<term>Caspases, Initiator (metabolism)</term>
<term>Chloroquine (pharmacology)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (pathology)</term>
<term>Glycolysis (physiology)</term>
<term>Ischemia (pathology)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Muscle Cells (metabolism)</term>
<term>Muscle Development (MeSH)</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Muscle, Skeletal (pathology)</term>
<term>Neovascularization, Physiologic (MeSH)</term>
<term>Oxidative Phosphorylation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Peripheral Arterial Disease (pathology)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (pathology)</term>
<term>Regeneration (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Caspase 1</term>
<term>Caspases, Initiator</term>
<term>Microtubule-Associated Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Autophagosomes</term>
<term>Muscle Cells</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Ischemia</term>
<term>Muscle, Skeletal</term>
<term>Peripheral Arterial Disease</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glycolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Betacoronavirus</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Muscle Development</term>
<term>Neovascularization, Physiologic</term>
<term>Oxidative Phosphorylation</term>
<term>Pandemics</term>
<term>Regeneration</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32641037</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1528-3658</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Molecular medicine (Cambridge, Mass.)</Title>
<ISOAbbreviation>Mol. Med.</ISOAbbreviation>
</Journal>
<ArticleTitle>Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.</ArticleTitle>
<Pagination>
<MedlinePgn>69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s10020-020-00190-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">We previously showed that the autophagy inhibitor chloroquine (CQ) increases inflammatory cleaved caspase-1 activity in myocytes, and that caspase-1/11 is protective in sterile liver injury. However, the role of caspase-1/11 in the recovery of muscle from ischemia caused by peripheral arterial disease is unknown. We hypothesized that caspase-1/11 mediates recovery in muscle via effects on autophagy and this is modulated by CQ.</AbstractText>
<AbstractText Label="METHODS">C57Bl/6 J (WT) and caspase-1/11 double-knockout (KO) mice underwent femoral artery ligation (a model of hind-limb ischemia) with or without CQ (50 mg/kg IP every 2nd day). CQ effects on autophagosome formation, microtubule associated protein 1A/1B-light chain 3 (LC3), and caspase-1 expression was measured using electron microscopy and immunofluorescence. Laser Doppler perfusion imaging documented perfusion every 7 days. After 21 days, in situ physiologic testing in tibialis anterior muscle assessed peak force contraction, and myocyte size and fibrosis was also measured. Muscle satellite cell (MuSC) oxygen consumption rate (OCR) and extracellular acidification rate was measured. Caspase-1 and glycolytic enzyme expression was detected by Western blot.</AbstractText>
<AbstractText Label="RESULTS">CQ increased autophagosomes, LC3 consolidation, total caspase-1 expression and cleaved caspase-1 in muscle. Perfusion, fibrosis, myofiber regeneration, muscle contraction, MuSC fusion, OCR, ECAR and glycolytic enzyme expression was variably affected by CQ depending on presence of caspase-1/11. CQ decreased perfusion recovery, fibrosis and myofiber size in WT but not caspase-1/11KO mice. CQ diminished peak force in whole muscle, and myocyte fusion in MuSC and these effects were exacerbated in caspase-1/11KO mice. CQ reductions in maximal respiration and ATP production were reduced in caspase-1/11KO mice. Caspase-1/11KO MuSC had significant increases in protein kinase isoforms and aldolase with decreased ECAR.</AbstractText>
<AbstractText Label="CONCLUSION">Caspase-1/11 signaling affects the response to ischemia in muscle and effects are variably modulated by CQ. This may be critically important for disease treated with CQ and its derivatives, including novel viral diseases (e.g. COVID-19) that are expected to affect patients with comorbidities like cardiovascular disease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sachdev</LastName>
<ForeName>Ulka</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">0000-0003-4648-0735</Identifier>
<AffiliationInfo>
<Affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA. Sachdevu2@upmc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrari</LastName>
<ForeName>Ricardo</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Xiangdong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pius</LastName>
<ForeName>Abish</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahu</LastName>
<ForeName>Amrita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reynolds</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Surgery 11/20/2018-11/19/202, Visiting scholar, University of Pittsburgh, Pittsburgh, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shinde</LastName>
<ForeName>Sunita</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ambrosio</LastName>
<ForeName>Fabrisia</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Bridgeside Point, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shiva</LastName>
<ForeName>Sruti</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Biomedical Sciences Towe, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loughran</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Center for Biologic Imaging (CBI), University of Pittsburgh Medical Center, Biomedical Sciences Tower, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scott</LastName>
<ForeName>Melanie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Vascular Surgery; Department of Surgery, University of Pittsburgh Medical Center, Magee Women's Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01HL136556</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM102146</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Med</MedlineTA>
<NlmUniqueID>9501023</NlmUniqueID>
<ISSNLinking>1076-1551</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C480860">MAP1LC3 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>886U3H6UFF</RegistryNumber>
<NameOfSubstance UI="D002738">Chloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C101136">Casp4 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D053471">Caspases, Initiator</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.36</RegistryNumber>
<NameOfSubstance UI="C000628184">Casp1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.36</RegistryNumber>
<NameOfSubstance UI="D020170">Caspase 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071182" MajorTopicYN="N">Autophagosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020170" MajorTopicYN="N">Caspase 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053471" MajorTopicYN="N">Caspases, Initiator</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002738" MajorTopicYN="N">Chloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007511" MajorTopicYN="N">Ischemia</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032342" MajorTopicYN="N">Muscle Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024510" MajorTopicYN="N">Muscle Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="N">Neovascularization, Physiologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010085" MajorTopicYN="N">Oxidative Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058729" MajorTopicYN="N">Peripheral Arterial Disease</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Autophagy</Keyword>
<Keyword MajorTopicYN="Y">Glycolysis</Keyword>
<Keyword MajorTopicYN="Y">Inflammasome</Keyword>
<Keyword MajorTopicYN="Y">Ischemic muscle</Keyword>
<Keyword MajorTopicYN="Y">Lysosomal inhibition</Keyword>
<Keyword MajorTopicYN="Y">Oxidative phosphorylation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32641037</ArticleId>
<ArticleId IdType="doi">10.1186/s10020-020-00190-2</ArticleId>
<ArticleId IdType="pii">10.1186/s10020-020-00190-2</ArticleId>
<ArticleId IdType="pmc">PMC7341481</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Circulation. 2004 Aug 10;110(6):738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24492532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2013 Aug;58(2):460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23414695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 May - Jun;14(3):241-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32247211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 29;526(7575):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26375259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Oct 29;9(1):15559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31664129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfus Med Hemother. 2013 Dec;40(6):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 14;282(50):36321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2018 Mar;67(3):910-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28259568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2014 Jul;229(7):955-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24265122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Gene Ther. 2015 Jun;22(6):326-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25908451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 May;4(4):524-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2000 Feb;190(3):338-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10685067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2006 Jul;44(1):108-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Oct 12;9(1):4232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30315160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2017 Jul;66(1):178-186.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28647034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 17;283(42):28074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Apr 10;14(4):e0214908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30970035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflamm Allergy Drug Targets. 2015;14(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2000 Apr;6(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1999 Feb 15;515 ( Pt 1):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2016 Jan 04;5(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26727968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Obes Rev. 2017 Jun;18(6):647-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28391659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2017 Aug 24;8(8):e3014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28837152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2017 Sep;23:188-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(12):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Nov 05;8(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31694192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2016 Aug;97:191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27262673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2012 Jan;55(1):180-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21944908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2019 Nov 18;51(11):1087-1095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31609412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 2013 Jan 16;95(2):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23324961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2016 Jan;63(1):216-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Care Res (Hoboken). 2011 Apr;63(4):530-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21452265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2017 Jul;232(7):1774-1793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rep. 2014 May 20;2(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24844636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2004 Jan;84(1):209-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2005 May;41(5):802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15886664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2017 Aug;102(2):221-235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28626046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2020 May 18;12(4):322-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32236562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Nov 15;9(1):16931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31729436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2017 Jan;65(1):253-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27774630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e54922</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23526927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Feb;292(2):C953-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Dec 15;126(Pt 24):5610-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24101731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2014 Aug 11;26(2):190-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25117709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Surg Res. 2005 Dec;129(2):242-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2018 Oct 2;7(19):e008596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30371306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jul 10;290(28):17485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26037927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2015 Jul 14;21:605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26181630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Discov. 2019 Jun 5;5:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31231549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cell Res Ther. 2015 Apr 12;6:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25889676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Feb;6(2):307-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20104028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2012 Jun 1;72(11):2791-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22472122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1991 Jan 17;324(3):150-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1984192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CardioCovidV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000062 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000062 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CardioCovidV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32641037
   |texte=   Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32641037" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CardioCovidV1 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Aug 4 15:08:30 2020. Site generation: Wed Jan 27 11:23:02 2021