Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000699 ( Pmc/Corpus ); précédent : 0006989; suivant : 0006A00 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Disentangling serology to elucidate henipa‐ and filovirus transmission in Madagascar fruit bats</title>
<author>
<name sortKey="Brook, Cara E" sort="Brook, Cara E" uniqKey="Brook C" first="Cara E." last="Brook">Cara E. Brook</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jane12985-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ranaivoson, Hafaliana C" sort="Ranaivoson, Hafaliana C" uniqKey="Ranaivoson H" first="Hafaliana C." last="Ranaivoson">Hafaliana C. Ranaivoson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0002"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jane12985-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broder, Christopher C" sort="Broder, Christopher C" uniqKey="Broder C" first="Christopher C." last="Broder">Christopher C. Broder</name>
<affiliation>
<nlm:aff id="jane12985-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Andrew A" sort="Cunningham, Andrew A" uniqKey="Cunningham A" first="Andrew A." last="Cunningham">Andrew A. Cunningham</name>
<affiliation>
<nlm:aff id="jane12985-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Heraud, Jean Ichel" sort="Heraud, Jean Ichel" uniqKey="Heraud J" first="Jean-Michel" last="Héraud">Jean-Michel Héraud</name>
<affiliation>
<nlm:aff id="jane12985-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Peel, Alison J" sort="Peel, Alison J" uniqKey="Peel A" first="Alison J." last="Peel">Alison J. Peel</name>
<affiliation>
<nlm:aff id="jane12985-aff-0006"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gibson, Louise" sort="Gibson, Louise" uniqKey="Gibson L" first="Louise" last="Gibson">Louise Gibson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wood, James L N" sort="Wood, James L N" uniqKey="Wood J" first="James L. N." last="Wood">James L. N. Wood</name>
<affiliation>
<nlm:aff id="jane12985-aff-0007"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Metcalf, C Jessica" sort="Metcalf, C Jessica" uniqKey="Metcalf C" first="C. Jessica" last="Metcalf">C. Jessica Metcalf</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobson, Andrew P" sort="Dobson, Andrew P" uniqKey="Dobson A" first="Andrew P." last="Dobson">Andrew P. Dobson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30908623</idno>
<idno type="pmc">7122791</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122791</idno>
<idno type="RBID">PMC:7122791</idno>
<idno type="doi">10.1111/1365-2656.12985</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000699</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000699</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Disentangling serology to elucidate henipa‐ and filovirus transmission in Madagascar fruit bats</title>
<author>
<name sortKey="Brook, Cara E" sort="Brook, Cara E" uniqKey="Brook C" first="Cara E." last="Brook">Cara E. Brook</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jane12985-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ranaivoson, Hafaliana C" sort="Ranaivoson, Hafaliana C" uniqKey="Ranaivoson H" first="Hafaliana C." last="Ranaivoson">Hafaliana C. Ranaivoson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0002"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jane12985-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Broder, Christopher C" sort="Broder, Christopher C" uniqKey="Broder C" first="Christopher C." last="Broder">Christopher C. Broder</name>
<affiliation>
<nlm:aff id="jane12985-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Andrew A" sort="Cunningham, Andrew A" uniqKey="Cunningham A" first="Andrew A." last="Cunningham">Andrew A. Cunningham</name>
<affiliation>
<nlm:aff id="jane12985-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Heraud, Jean Ichel" sort="Heraud, Jean Ichel" uniqKey="Heraud J" first="Jean-Michel" last="Héraud">Jean-Michel Héraud</name>
<affiliation>
<nlm:aff id="jane12985-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Peel, Alison J" sort="Peel, Alison J" uniqKey="Peel A" first="Alison J." last="Peel">Alison J. Peel</name>
<affiliation>
<nlm:aff id="jane12985-aff-0006"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gibson, Louise" sort="Gibson, Louise" uniqKey="Gibson L" first="Louise" last="Gibson">Louise Gibson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wood, James L N" sort="Wood, James L N" uniqKey="Wood J" first="James L. N." last="Wood">James L. N. Wood</name>
<affiliation>
<nlm:aff id="jane12985-aff-0007"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Metcalf, C Jessica" sort="Metcalf, C Jessica" uniqKey="Metcalf C" first="C. Jessica" last="Metcalf">C. Jessica Metcalf</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dobson, Andrew P" sort="Dobson, Andrew P" uniqKey="Dobson A" first="Andrew P." last="Dobson">Andrew P. Dobson</name>
<affiliation>
<nlm:aff id="jane12985-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Animal Ecology</title>
<idno type="ISSN">0021-8790</idno>
<idno type="eISSN">1365-2656</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>
<list list-type="order" id="jane12985-list-0001">
<list-item>
<p>Bats are reservoirs for emerging human pathogens, including Hendra and Nipah henipaviruses and Ebola and Marburg filoviruses. These viruses demonstrate predictable patterns in seasonality and age structure across multiple systems; previous work suggests that they may circulate in Madagascar's endemic fruit bats, which are widely consumed as human food.</p>
</list-item>
<list-item>
<p>We aimed to (a) document the extent of henipa‐ and filovirus exposure among Malagasy fruit bats, (b) explore seasonality in seroprevalence and serostatus in these bat populations and (c) compare mechanistic hypotheses for possible transmission dynamics underlying these data.</p>
</list-item>
<list-item>
<p>To this end, we amassed and analysed a unique dataset documenting longitudinal serological henipa‐ and filovirus dynamics in three Madagascar fruit bat species.</p>
</list-item>
<list-item>
<p>We uncovered serological evidence of exposure to Hendra‐/Nipah‐related henipaviruses in
<italic>Eidolon dupreanum, Pteropus rufus</italic>
and
<italic>Rousettus madagascariensis,</italic>
to Cedar‐related henipaviruses in
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
and to Ebola‐related filoviruses in
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
. We demonstrated significant seasonality in population‐level seroprevalence and individual serostatus for multiple viruses across these species, linked to the female reproductive calendar. An age‐structured subset of the data highlighted evidence of waning maternal antibodies in neonates, increasing seroprevalence in young and decreasing seroprevalence late in life. Comparison of mechanistic epidemiological models fit to these data offered support for transmission hypotheses permitting waning antibodies but retained immunity in adult‐age bats.</p>
</list-item>
<list-item>
<p>Our findings suggest that bats may seasonally modulate mechanisms of pathogen control, with consequences for population‐level transmission. Additionally, we narrow the field of candidate transmission hypotheses by which bats are presumed to host and transmit potentially zoonotic viruses globally.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Anim Ecol</journal-id>
<journal-id journal-id-type="iso-abbrev">J Anim Ecol</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1365-2656</journal-id>
<journal-id journal-id-type="publisher-id">JANE</journal-id>
<journal-title-group>
<journal-title>The Journal of Animal Ecology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0021-8790</issn>
<issn pub-type="epub">1365-2656</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30908623</article-id>
<article-id pub-id-type="pmc">7122791</article-id>
<article-id pub-id-type="doi">10.1111/1365-2656.12985</article-id>
<article-id pub-id-type="publisher-id">JANE12985</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Parasite and Disease Ecology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Disentangling serology to elucidate henipa‐ and filovirus transmission in Madagascar fruit bats</article-title>
<alt-title alt-title-type="left-running-head">BROOK et al.</alt-title>
</title-group>
<contrib-group>
<contrib id="jane12985-cr-0001" contrib-type="author" corresp="yes">
<name>
<surname>Brook</surname>
<given-names>Cara E.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0003-4276-073X</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="jane12985-curr-0001">
<sup>8</sup>
</xref>
<address>
<email>cbrook@berkeley.edu</email>
</address>
</contrib>
<contrib id="jane12985-cr-0002" contrib-type="author">
<name>
<surname>Ranaivoson</surname>
<given-names>Hafaliana C.</given-names>
</name>
<xref ref-type="aff" rid="jane12985-aff-0002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="jane12985-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0003" contrib-type="author">
<name>
<surname>Broder</surname>
<given-names>Christopher C.</given-names>
</name>
<xref ref-type="aff" rid="jane12985-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0004" contrib-type="author">
<name>
<surname>Cunningham</surname>
<given-names>Andrew A.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0002-3543-6504</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0005" contrib-type="author">
<name>
<surname>Héraud</surname>
<given-names>Jean‐Michel</given-names>
</name>
<xref ref-type="aff" rid="jane12985-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0006" contrib-type="author">
<name>
<surname>Peel</surname>
<given-names>Alison J.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0003-3538-3550</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0006">
<sup>6</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0007" contrib-type="author">
<name>
<surname>Gibson</surname>
<given-names>Louise</given-names>
</name>
<xref ref-type="aff" rid="jane12985-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0008" contrib-type="author">
<name>
<surname>Wood</surname>
<given-names>James L. N.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0002-0258-3188</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0007">
<sup>7</sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0009" contrib-type="author">
<name>
<surname>Metcalf</surname>
<given-names>C. Jessica</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0003-3166-7521</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="jane12985-note-1001">
<sup></sup>
</xref>
</contrib>
<contrib id="jane12985-cr-0010" contrib-type="author">
<name>
<surname>Dobson</surname>
<given-names>Andrew P.</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">https://orcid.org/0000-0002-9678-1694</contrib-id>
<xref ref-type="aff" rid="jane12985-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="jane12985-note-1001">
<sup></sup>
</xref>
</contrib>
</contrib-group>
<contrib-group>
<contrib id="jane12985-cr-0011" contrib-type="editor">
<name>
<surname>Fenton</surname>
<given-names>Andy</given-names>
</name>
</contrib>
</contrib-group>
<aff id="jane12985-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Ecology & Evolutionary Biology</named-content>
<institution>Princeton University</institution>
<city>Princeton</city>
<named-content content-type="country-part">New Jersey</named-content>
</aff>
<aff id="jane12985-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Virology Unit</named-content>
<institution>Institut Pasteur de Madagascar</institution>
<city>Antananarivo</city>
<country country="MG">Madagascar</country>
</aff>
<aff id="jane12985-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">Department of Animal Biology</named-content>
<institution>University of Antananarivo</institution>
<city>Antananarivo</city>
<country country="MG">Madagascar</country>
</aff>
<aff id="jane12985-aff-0004">
<label>
<sup>4</sup>
</label>
<named-content content-type="organisation-division">Department of Microbiology and Immunology</named-content>
<institution>Uniformed Services University</institution>
<city>Bethesda</city>
<named-content content-type="country-part">Maryland</named-content>
</aff>
<aff id="jane12985-aff-0005">
<label>
<sup>5</sup>
</label>
<named-content content-type="organisation-division">Institute of Zoology</named-content>
<institution>Zoological Society of London</institution>
<city>London</city>
<country country="GB">UK</country>
</aff>
<aff id="jane12985-aff-0006">
<label>
<sup>6</sup>
</label>
<named-content content-type="organisation-division">Environmental Futures Research Institute</named-content>
<institution>Griffith University</institution>
<city>Nathan</city>
<named-content content-type="country-part">Queensland</named-content>
<country country="AU">Australia</country>
</aff>
<aff id="jane12985-aff-0007">
<label>
<sup>7</sup>
</label>
<named-content content-type="organisation-division">Department of Veterinary Medicine</named-content>
<institution>University of Cambridge</institution>
<city>Cambridge</city>
<country country="GB">UK</country>
</aff>
<aff id="jane12985-curr-0001">
<label>
<sup>8</sup>
</label>
Present address:
<named-content content-type="organisation-division">Department of Integrative Biology</named-content>
<institution>UC Berkeley</institution>
<city>Berkeley</city>
<named-content content-type="country-part">California.</named-content>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
<bold>Correspondence</bold>
<break></break>
Cara E. Brook
<break></break>
Email:
<email>cbrook@berkeley.edu</email>
<break></break>
</corresp>
<fn fn-type="equal" id="jane12985-note-1001">
<label></label>
<p>These senior authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>15</day>
<month>4</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<month>7</month>
<year>2019</year>
</pub-date>
<volume>88</volume>
<issue>7</issue>
<issue-id pub-id-type="doi">10.1111/jane.2019.88.issue-7</issue-id>
<fpage>1001</fpage>
<lpage>1016</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>8</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>2</month>
<year>2019</year>
</date>
</history>
<permissions>
<pmc-comment> Journal of Animal Ecology © 2019 British Ecological Society </pmc-comment>
<copyright-statement content-type="article-copyright">© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file:JANE-88-1001.pdf"></self-uri>
<abstract id="jane12985-abs-0001">
<title>Abstract</title>
<p>
<list list-type="order" id="jane12985-list-0001">
<list-item>
<p>Bats are reservoirs for emerging human pathogens, including Hendra and Nipah henipaviruses and Ebola and Marburg filoviruses. These viruses demonstrate predictable patterns in seasonality and age structure across multiple systems; previous work suggests that they may circulate in Madagascar's endemic fruit bats, which are widely consumed as human food.</p>
</list-item>
<list-item>
<p>We aimed to (a) document the extent of henipa‐ and filovirus exposure among Malagasy fruit bats, (b) explore seasonality in seroprevalence and serostatus in these bat populations and (c) compare mechanistic hypotheses for possible transmission dynamics underlying these data.</p>
</list-item>
<list-item>
<p>To this end, we amassed and analysed a unique dataset documenting longitudinal serological henipa‐ and filovirus dynamics in three Madagascar fruit bat species.</p>
</list-item>
<list-item>
<p>We uncovered serological evidence of exposure to Hendra‐/Nipah‐related henipaviruses in
<italic>Eidolon dupreanum, Pteropus rufus</italic>
and
<italic>Rousettus madagascariensis,</italic>
to Cedar‐related henipaviruses in
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
and to Ebola‐related filoviruses in
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
. We demonstrated significant seasonality in population‐level seroprevalence and individual serostatus for multiple viruses across these species, linked to the female reproductive calendar. An age‐structured subset of the data highlighted evidence of waning maternal antibodies in neonates, increasing seroprevalence in young and decreasing seroprevalence late in life. Comparison of mechanistic epidemiological models fit to these data offered support for transmission hypotheses permitting waning antibodies but retained immunity in adult‐age bats.</p>
</list-item>
<list-item>
<p>Our findings suggest that bats may seasonally modulate mechanisms of pathogen control, with consequences for population‐level transmission. Additionally, we narrow the field of candidate transmission hypotheses by which bats are presumed to host and transmit potentially zoonotic viruses globally.</p>
</list-item>
</list>
</p>
</abstract>
<abstract abstract-type="graphical" id="jane12985-abs-0002">
<p>In this paper, the authors (a) expand globally on the known range of bat hosts for henipaviruses and filoviruses, (b) demonstrate seasonal patterns in population‐level seroprevalence and individual‐level serostatus for Malagasy fruit bats and (c) use mechanistic models to reveal the critical role of waning humoral immunity in serological dynamics.
<boxed-text position="anchor" content-type="graphic" id="jane12985-blkfxd-0001" orientation="portrait">
<graphic xlink:href="JANE-88-1001-g005.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="jane12985-kwd-0001">age–seroprevalence</kwd>
<kwd id="jane12985-kwd-0002">filovirus</kwd>
<kwd id="jane12985-kwd-0003">flying fox</kwd>
<kwd id="jane12985-kwd-0004">force of infection</kwd>
<kwd id="jane12985-kwd-0005">fruit bat</kwd>
<kwd id="jane12985-kwd-0006">henipavirus</kwd>
<kwd id="jane12985-kwd-0007">Madagascar</kwd>
<kwd id="jane12985-kwd-0008">zoonosis</kwd>
</kwd-group>
<funding-group>
<award-group id="funding-0001">
<funding-source>Biological Defense Research Directorate (CCB)</funding-source>
</award-group>
<award-group id="funding-0002">
<funding-source>AI054715 (CCB)</funding-source>
</award-group>
<award-group id="funding-0003">
<funding-source>MR/P025226/1 (JLNW)</funding-source>
</award-group>
<award-group id="funding-0004">
<funding-source>Veterinary Research Grant (JLNW)</funding-source>
</award-group>
<award-group id="funding-0005">
<funding-source>Accelerate Postdoctoral Research Fellowship (AJP)</funding-source>
</award-group>
<award-group id="funding-0006">
<funding-source>Center for Health and Well‐being Research Grant (CJEM)</funding-source>
</award-group>
<award-group id="funding-0007">
<funding-source>Doctoral Dissertation Improvement (CEB)</funding-source>
<award-id>1600980</award-id>
</award-group>
<award-group id="funding-0008">
<funding-source>Graduate Research Fellowship Program (CEB)</funding-source>
</award-group>
<award-group id="funding-0009">
<funding-source>R01‐AI129822‐01 (JMH)</funding-source>
</award-group>
<award-group id="funding-0010">
<funding-source>Young Explorer's Grant (CEB)</funding-source>
<award-id>YEG‐9269‐13</award-id>
</award-group>
<award-group id="funding-0011">
<funding-source>Waitt Grant (CEB)</funding-source>
<award-id>W376‐15</award-id>
</award-group>
<award-group id="funding-0012">
<funding-source>Walbridge Graduate Research Fund (CEB)</funding-source>
</award-group>
</funding-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="1"></table-count>
<page-count count="16"></page-count>
<word-count count="12417"></word-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>July 2019</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<p content-type="self-citation">
<mixed-citation publication-type="journal" id="jane12985-cit-1001">
<string-name>
<surname>Brook</surname>
<given-names>CE</given-names>
</string-name>
,
<string-name>
<surname>Ranaivoson</surname>
<given-names>HC</given-names>
</string-name>
,
<string-name>
<surname>Broder</surname>
<given-names>CC</given-names>
</string-name>
, et al.
<article-title>Disentangling serology to elucidate henipa‐ and filovirus transmission in Madagascar fruit bats</article-title>
.
<source xml:lang="en">J Anim Ecol</source>
.
<year>2019</year>
;
<volume>88</volume>
:
<fpage>1001</fpage>
<lpage>1016</lpage>
.
<pub-id pub-id-type="doi">10.1111/1365-2656.12985</pub-id>
<pub-id pub-id-type="pmid">30908623</pub-id>
</mixed-citation>
</p>
</notes>
</front>
<body id="jane12985-body-0001">
<sec id="jane12985-sec-0001">
<label>1</label>
<title>INTRODUCTION</title>
<p>Bats have received much attention in recent years for their roles as reservoirs for several virulent, emerging human pathogens, including Hendra and Nipah henipaviruses, Ebola and Marburg filoviruses, and SARS coronavirus (Calisher, Childs, Field, Holmes, & Schountz,
<xref rid="jane12985-bib-0016" ref-type="ref">2006</xref>
; Munster et al.,
<xref rid="jane12985-bib-0057" ref-type="ref">2016</xref>
; Olival et al.,
<xref rid="jane12985-bib-0061" ref-type="ref">2017</xref>
). Despite their infamy, bat viruses are not well understood. Elucidation of viral transmission dynamics in bat hosts will be essential to preventing future cross‐species emergence by facilitating predictions of viral shedding pulses thought to underpin spillover (Amman et al.,
<xref rid="jane12985-bib-0002" ref-type="ref">2012</xref>
) and by highlighting intervention opportunities in enzootic disease cycles.</p>
<p>Serology often represents the most readily attainable empirical information for wildlife diseases; methods have been developed to infer dynamics underlying patterns of age‐structured seroprevalence for immunizing infections and prevalence for persistent infections (Brook et al.,
<xref rid="jane12985-bib-0011" ref-type="ref">2017</xref>
; Farrington,
<xref rid="jane12985-bib-0024" ref-type="ref">1990</xref>
; Grenfell & Anderson,
<xref rid="jane12985-bib-0030" ref-type="ref">1985</xref>
; Griffiths,
<xref rid="jane12985-bib-0032" ref-type="ref">1974</xref>
; Heisey, Joly, & Messier,
<xref rid="jane12985-bib-0039" ref-type="ref">2006</xref>
; Hens et al.,
<xref rid="jane12985-bib-0040" ref-type="ref">2010</xref>
; Long et al.,
<xref rid="jane12985-bib-0049" ref-type="ref">2010</xref>
; Muench,
<xref rid="jane12985-bib-0056" ref-type="ref">1959</xref>
; Pomeroy et al.,
<xref rid="jane12985-bib-0077" ref-type="ref">2015</xref>
). Numerous studies have reported serological evidence of bat exposure to henipa‐ and filoviruses across the Old World (Epstein et al.,
<xref rid="jane12985-bib-0023" ref-type="ref">2008</xref>
,
<xref rid="jane12985-bib-0022" ref-type="ref">2013</xref>
; Hayman et al.,
<xref rid="jane12985-bib-0038" ref-type="ref">2008</xref>
,
<xref rid="jane12985-bib-0036" ref-type="ref">2010</xref>
; Iehlé et al.,
<xref rid="jane12985-bib-0041" ref-type="ref">2007</xref>
; Leroy et al.,
<xref rid="jane12985-bib-0048" ref-type="ref">2005</xref>
; Ogawa et al.,
<xref rid="jane12985-bib-0059" ref-type="ref">2015</xref>
; Peel et al.,
<xref rid="jane12985-bib-0066" ref-type="ref">2012</xref>
; Plowright et al.,
<xref rid="jane12985-bib-0074" ref-type="ref">2008</xref>
; Taniguchi et al.,
<xref rid="jane12985-bib-0086" ref-type="ref">1999</xref>
; Yuan et al.,
<xref rid="jane12985-bib-0095" ref-type="ref">2012</xref>
), though only a few have attempted to use mechanistic models to infer transmission dynamics from serological data for any bat virus (
<italic>e.g</italic>
. for rabies: Blackwood, Streicker, Altizer, & Rohani,
<xref rid="jane12985-bib-0007" ref-type="ref">2013</xref>
; for henipavirus: Peel et al.,
<xref rid="jane12985-bib-0067" ref-type="ref">2018</xref>
). The paucity of attempts to model such data may be attributable to the idiosyncratic landscape of chiropteran antibody responses. Experimental challenge trials with various bat species have demonstrated seroconversion after inoculation with Hendra (Williamson et al.,
<xref rid="jane12985-bib-0092" ref-type="ref">1998</xref>
) and Nipah (Middleton et al.,
<xref rid="jane12985-bib-0055" ref-type="ref">2007</xref>
) henipaviruses and with Marburg (Amman et al.,
<xref rid="jane12985-bib-0003" ref-type="ref">2014</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0063" ref-type="ref">2012</xref>
,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
), Ebola and Sudan filoviruses (Jones et al.,
<xref rid="jane12985-bib-0044" ref-type="ref">2015</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0064" ref-type="ref">2016</xref>
), though many studies (
<italic>e.g</italic>
. Halpin et al.,
<xref rid="jane12985-bib-0033" ref-type="ref">2011</xref>
) report idiosyncratic antibody dynamics of seroconversion without demonstrable viral replication. Only a few studies have followed immunized bats for longer time horizons: in Marburg‐immunized
<italic>Rousettus aegyptiacus</italic>
, antibody titres wane after inoculation and primary seroconversion, but subsequently re‐challenged seronegative bats nonetheless remain protected from reinfection and primed to remount rapid antibody responses (Paweska et al.,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
). The underlying immunological mechanisms for these responses remain unclear, but at least two pteropodid species were recently shown to maintain a constitutively expressed interferon complex (Zhou et al.,
<xref rid="jane12985-bib-0096" ref-type="ref">2016</xref>
), offering an innate, non‐antibody‐mediated pathway for viral control.</p>
<p>The island of Madagascar is home to three endemic Old World Fruit Bat species,
<italic>Pteropus rufus, Eidolon dupreanum</italic>
and
<italic>Rousettus madagascariensis,</italic>
with respective Asian (Almeida, Giannini, Simmons, & Helgen,
<xref rid="jane12985-bib-0001" ref-type="ref">2014</xref>
)
<italic>,</italic>
African (Shi et al.,
<xref rid="jane12985-bib-0083" ref-type="ref">2014</xref>
) and pan‐Indian Ocean (Goodman, Chan, Nowak, & Yoder,
<xref rid="jane12985-bib-0029" ref-type="ref">2010</xref>
) origins. All three species are widely consumed across the island as bushmeat (Golden, Bonds, Brashares, Rodolph Rasolofoniaina, & Kremen,
<xref rid="jane12985-bib-0026" ref-type="ref">2014</xref>
; Jenkins & Racey,
<xref rid="jane12985-bib-0043" ref-type="ref">2008</xref>
; Jenkins et al.,
<xref rid="jane12985-bib-0042" ref-type="ref">2011</xref>
), offering abundant opportunities for zoonotic transmission. Previous work reports serological evidence of Hendra‐ and Nipah‐related henipavirus spp. in
<italic>P. rufus</italic>
and
<italic>E. dupreanum</italic>
bats, as well as Tioman spp. virus in
<italic>R. madagascariensis</italic>
(Iehlé et al.,
<xref rid="jane12985-bib-0041" ref-type="ref">2007</xref>
). To date, no filoviruses have been investigated in any Malagasy bat, although one early serosurvey of human communities in Madagascar highlights seropositivity to Ebola‐related filoviruses (but not Marburg) in several localities across the island (Mathiot, Fontenille, Georges, & Coulanges,
<xref rid="jane12985-bib-0051" ref-type="ref">1989</xref>
). Recent modelling work has classed Madagascar within the “zoonotic niche” for both Ebola (Pigott et al.,
<xref rid="jane12985-bib-0071" ref-type="ref">2014</xref>
) and Marburg virus disease (Pigott et al.,
<xref rid="jane12985-bib-0072" ref-type="ref">2015</xref>
). These intriguing preliminary findings, combined with the extreme virulence and heavy public health cost of known bat‐to‐human henipa‐ and filovirus emergence events, motivated our study. We aimed to (a) document the extent of henipa‐ and filovirus spp. exposure among endemic Malagasy fruit bats, (b) explore patterns of seasonality in seroprevalence and serostatus in these populations and (c) compare mechanistic hypotheses for possible transmission dynamics underlying these data.</p>
</sec>
<sec id="jane12985-sec-0002">
<label>2</label>
<title>MATERIALS AND METHODS</title>
<sec id="jane12985-sec-0003">
<label>2.1</label>
<title>Bat capture and sampling</title>
<p>We captured 740 Madagascar fruit bats (314
<italic>Eidolon dupreanum</italic>
, 201
<italic>Pteropus rufus,</italic>
225
<italic>Rousettus madagascariensis</italic>
) across four sites in 18 discrete sampling events between November 2013 and January 2016 using methods that have been previously described (Brook et al.,
<xref rid="jane12985-bib-0010" ref-type="ref">2015</xref>
; Brook, Ranaivoson, Andriafidison, et al.,
<xref rid="jane12985-bib-0013" ref-type="ref">2019</xref>
). Captured animals were measured, weighed, sexed, thumb‐tagged and categorized by broad age/reproductive class. Between 0.03 and 1 ml of blood (no more than 1% of the animal's body mass) was collected from the brachial vein of each captured bat, centrifuged and stored separately as serum and pelleted blood cell. A subset of adult bats (85
<italic>P. rufus</italic>
and 90
<italic>E. dupreanum</italic>
) were processed under anaesthesia using a halothane vaporizer (4% halothane in oxygen at 0.7 L/min), and a lower left premolar tooth was extracted from these individuals for ageing purposes.
<italic>R. madagascariensis</italic>
bats were deemed too small for tooth extraction and therefore not subject to anaesthesia or ageing.</p>
<p>Additionally, researchers at the Institut Pasteur of Madagascar (IPM) captured, sexed, weighed, measured and serum‐sampled 440
<italic>E. dupreanum</italic>
bats between November 2005 and July 2007 (Iehlé et al.,
<xref rid="jane12985-bib-0041" ref-type="ref">2007</xref>
). We included measurement and serostatus data from these capture events in our Aim 1 and 2 analyses.</p>
</sec>
<sec id="jane12985-sec-0004">
<label>2.2</label>
<title>Ethics statement</title>
<p>All field work was carried out in accordance with guidelines posted by the American Veterinary Medical Association and under permit authorization from the Madagascar Ministry for Water and Forests (sampling permit #: 166/14/MEF/SG/DGF/DCB.SAP/SCB, 75/15/MEEMEF/SG/DGF/DCB.SAP/SCB, 92/16/MEEMEF/SG/DGF/DCB.SAP/SCB, 259/16/MEEF/SG/DGF/DSAP/SCB). All field protocols employed were pre‐approved by the Princeton University Institutional Animal Care and Use Committee (IACUC Protocol # 1926), and every effort was made to minimize discomfort to animals.</p>
</sec>
<sec id="jane12985-sec-0005">
<label>2.3</label>
<title>Sample processing and serological analysis</title>
<sec id="jane12985-sec-0006">
<label>2.3.1</label>
<title>Ageing</title>
<p>Tooth samples were exported and processed histologically at Matson's Laboratory (Missoula, Montana), following previously published protocols (Cool, Bennet, & Romaniuk,
<xref rid="jane12985-bib-0019" ref-type="ref">1994</xref>
; Divljan, Parry‐Jones, & Wardle,
<xref rid="jane12985-bib-0020" ref-type="ref">2006</xref>
), to yield integer estimates of age via
<italic>cementum annuli</italic>
counts. Because fruit bats birth in annual pulses (Peel et al.,
<xref rid="jane12985-bib-0069" ref-type="ref">2014</xref>
), we obtained more precise estimates of age by assuming a standard birth date for captured bats of a given species and adding the duration of time between capture and birth date to the integer estimate of age via
<italic>cementum annuli</italic>
. We computed ages for pups <1 year in the same way. In Madagascar, births are staggered among the three species, with the largest,
<italic>P. rufus,</italic>
birthing first, followed by
<italic>E. duprenaum</italic>
and
<italic>R. madagascariensis</italic>
(Andrianaivoarivelo,
<xref rid="jane12985-bib-0004" ref-type="ref">2015</xref>
)
<italic>,</italic>
though the latter were not aged in our study. Assuming respective birth dates of October 1 and November 1, we computed age to the nearest day for 142
<italic>P. rufus</italic>
and 109
<italic>E. dupreanum</italic>
.</p>
</sec>
<sec id="jane12985-sec-0007">
<label>2.3.2</label>
<title>Luminex‐based serological assay</title>
<p>Serum samples were screened for antibodies against henipavirus and filovirus soluble glycoproteins (Hendra: HeV sG, HeV sF; Nipah: NiV sG, NiV sF; Cedar: CedPV sG, CedV sF; Ebola: EBOV sGp; and Marburg: MARV sGp) using a Luminex‐based, Bio‐Plex® (Bio‐Rad, Inc.) assay that has been previously described (Bossart et al.,
<xref rid="jane12985-bib-0009" ref-type="ref">2007</xref>
; Chowdhury et al.,
<xref rid="jane12985-bib-0018" ref-type="ref">2014</xref>
; Hayman et al.,
<xref rid="jane12985-bib-0038" ref-type="ref">2008</xref>
; Peel et al.,
<xref rid="jane12985-bib-0066" ref-type="ref">2012</xref>
,
<xref rid="jane12985-bib-0068" ref-type="ref">2013</xref>
) (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S1</xref>
).</p>
<p>For the 2005–2007 Institut Pasteur subset of data, samples were screened for antibodies to NiV and HeV henipaviruses by standard enzyme‐linked immunosorbent assay (ELISA). Only serostatus (no raw titres) were made available, and we accepted the original researchers' classification of individuals as seropositive or seronegative.</p>
</sec>
</sec>
<sec id="jane12985-sec-0008">
<label>2.4</label>
<title>Quantitative analysis</title>
<sec id="jane12985-sec-0009">
<label>2.4.1</label>
<title>Aim 1: Henipa‐ and filovirus spp. exposure</title>
<p>This investigation represents the first application of our Luminex assay to serum samples collected from Madagascar bats, meaning that no definitive positive or negative controls for any species examined were available. Instead, following previously published methods (Burroughs et al.,
<xref rid="jane12985-bib-0015" ref-type="ref">2016</xref>
; Peel et al.,
<xref rid="jane12985-bib-0068" ref-type="ref">2013</xref>
; Trang et al.,
<xref rid="jane12985-bib-0087" ref-type="ref">2015</xref>
), we fit finite mixture models to the natural log of the mean fluorescence intensity (MFI) data to approximate a cut‐off MFI value (and corresponding upper and lower confidence interval) for seropositivity for each species/antigen combination (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
; Tables
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S1</xref>
and
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
; Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S1</xref>
).</p>
<p>Because our antigens were not originally obtained from Madagascar fruit bats, we required that each species/antigen data subset meet several additional criteria before further statistical analysis. For each data subset, we required that MFI values either (a) show correlation with an
<italic>R</italic>
<sup>2</sup>
 > 40% for associated soluble glycoproteins within the same viral genus (an indicator of reliable cross‐reactivity among antibodies to related viruses; Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
), (b) have values >1,000 MFI for some individual(s) assayed (Gombos et al.,
<xref rid="jane12985-bib-0027" ref-type="ref">2013</xref>
) or (c) result in >10% seroprevalence based on the mixture model cut‐off (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
). We summarize all serological data, in conjunction with age and sampling data in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
.</p>
</sec>
<sec id="jane12985-sec-0010">
<label>2.4.2</label>
<title>Aim 2: Seasonality in seroprevalence and serostatus</title>
<p>We next aimed to identify any seasonal trends in population‐level seroprevalence or individual serostatus for antigens which met the criteria outlined under Aim 1. We restricted these analyses to adult‐sized bats over 1 year in age from our own data, combined with
<italic>E. dupreanum</italic>
data from IPM (Iehlé et al.,
<xref rid="jane12985-bib-0041" ref-type="ref">2007</xref>
). We analysed each species/antigen subset of our data separately for a total of seven independent analyses (see
<xref rid="jane12985-sec-0003" ref-type="sec">Results</xref>
, Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
). For each data subset, we fit a separate generalized additive model (GAM) in the binomial family, using a matrix of seropositive/seronegative counts by sampling event as the response variable and mid‐date of sampling event as the smoothing predictor, with a random effect of site and year. All GAMs were fit via REML estimation, and we fixed the number of smoothing knots (
<italic>k</italic>
) at seven, as recommended by the package author (Wood,
<xref rid="jane12985-bib-0094" ref-type="ref">2001</xref>
).
<italic>R. madagascariensis</italic>
data were too sparse to permit model convergence at
<italic>k</italic>
 = 7; in these cases, we fixed
<italic>k</italic>
at 6.</p>
<table-wrap id="jane12985-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Seroprevalence to henipa‐ and filovirus antigens in Madagascar fruit bats
<xref ref-type="fn" rid="jane12985-note-0002">a</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" rowspan="2" valign="top" colspan="1">Species</th>
<th align="left" rowspan="2" valign="top" colspan="1">Virus</th>
<th align="left" rowspan="2" valign="top" colspan="1">
<italic>N</italic>
</th>
<th align="left" rowspan="2" valign="top" colspan="1">Viral antigen assayed</th>
<th rowspan="2" valign="top" colspan="1">Max MFI</th>
<th rowspan="2" valign="top" colspan="1">MFI cut‐off mean [lci
<xref ref-type="fn" rid="jane12985-note-0003">b</xref>
, uci
<xref ref-type="fn" rid="jane12985-note-0004">c</xref>
]</th>
<th colspan="3" style="border-bottom:solid 1px #000000" valign="top" rowspan="1">Seroprevalence % (N pos)</th>
</tr>
<tr style="border-bottom:solid 1px #000000">
<th valign="top" rowspan="1" colspan="1">At mean cut‐off</th>
<th valign="top" rowspan="1" colspan="1">At lci
<xref ref-type="fn" rid="jane12985-note-0003">b</xref>
cut‐off</th>
<th valign="top" rowspan="1" colspan="1">At uci
<xref ref-type="fn" rid="jane12985-note-0004">c</xref>
cut‐off</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>
<bold>Eidolon dupreanum</bold>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Cedar</td>
<td align="left" rowspan="1" colspan="1">314</td>
<td align="left" rowspan="1" colspan="1">CedPV‐G</td>
<td align="char" char="." rowspan="1" colspan="1">2436.3</td>
<td align="char" char="[" rowspan="1" colspan="1">166.46 [95.68, 374.55]</td>
<td align="char" char="(" rowspan="1" colspan="1">0.64 (2)</td>
<td align="char" char="(" rowspan="1" colspan="1">1.27 (4)</td>
<td align="char" char="(" rowspan="1" colspan="1">0.64 (2)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Hendra/Nipah</bold>
<xref ref-type="fn" rid="jane12985-note-0005">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>314</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>NiV‐G</bold>
</td>
<td align="char" char="." rowspan="1" colspan="1">
<bold>6553</bold>
</td>
<td align="char" char="[" rowspan="1" colspan="1">
<bold>402.90 [225.50, 1506.48]</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>24.2 (76)</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>32.17 (101)</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>10.19 (32)</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">
<italic>
<bold>Pteropus rufus</bold>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Hendra/Nipah</td>
<td align="left" rowspan="1" colspan="1">201</td>
<td align="left" rowspan="1" colspan="1">HeV‐G</td>
<td align="char" char="." rowspan="1" colspan="1">439.3</td>
<td align="char" char="[" rowspan="1" colspan="1">67.55 [61.29, 77.58]</td>
<td align="char" char="(" rowspan="1" colspan="1">5.47 (11)</td>
<td align="char" char="(" rowspan="1" colspan="1">6.97 (14)</td>
<td align="char" char="(" rowspan="1" colspan="1">3.48 (7)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Ebola</bold>
<xref ref-type="fn" rid="jane12985-note-0005">d</xref>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>201</bold>
</td>
<td align="left" rowspan="1" colspan="1">
<bold>EBOV‐Gp</bold>
</td>
<td align="char" char="." rowspan="1" colspan="1">
<bold>697.5</bold>
</td>
<td align="char" char="[" rowspan="1" colspan="1">
<bold>110.49 [90.58, 284.02]</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>10.4 (21)</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>12.94 (26)</bold>
</td>
<td align="char" char="(" rowspan="1" colspan="1">
<bold>4.48 (9)</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">
<italic>Rousettus madagascariensis</italic>
</td>
<td align="left" rowspan="1" colspan="1">Cedar</td>
<td align="left" rowspan="1" colspan="1">225</td>
<td align="left" rowspan="1" colspan="1">CedV‐F</td>
<td align="char" char="." rowspan="1" colspan="1">623.8</td>
<td align="char" char="[" rowspan="1" colspan="1">75.75 [70.17, 84.00]</td>
<td align="char" char="(" rowspan="1" colspan="1">8.44 (19)</td>
<td align="char" char="(" rowspan="1" colspan="1">9.33 (21)</td>
<td align="char" char="(" rowspan="1" colspan="1">7.11 (16)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hendra/Nipah</td>
<td align="left" rowspan="1" colspan="1">225</td>
<td align="left" rowspan="1" colspan="1">HeV‐F</td>
<td align="char" char="." rowspan="1" colspan="1">437.3</td>
<td align="char" char="[" rowspan="1" colspan="1">77.46 [68.75, 94.77]</td>
<td align="char" char="(" rowspan="1" colspan="1">7.56 (17)</td>
<td align="char" char="(" rowspan="1" colspan="1">8.44 (19)</td>
<td align="char" char="(" rowspan="1" colspan="1">6.67 (15)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ebola</td>
<td align="left" rowspan="1" colspan="1">225</td>
<td align="left" rowspan="1" colspan="1">EBOV‐Gp</td>
<td align="char" char="." rowspan="1" colspan="1">5716</td>
<td align="char" char="[" rowspan="1" colspan="1">457.76 [358.52, 552.07]</td>
<td align="char" char="(" rowspan="1" colspan="1">8.44 (19)</td>
<td align="char" char="(" rowspan="1" colspan="1">12 (27)</td>
<td align="char" char="(" rowspan="1" colspan="1">6.67 (15)</td>
</tr>
</tbody>
</table>
<table-wrap-foot id="jane12985-ntgp-0002">
<fn id="jane12985-note-0002">
<label>a</label>
<p>Seroprevalence here indicates evidence of pathogen exposure found in current (2013–2016) field studies; historical data from 2005 to 2007 is not included here. Results from species–virus combinations for which no seropositives were recovered (
<italic>E. dupreanum</italic>
: Marburg/Ebola,
<italic>P. rufus:</italic>
Cedar/Marburg
<italic>, R. madagascariensis:</italic>
Marburg) are shown in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
.</p>
</fn>
<fn id="jane12985-note-0003">
<label>b</label>
<p>lci = lower confidence interval threshold for the MFI cut‐off for seropositivity. This is a more lenient threshold than the mean.</p>
</fn>
<fn id="jane12985-note-0004">
<label>c</label>
<p>uci = upper confidence interval threshold for the MFI cut‐off for seropositivity. This is a stricter threshold than the mean.</p>
</fn>
<fn id="jane12985-note-0005">
<label>d</label>
<p>Of these antigen/species combinations shown here, two (in bold) met more restrictive criteria for age–seroprevalence analyses. We report only results for NiV‐G in
<italic>E. dupreanum</italic>
in the main text of the manuscript.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<p>Once each model was fit, we used the predict.gam() function to obtain a predicted estimate of seroprevalence by sampling event, bounded by an upper and lower 95% confidence interval. We list the basic structural forms of all GAMs considered in Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
and summarize outputs from fitted binomial GAMs in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
(Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
).</p>
<p>We next reformatted our data to examine seasonality within a calendar year, independent of year of study. We used binomial GAMs to test for seasonality in serostatus for adult bats of both sexes and all three species. We set a matrix of seropositive by seronegative counts per Julian day‐of‐year as our response variable, as computed from mean, lower and upper MFI thresholds for seropositivity, and modelled antigen type as the fixed predictor and day‐of‐year as the smoothing predictor. We used a “by” term to enable a separate smoother for each sex. All models included random effects of capture site and year. Because we investigated broad seasonal fluctuations, we restricted the number of smoothing knots (
<italic>k</italic>
) to four and used a cyclic cubic regression spline which forces the smoother to transition continuously from the end of 1 year to the beginning of the next (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
; Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
; Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
).</p>
<p>Additionally, 17 unique
<italic>E. dupreanum</italic>
individuals (three female, 14 male) were captured twice across the duration of our study. Of the two
<italic>E. dupreanum</italic>
antigens that met criteria for statistical analysis (see
<xref rid="jane12985-sec-0003" ref-type="sec">Results</xref>
, Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
), only anti‐NiV‐G titres demonstrated substantial dynamism among recaptures. Data were too few for meaningful statistical analysis, but we nonetheless interpreted results anecdotally (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
).</p>
<p>Finally, we used Gaussian GAMs to test for seasonality in mass:forearm residual for adult bats within a given year. The mass:forearm residual gives a crude measure of body condition by which to compare bat “health” within a given sex and species. Bats above the mass:forearm length regression line are “heavier” and those below the line “lighter” than predicted, suggestive of over‐ and under‐nourished conditions—though we caution that we did not validate this inference by comparing measured “mass” with quantification of body lipid content (Pearce, O'Shea, & Wunder,
<xref rid="jane12985-bib-0065" ref-type="ref">2008</xref>
).</p>
<p>We first established a standardized mass:forearm residual for all adult bats in our dataset by (a) dividing the raw mass per individual by the mean mass of that particular species and sex, then (b) regressing standardized mass against forearm length and (c) calculating the residual from the species‐specific linear model (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S6</xref>
). We used “standard major axis” type 2 linear regression in this analysis since we anticipated variation and error in measurements for both
<italic>x</italic>
‐ and
<italic>y</italic>
‐axes (Legendre,
<xref rid="jane12985-bib-0047" ref-type="ref">2014</xref>
). We then modelled these data with standardized mass:forearm residual as the response variable and Julian day‐of‐year as the smoothing predictor, including random effects of site and year and a cyclic cubic regression spline (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
; Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S6</xref>
).</p>
</sec>
<sec id="jane12985-sec-0011">
<label>2.4.3</label>
<title>Aim 3: Comparing mechanistic hypotheses</title>
<p>Finally, to recover the mechanistic underpinnings of our data, we fit a series of epidemiological models, encompassing a suite of bat virus transmission hypotheses, to longitudinal NiV‐G age–seroprevalence data for
<italic>E. dupreanum</italic>
and to EBOV‐Gp seroprevalence for
<italic>P. rufus</italic>
. For this final research aim, analyses were restricted to the 109
<italic>E. dupreanum</italic>
and 142
<italic>P. rufus</italic>
samples for which we possessed age estimates; for the purposes of model‐fitting, we further subsampled age–seroprevalence data to include only those individuals captured at our longitudinally resampled Moramanga site. We evaluated each age–seroprevalence subsample for representativeness of the broader sampling event from which it was derived using bootstrapping techniques (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
) and ultimately fit models to serological data from 72 aged
<italic>E. dupreanum</italic>
and 123 aged
<italic>P. rufus</italic>
(Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
).</p>
<p>All models were constructed using discrete‐time, age‐structured, matrix modelling techniques for epidemics (Klepac & Caswell,
<xref rid="jane12985-bib-0045" ref-type="ref">2011</xref>
; Klepac et al.,
<xref rid="jane12985-bib-0046" ref-type="ref">2009</xref>
; Metcalf et al.,
<xref rid="jane12985-bib-0054" ref-type="ref">2012</xref>
), assuming frequency‐dependent transmission, homogeneous mixing and equilibrium structure across age classes (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). We considered variations on five discrete model structures: (a) MSIR, (b) MSRIR, (c) MSIRS, (d) MSIRN and (e) MSIRNR. In all cases, we modelled the “M” (maternally immune; Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
) and “R” (recovered) classes as seropositive. The (a) MSIR (maternally immune, susceptible, infectious, recovered) model represents a classic paradigm in the dynamics of transmission for many perfectly immunizing infections, offering a null hypothesis against which to compare other dynamical structures (Bjornstad, Finkenstadt, & Grenfell,
<xref rid="jane12985-bib-0006" ref-type="ref">2002</xref>
; Metcalf, Bjørnstad, Grenfell, & Andreasen,
<xref rid="jane12985-bib-0053" ref-type="ref">2009</xref>
; Metcalf et al.,
<xref rid="jane12985-bib-0054" ref-type="ref">2012</xref>
). The simplest extension, (b) MSRIR, allows bats to seroconvert directly into the R class without becoming demonstrably infectious, as has been shown in the experimental literature (Jones et al.,
<xref rid="jane12985-bib-0044" ref-type="ref">2015</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
). The (c) MSIRS model permits waning immunity and return of recovered individuals to susceptible status, offering one possible explanation for the intermittent pulses of bat viral excretion posited to underpin spillover events (Amman et al.,
<xref rid="jane12985-bib-0002" ref-type="ref">2012</xref>
; Plowright et al.,
<xref rid="jane12985-bib-0075" ref-type="ref">2011</xref>
,
<xref rid="jane12985-bib-0073" ref-type="ref">2015</xref>
,
<xref rid="jane12985-bib-0076" ref-type="ref">2016</xref>
). The (d) MSIRN model allows for antibody waning of seropositive bats from the R class into a seronegative but still immune class, “N,” which could represent either non‐antibody‐mediated immunity or sub‐seropositive antibody titres that still remain protective, again reflecting the experimental literature (Paweska et al.,
<xref rid="jane12985-bib-0064" ref-type="ref">2016</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
). The (e) MSIRNR model merely extends MSIRN to allow N‐class bats to return to seropositivity after re‐challenge and renewed contact with infectious individuals.</p>
<p>Other work has suggested that pulses in bat viral transmission may result from SILI‐like (susceptible, infectious, latent, infectious) within‐host dynamics. Optimization of a SILI model would require fine‐scale recapture data documenting live virus infection across individual bats sampled longitudinally; lacking this, we instead approximated longitudinal serological variation in MSIRN/MSIRNR model forms, which allow for dynamic antibody titres post‐initial seroconversion.</p>
<p>In all modelled epidemics, populations were jointly subjected to survival and epidemic transitions. Births were subsequently introduced into the population but restricted in duration to a 10‐week, species‐specific annual period. Births were distributed among the four or five epidemic states, according to parental effects: we assumed that S‐class bats of reproductive age (≥2 years) produced susceptible offspring, while I‐ and R‐class bats of reproductive age produced maternally immune offspring. We tested model forms both by which N‐class dams produced S (“matSus”)‐ and M‐class (“matAB”) offspring.</p>
<p>We controlled demographic rates under assumptions of stable age structure (annual adult survival = 0.793 for
<italic>E. dupreanum</italic>
and 0.511 for
<italic>P. rufus</italic>
; annual juvenile survival = 0.544; annual birth rate = 0.48 for both species; Brook, Ranaivoson, Andriafidison, et al.,
<xref rid="jane12985-bib-0013" ref-type="ref">2019</xref>
). In keeping with previously developed multi‐state matrix models for human diseases (Metcalf et al.,
<xref rid="jane12985-bib-0052" ref-type="ref">2011</xref>
,
<xref rid="jane12985-bib-0054" ref-type="ref">2012</xref>
; Wesolowski et al.,
<xref rid="jane12985-bib-0088" ref-type="ref">2016</xref>
), we modelled epidemic processes on a biweekly (14‐day) time‐scale, such that twenty‐six survival–epidemic transitions were permitted across a given year. In all cases, we assumed homogenous mixing across age classes and a constant transmission coefficient (β) across the duration of the time series (though the force of infection, λ, nonetheless cycled annually in conjunction with changes in the infectious population). We fixed the recovery rate from infection at one biweek
<sup>−1</sup>
, the average of rates approximated in the literature (Hayman,
<xref rid="jane12985-bib-0035" ref-type="ref">2015</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0063" ref-type="ref">2012</xref>
; Swanepoel et al.,
<xref rid="jane12985-bib-0085" ref-type="ref">1996</xref>
) and optimized all other epidemic parameters, depending on the chosen model structure, by minimizing the negative log‐likelihood of data of a specific age and biweek, given the model's output at that same age and time. For all models, we fit rates for waning of maternally inherited antibodies (ω) and transmission (β) held constant across age and time (Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
). For MSIRS, MSIRN and MSIRNR models, we additionally fit a waning antibody rate for individuals exiting the R class (σ); for MSRIR models, a rate of direct seroconversion from S to R (ρ); and for MSIRNR models, a rate of antibody boosting (γ), by which bats returned to R from N. For MSIRN/R models, we explored variations in model structure under which N‐class dams produced either maternally immune (‐matAB) or susceptible young (‐matSus). All seven models were re‐fit six different times: to NiV‐G
<italic>/E. dupreanum</italic>
and EBOV‐Gp/
<italic>P. rufus</italic>
data at all three MFI thresholds for seropositivity, to yield 42 distinct sets of parameter estimations.</p>
</sec>
</sec>
</sec>
<sec id="jane12985-sec-0012">
<label>3</label>
<title>RESULTS</title>
<sec id="jane12985-sec-0013">
<label>3.1</label>
<title>Aim 1: Henipa‐ and filovirus spp. exposure</title>
<p>In all, seven species/antigen combinations met criteria for further analysis, indicating the presence of reliable reactive antibodies to tested antigens in serum from species in question: NiV‐G and CedPV‐G in
<italic>E. dupreanum</italic>
, HeV‐F and EBOV‐Gp in
<italic>P. rufus</italic>
, and HeV‐F, CedPV‐G and EBOV‐Gp in
<italic>R. madagascariensis</italic>
(Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
and Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
). These Luminex results indicate that all three Madagascar fruit bat species demonstrated antibody reactivity to Hendra and/or Nipah‐related henipaviruses; the inclusion of
<italic>R. madagascariensis</italic>
represents an expansion on previous findings (Iehlé et al.,
<xref rid="jane12985-bib-0041" ref-type="ref">2007</xref>
; Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
). MFI values from the NiV‐G/HeV‐G and NiV‐F/HeV‐F Luminex assays were highly correlated (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S2</xref>
), suggesting cross‐reactivity against related Nipah/Hendra‐like henipavirus antigens. For each species, we selected the Nipah/Hendra‐like antigen that yielded the highest MFI per species for further ecological analysis: NiV‐G for
<italic>E. dupreanum</italic>
and HeV‐F for
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
(Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
).</p>
<p>Additionally, we document the first serological evidence of cross‐reactivity with a third henipavirus, Cedar virus, in
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
, although seroprevalences were low (anti‐CedPV‐G and anti‐CedV‐F seroprevalence = 1.27% and 9.33%, respectively). We also report the first serological evidence of filovirus exposure in any Madagascar wildlife. Samples from both
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
tested seropositive to Ebola (EBOV‐Gp) but not Marburg (MARV‐Gp) virus antigen, while all
<italic>E. dupreanum</italic>
samples assayed seronegative to EBOV‐Gp and MARV‐Gp. We compiled individual serostatus by all three MFI cut‐offs to compute seroprevalences for all species/antigen combinations across 33 discrete sampling events in our study (Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
).</p>
<p>Because ages were unavailable for
<italic>R. madagascariensis</italic>
, and seroprevalences were low for HeV‐F in
<italic>P. rufus</italic>
and CedPV‐G in
<italic>E. dupreanum</italic>
(6.97% and 1.27%, respectively), we restricted mechanistic modelling of age–seroprevalence trends (Aim 3) to NiV‐G in
<italic>E. dupreanum</italic>
and EBOV‐Gp in
<italic>P. rufus</italic>
data only. Due to concerns over the lack of specificity and validation in our assay for EBOV‐Gp in
<italic>P. rufus</italic>
(which met only one of our three criteria for analysis)
<italic>,</italic>
we ultimately reported results for these fits in the Supporting Information only and reserved the main text of our manuscript for modelling of anti‐NiV‐G in
<italic>E. dupreanum</italic>
data, which met all three of criteria for analysis. This Luminex has been previously validated on samples from the sister species
<italic>E. helvum</italic>
(Hayman et al.,
<xref rid="jane12985-bib-0038" ref-type="ref">2008</xref>
; Peel et al.,
<xref rid="jane12985-bib-0067" ref-type="ref">2018</xref>
).</p>
</sec>
<sec id="jane12985-sec-0014">
<label>3.2</label>
<title>Aim 2: Seasonality in seroprevalence and serostatus</title>
<p>Generalized additive modelling indicated significant seasonal trends for henipavirus seroprevalence (NiV‐G) in the
<italic>E. dupreanum</italic>
time series and for ebolavirus spp. seroprevalence (EBOV‐Gp) in the
<italic>P. rufus</italic>
time series (Figure 
<xref rid="jane12985-fig-0001" ref-type="fig">1</xref>
; Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
; Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
). Population‐level seroprevalences appeared to increase across the gestation period for
<italic>E. dupreanum</italic>
anti‐NiV‐G and
<italic>R. madagascariensis</italic>
anti‐EBOV‐Gp data. Seasonal patterns were clearest in the 2005–2007 Institut Pasteur de Madagascar (IPM) subset of the
<italic>E. dupreanum</italic>
anti‐NiV‐G data, demonstrating biannual peaks in seroprevalence at the height of the wet season and the end of gestation.</p>
<fig fig-type="Figure" xml:lang="en" id="jane12985-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Seasonality in seroprevalence. (a) Predicted NiV‐G seroprevalence by sampling date for
<italic>Eidolon dupreanum,</italic>
across range of historically sampled 2005–2007 data. The nutrient‐poor Madagascar dry season is highlighted in grey vertical shading and the species‐specific gestation period in yellow. Solid line and shaded 95% confidence intervals give the predicted seroprevalence from a significant binomial
<styled-content style="fixed-case" toggle="no">GAM</styled-content>
construction of seropositive vs. seronegative by sampling date with random effects silenced for visualization purposes only. Data (with 95% exact binomial confidence intervals) are shown as open shapes in the background; shape size is correlated with sample size (as indicated in the legend). Analyses are repeated across the date range of the authors' current studies in (b), (c) and (d) for NiV‐G in
<italic>E. dupreanum, </italic>
<styled-content style="fixed-case" toggle="no">EBOV</styled-content>
‐Gp in
<italic>Pteropus rufus</italic>
and
<styled-content style="fixed-case" toggle="no">EBOV</styled-content>
‐Gp in
<italic>R. madagascariensis,</italic>
respectively.
<styled-content style="fixed-case" toggle="no">GAM</styled-content>
constructions and results are summarized in Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
and Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
. Seasonal smoothers by date (incorporating random effects) are significant for
<italic>E. dupreanum</italic>
and
<italic>P. rufus</italic>
data (panels a–c). Seasonal trends in seroprevalence for other species/antigen combinations in Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
are summarized in Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S3</xref>
</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="JANE-88-1001-g001"></graphic>
</fig>
<p>Additional GAMs constructed using Julian day‐of‐year as a predictor indicated significant seasonality in seropositive status for female
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
(Figure 
<xref rid="jane12985-fig-0002" ref-type="fig">2</xref>
a–c; Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). Female
<italic>P. rufus</italic>
did not exhibit significant seasonality in serostatus, although the periodicity of the smoothing trend recovered from this model correlated with those from other species. Serostatus for certain antigens (NiV‐G in
<italic>E. dupreanum,</italic>
EBOV‐Gp in
<italic>P. rufus</italic>
and HeV‐F in
<italic>R. madagascariensis</italic>
) tracked reproduction, increasing across gestation for females (time‐lagged among the three species), then decreasing post‐birth and through lactation and weaning.</p>
<fig fig-type="Figure" xml:lang="en" id="jane12985-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Seasonality in seroprevalence and body mass:forearm residual. Seasonal seroprevalence by discrete antigen in (a) female
<italic>Eidolon dupreanum</italic>
, (b)
<italic>Pteropus rufus</italic>
and (c)
<italic>R. madagascariensis</italic>
bats. Seasonal mass:forearm residual in, respectively, male and female (d, g)
<italic>E. dupreanum</italic>
, (e, h)
<italic>P. rufus</italic>
and (f, i)
<italic>R. madagascariensis</italic>
bats. The species‐specific gestation period is highlighted in yellow shading on the female plots and the nutrient‐poor Madagascar dry season in grey shading on the male plots. Solid lines (pink = female; blue = male) show the predicted seroprevalence for each antigen (a–c) and the predicted mass:forearm residual (d–i) from
<styled-content style="fixed-case" toggle="no">GAM</styled-content>
s. Note that lines for seroprevalence for different antigens within a species (a–c) are indistinguishable; however, the top line for
<italic>E. dupreanum</italic>
(a) corresponds to anti‐NiV‐G seroprevalence, for
<italic>Pteropus rufus</italic>
(b) to anti‐
<styled-content style="fixed-case" toggle="no">EBOV</styled-content>
‐Gp seroprevalence and for
<italic>R. madagascariensis</italic>
(c) to anti‐HeV‐F seroprevalence. Data for raw seroprevalence per sampling event (with 95% exact binomial confidence intervals) are shown as open shapes in the background (shape type corresponds to antigen, as indicated in legend). Raw mass:forearm residual data are shown, by month, in the background for each sampled individual (open circles) in d–i. Note that
<italic>E. dupreanum</italic>
data are combined with 2005–2007 sampling data from Institut Pasteur de Madagascar. Full
<styled-content style="fixed-case" toggle="no">GAM</styled-content>
constructions are reported in Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
and results summarized in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
. The insignificant seasonal smoother for male serostatus and corresponding seroprevalence data are shown in Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="JANE-88-1001-g002"></graphic>
</fig>
<p>Male bats did not exhibit significant seasonality in seroprevalence at the population level (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S4</xref>
), though three of fourteen recaptured male and one of three recaptured female
<italic>E. dupreanum</italic>
demonstrated dynamic anti‐NiV‐G titres (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). Using the mean MFI cut‐off, one adult male bat (unknown age), originally captured at the end of the dry season and recaptured at the close of the subsequent wet season, had transitioned from seronegative to seropositive (titres increased by >800 MFI). A second adult male (unknown age), caught first in the middle of the wet season, showed titres elevated by >700 MFI when recaught at the onset of the dry season but tested seropositive in both samplings. A third adult male (aged ~8.75 years), caught first in the middle of the dry season, showed
<italic>decreased</italic>
titres by ~200 MFI upon recapture a few months later into the dry season. Finally, a lactating female bat (unknown age) showed decreased titres by ~700 MFI after weaning her pup prior to recapture.</p>
<p>Seasonal smoothers incorporated into GAMs predicting annual variation in mass:forearm residual were significant for females of all three species and for
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
males (but not for
<italic>E. duprenaum</italic>
males; Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S6</xref>
). As with serostatus, seasonal periodicity in mass:forearm residual tracked reproduction for females—increasing across gestation, then declining post‐birth and through lactation. For males, the seasonal smoother synchronously tracked the nutritional calendar: mass:forearm residual increased across Madagascar's fruit‐abundant wet season, then declined through the nutrient‐poor dry season. Female mass:forearm residuals were not corrected for pregnancy. The majority of female adult fruit bats give birth to one pup each year; Hayman et al. (
<xref rid="jane12985-bib-0037" ref-type="ref">2012</xref>
) report that 96% of adult‐age female
<italic>Eidolon helvum</italic>
give birth annually in Ghana. The gain in female mass:forearm residual across gestation exhibited in our data thus likely reflects a gain in foetal mass rather than improved body condition for the mother.</p>
<p>All told, these patterns suggest a significant seasonal component to serostatus for female Madagascar fruit bats, correlated with the reproductive calendar. Females are more likely to be seropositive during gestation (overlapping the dry Malagasy winter). No significant seasonal changes in male serostatus were observed in GAM‐analysed population‐level data; however, data from recaptured individuals suggest that antibody titres in male bats declined subtly across the dry season and increased again throughout the wet season when male bats were at peak body mass.</p>
</sec>
<sec id="jane12985-sec-0015">
<label>3.3</label>
<title>Aim 3: Comparing mechanistic hypotheses</title>
<p>Teeth were processed histologically to yield integer estimates of fruit bat age (see
<xref rid="jane12985-sec-0002" ref-type="sec">Materials and Methods</xref>
), producing species‐specific age–frequency distributions for
<italic>E. dupreanum</italic>
and
<italic>P. rufus</italic>
(Figure 
<xref rid="jane12985-fig-0003" ref-type="fig">3</xref>
). Adult mortality rates derived from exponential models fit to
<italic>E. dupreanum</italic>
data are compatible with assumptions of stable population structure, but age–frequencies recovered for
<italic>P. rufus</italic>
indicate that the species is likely in serious population decline. As such, we adopted juvenile mortality rates from
<italic>E. dupreanum</italic>
for epidemiological modelling of
<italic>P. rufus</italic>
data (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). We combined age data with serological data amassed under Aim 1 to develop age–seroprevalence curves for NiV‐G in
<italic>E. dupreanum</italic>
and EBOV‐Gp in
<italic>P. rufus</italic>
(Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="jane12985-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>
<italic>Ageing Madagascar fruit bats via</italic>
cementum annuli. (a) Age–frequency distribution generated from
<italic>cementum annuli</italic>
counts of extracted
<italic>Eidolon dupreanum</italic>
teeth. Histogram is binned by year, with 95% exact binomial confidence intervals shown as dotted lines. The red curve is the predicted age–frequency distribution generated from the fit of a simple exponential model to age distribution >6 months, incorporating an annual adult survival rate of 0.793 and a juvenile annual survival rate of 0.544 (determined using Leslie matrix techniques to maintain a stable age distribution and constant population size; Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). Translucent shading shows 95% confidence intervals of the exponential fit by standard error. (b) Age–frequency distribution from
<italic>cementum annuli</italic>
counts of extracted
<italic>Pteropus rufus</italic>
teeth, with a fitted exponential model (red line) and 95% confidence intervals (red shading), incorporating an annual adult survival rate of 0.511 and a juvenile survival rate of 0.544 (constant population size was impossible for
<italic>P. rufus,</italic>
so we adopted the same rate as for
<italic>E. dupreanum;</italic>
Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
). (c) Stained
<italic>cementum annuli</italic>
from a 14‐year‐old
<italic>E. dupreanum</italic>
sample. (d) Stained
<italic>cementum annuli</italic>
from a 2‐year‐old
<italic>P. rufus</italic>
</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="JANE-88-1001-g003"></graphic>
</fig>
<p>Composite age–seroprevalence data for
<italic>E. dupreanum</italic>
NiV‐G demonstrated high seroprevalence in neonates, suggestive of inherited maternal antibodies (Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
; Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
). This neonatal seroprevalence peak decreased rapidly following presumed waning of maternal immunity, then increased across early life, before tapering off once more in later age classes (Figure 
<xref rid="jane12985-fig-0004" ref-type="fig">4</xref>
). When examined longitudinally, data demonstrated a decay in neonatal seroprevalence across the year, as pups' maternally inherited immunity waned following the birth pulse (Supporting Information Figures
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S8</xref>
and
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S9</xref>
). The neonatal decline and early age increase in seroprevalence in our data replicates patterns previously reported for NiV‐G exposure in African
<italic>E. helvum</italic>
(Peel et al.,
<xref rid="jane12985-bib-0067" ref-type="ref">2018</xref>
), but our observed late‐age seroprevalence decline contrasts with the late‐age plateau of anti‐NiV‐G seroprevalence in the African system. We recovered similar age–seroprevalence patterns of EBOV‐Gp exposure in
<italic>P. rufus</italic>
(Supporting Information Text
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S5</xref>
; Figures
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S10–S12</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="jane12985-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Model fits to age–seroprevalence data. Age–seroprevalence curves for
<italic>Eidolon dupreanum</italic>
NiV‐G, using the mean
<styled-content style="fixed-case" toggle="no">MFI</styled-content>
cut‐off for seropositive status. Seroprevalence data (left
<italic>y</italic>
‐axis) are shown as open circles, binned for 0–0.5 years, 0.5–1 years, 1–1.5 years, 1.5–3 years, and for 3‐year increments increasing after that. Shape size corresponds to the number of bats sampled per bin (respective sample sizes, by age bin, are as follows:
<italic>N</italic>
 = 10, 2, 20, 9, 18, 5, 7, 1). Solid purple lines indicate model outputs, and translucent shading highlights the 95% confidence interval derived from the Hessian matrix of the maximum likelihood of each model fit to the data. Panels are stratified into columns by model structure: (a)
<styled-content style="fixed-case" toggle="no">MSIR</styled-content>
 = maternally immune, susceptible, infectious, recovered; (b)
<styled-content style="fixed-case" toggle="no">MSRIR</styled-content>
 = maternally immune, susceptible, recovered via direct seroconversion, infectious, recovered; (c)
<styled-content style="fixed-case" toggle="no">MSIRS</styled-content>
 = maternally immune, susceptible, infectious, recovered, susceptible; (d)
<styled-content style="fixed-case" toggle="no">MSIRN</styled-content>
 = maternally immune, susceptible, infectious, recovered, non‐antibody immune; (e)
<styled-content style="fixed-case" toggle="no">MSIRNR</styled-content>
 = maternally immune, susceptible, infectious, recovered, non‐antibody immune; recovered). All
<styled-content style="fixed-case" toggle="no">MSIRN</styled-content>
/R model outputs depicted assume that non‐antibody immune dams produce maternally immune‐class young. The right‐hand
<italic>y</italic>
‐axis (in navy) of each subplot shows Δ
<styled-content style="fixed-case" toggle="no">AIC</styled-content>
for each model fit, relative to all other models in the figure (navy diamonds). The
<styled-content style="fixed-case" toggle="no">MSIRN</styled-content>
model (d) offered the best fit to the data, corresponding to Δ
<styled-content style="fixed-case" toggle="no">AIC</styled-content>
 = 0. All parameter values, confidence intervals and raw
<styled-content style="fixed-case" toggle="no">AIC</styled-content>
scores for each model fit are reported in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
. Model fits including
<styled-content style="fixed-case" toggle="no">MSIRN</styled-content>
/R fits assuming N‐class mothers produce susceptible young are shown in Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S10</xref>
, along with fits to seroprevalence data for
<italic>P. rufus </italic>
<styled-content style="fixed-case" toggle="no">EBOV</styled-content>
‐Gp. Fits calculated using the lower and upper
<styled-content style="fixed-case" toggle="no">MFI</styled-content>
thresholds for seropositivity are shown in Supporting Information Figures
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S11</xref>
and
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S12</xref>
</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="JANE-88-1001-g004"></graphic>
</fig>
<p>We report composite age–seroprevalence data for
<italic>E. dupreanum</italic>
NiV‐G, combined with model outputs summarized across one age‐structured equilibrium year, in Figure 
<xref rid="jane12985-fig-0004" ref-type="fig">4</xref>
(Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S10</xref>
). The right‐hand panel in each subplot shows relative AIC within a given data subset; raw AIC scores are listed in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
. Compared to all other model structures, the MSIRN model most effectively recaptured data for both species under all putative MFI cut‐offs when assuming that N‐class mothers produced M‐class young (“matAB”). Results for model specifications in which N‐class mothers produced S‐class pups are additionally reported in Supporting Information Figures
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S10–S12</xref>
and Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
. Only MSIRN/R models effectively reproduced late‐age declines in seroprevalence (with MSIRNR performing too poorly in AIC comparison for true consideration as a best fit model), while MSIRS predicted a late‐age seroprevalence plateau.</p>
<p>Parameter estimates varied between the two best fit models: MSIRN‐matAB and MSIRS. No empirical measurements of bat virus transmission (against which to compare β estimates) are available in the literature, but MSIRN models fit to the mean MFI cut‐off for
<italic>E. dupreanum</italic>
NiV‐G recovered optimized values for the rate of waning maternal immunity, ω (0.12 biweek
<sup>−1</sup>
, corresponding to a maternal antibody duration of 4 months), and the rate of waning adult humoral immunity, σ (0.01 biweek
<sup>−1</sup>
, corresponding to an adult antibody duration of 4 years), within the range previously reported in the literature for African
<italic>E. helvum</italic>
(6 months for maternal immunity and 4 years for adult humoral immunity) (Epstein et al.,
<xref rid="jane12985-bib-0022" ref-type="ref">2013</xref>
; Peel et al.,
<xref rid="jane12985-bib-0067" ref-type="ref">2018</xref>
). MSIRS models produced considerably higher optimized parameter values, indicating shorter durations of maternal antibodies (2 weeks) and adult humoral immunity (2 years). Such rapid rates of antibody waning were essential to avoid increasing seroprevalence with age but, arguably, less biologically defensible. AIC values, parameter estimates and confidence intervals for models fit to all three MFI cut‐offs, as well as to the
<italic>P. rufus</italic>
EBOV‐Gp data, are summarized in Supporting Information Table
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S7</xref>
.</p>
</sec>
</sec>
<sec id="jane12985-sec-0016">
<label>4</label>
<title>DISCUSSION</title>
<p>We leveraged henipa‐ and filovirus serological data for three species of wild Malagasy fruit bat to evaluate support for contrasting mechanisms hypothesized to drive longitudinal, seasonal viral and immune dynamics in this system. Though Plowright et al. (
<xref rid="jane12985-bib-0076" ref-type="ref">2016</xref>
) cautioned that “inference from serology alone is unlikely to differentiate among…proposed epidemiological scenarios” for mechanisms underpinning population‐level patterns in bat virus data, the serological analysis methods employed here nonetheless narrow the range of plausible competing hypotheses considerably and simultaneously underscore critical knowledge gaps that could be addressed in future field studies. Our analysis of age‐structured serological data highlights several key insights: (a) we expand globally on the known range of bat hosts for henipaviruses and filoviruses, (b) we demonstrate seasonal patterns in population‐level seroprevalence and individual‐level serostatus for Malagasy fruit bats, concomitant with the reproductive calendar, and (3) we use mechanistic models to reveal the critical role of waning humoral immunity and the potential for alternative immune processes in governing serological patterns witnessed in our data.</p>
<p>We report many serological findings novel for the Madagascar ecosystem—including the first evidence of antibodies cross‐reactive with Cedar henipavirus (CedPV‐G:
<italic>E. dupreanum</italic>
and CedV‐F:
<italic>R. madagascariensis</italic>
) and Zaire ebolavirus antigens (
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
) in any wild Malagasy host. The documentation of bat antibodies cross‐reactive with Zaire ebolavirus (but not Marburg) antigen will interest the global public health community, as recent work classes Madagascar within the “zoonotic niche” of both Ebola (Pigott et al.,
<xref rid="jane12985-bib-0071" ref-type="ref">2014</xref>
; Schmidt et al.,
<xref rid="jane12985-bib-0080" ref-type="ref">2017</xref>
) and Marburg (Pigott et al.,
<xref rid="jane12985-bib-0072" ref-type="ref">2015</xref>
) filoviruses. Ironically, Madagascar's inclusion in these risk maps has been largely derived from the species distribution of
<italic>Eidolon dupreanum</italic>
(Han et al.,
<xref rid="jane12985-bib-0034" ref-type="ref">2016</xref>
; Pigott et al.,
<xref rid="jane12985-bib-0071" ref-type="ref">2014</xref>
)
<italic>,</italic>
the one Malagasy fruit bat for which we found no filovirus seropositive samples. This finding is not hugely surprising if we consider the relative rarity of Ebola seropositivity in
<italic>E. dupreanum</italic>
's sister taxon,
<italic>E. helvum</italic>
(Olival & Hayman,
<xref rid="jane12985-bib-0060" ref-type="ref">2014</xref>
)
<italic>,</italic>
which possesses a receptor‐level substitution that makes it refractory to Ebola infection (Ng et al.,
<xref rid="jane12985-bib-0058" ref-type="ref">2015</xref>
).</p>
<p>Given Madagascar's geographic isolation and the considerable phylogenetic distance separating its fruit bats from their nearest mainland relatives (Almeida et al.,
<xref rid="jane12985-bib-0001" ref-type="ref">2014</xref>
; Goodman et al.,
<xref rid="jane12985-bib-0029" ref-type="ref">2010</xref>
; Shi et al.,
<xref rid="jane12985-bib-0083" ref-type="ref">2014</xref>
), it seems likely that some of the seropositives recovered in this study result from cross‐reactivity of Malagasy bat antibodies to related, but distinct, antigens from those assayed here. To date, no henipaviruses or filoviruses have been identified (via live virus or RNA) in Madagascar. Detection and characterization of these viruses, together with description of the specificity, avidity and neutralization capacity of their antibodies, thus represents a critical research priority. The probable cross‐reactivity of Malagasy bat antibodies derived from different—and potentially novel—henipa‐ and filovirus antigens adds considerable uncertainty to our tabulation of MFI thresholds for seropositivity.</p>
<p>The greatest challenge to our dynamical inference is the possibility that seropositive samples do not signify true circulating virus within any of our three species. In laboratory trials, for example,
<italic>R. aegyptiacus</italic>
bats are known to seroconvert upon contact with inoculated individuals without ever becoming detectably infectious (Jones et al.,
<xref rid="jane12985-bib-0044" ref-type="ref">2015</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
). While we attempted to explore these dynamics within a single bat population using our MSRIR model, it is possible that focal viruses circulate in species distinct from those studied here, resulting in seropositive samples via dead‐end seroconversion from transient bat contact with an alternative reservoir. Although we cannot falsify this hypothesis, there are a few specifics of the Madagascar ecosystem that make such a scenario unlikely. In particular, all but one of the roosts surveyed in this study are largely single‐species conglomerations:
<italic>P. rufus</italic>
is a tree‐dwelling pteropodid which only roosts in single‐species assemblages, while
<italic>E. dupreanum</italic>
predominantly inhabits cracks and crevasses with conspecifics (Goodman,
<xref rid="jane12985-bib-0028" ref-type="ref">2011</xref>
). In cave environments,
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
occasionally co‐roost and roost with insectivorous bats (Cardiff, Ratrimomanarivo, Rembert, & Goodman,
<xref rid="jane12985-bib-0017" ref-type="ref">2009</xref>
), and all three fruit bat species contact at feeding sites. Nonetheless, given the relative rarity of these cross‐species contacts, it is unlikely that the high seroprevalence recovered in our data for anti‐NiV‐G antibodies in
<italic>E. dupreanum</italic>
(24.2%) and anti‐EBOV‐Gp antibodies in
<italic>P. rufus</italic>
(10.2%) result from dead‐end seroconversion alone. Previous work has investigated paramyxovirus spp. by PCR among insectivorous bats in Madagascar (Wilkinson et al.,
<xref rid="jane12985-bib-0090" ref-type="ref">2012</xref>
,
<xref rid="jane12985-bib-0089" ref-type="ref">2014</xref>
), and no henipavirus spp. have been identified, further supporting our assumptions that Malagasy fruit bats maintain their own endemic viral transmission cycles.</p>
<p>The lack of specificity in our serological assay also permits the possibility that a given bat population might maintain active infections with multiple serologically indistinguishable viruses of the same family, which are nonetheless epidemiologically unique; serum from Ebola‐infected humans, for example, will recognize all five known species of ebolavirus (MacNeil, Reed, & Rollin,
<xref rid="jane12985-bib-0050" ref-type="ref">2011</xref>
). An analysis like ours would consider serological evidence of any ebolavirus infection equivalently and model all seropositives as one population, though, in reality, each specimen could represent a distinct virus that maintains its own transmission cycle. Again, we cannot falsify this hypothesis, but recent molecular work supports a theory of single‐bat, single‐filovirus species interactions that runs counter to this claim (Ng et al.,
<xref rid="jane12985-bib-0058" ref-type="ref">2015</xref>
). We observed vast differences in the range of MFI titres recovered for each antigen among our three bat species, recovering high MFI titres for EBOV‐Gp in
<italic>R. madagascariensis</italic>
but only mid‐range titres in
<italic>P. rufus</italic>
(Table 
<xref rid="jane12985-tbl-0001" ref-type="table">1</xref>
). We also found that
<italic>E. dupreanum</italic>
serum reacted most strongly to the NiV‐G antigen, while
<italic>P. rufus</italic>
and
<italic>R. madagascariensis</italic>
serum bound more tightly to the HeV‐F antigen. Such differences could be attributable to cross‐species variation in the robustness of the humoral immune response or could indicate that our tested antigens more closely align with the wild antigen from which one species' antibodies were derived vs. that of another. This species‐specific variation in antibody binding to the same antigen challenge supports our decision to model each bat species–virus relationship independently, rather than allowing for significant inter‐species transmission to govern viral dynamics in this system.</p>
<p>Female serostatus for both henipavirus and filovirus spp. varied seasonally in our data, tracking reproduction for
<italic>E. dupreanum</italic>
and
<italic>R. madagascariensis</italic>
; female bats showed elevated antibody titres during reproduction, consistent with previous work (Baker et al.,
<xref rid="jane12985-bib-0005" ref-type="ref">2014</xref>
). This pattern suggests that viral control is one of many costs to which resource‐limited hosts must allocate energy and that male and female bats do so differently while facing distinct metabolic demands. While higher serotitres in reproductive females may seem counterintuitive if viewed as increased investment in immunity, recent research suggests that bats may control viral infections primarily via innate immune pathways (Zhou et al.,
<xref rid="jane12985-bib-0096" ref-type="ref">2016</xref>
), which are more metabolically costly than adaptive immunity (Raberg et al.,
<xref rid="jane12985-bib-0078" ref-type="ref">2002</xref>
). It is possible then that female bats trade off innate immunity with less metabolically demanding means of viral control (i.e. antibodies) during reproductive periods (Brook & Dobson,
<xref rid="jane12985-bib-0012" ref-type="ref">2015</xref>
) or that contact rates with infectious individuals are elevated during these seasons, resulting in antibody‐boosting effects (
<italic>e.g</italic>
. Paweska et al.,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
). Alternatively, elevated antibody titres might be independent of both exposure and metabolic trade‐offs; for example, production of the milk protein prolactin (typically elevated in late pregnancy and early lactation for mammals) is known to stimulate antibody production and facilitate maternal antibody transfer to young (Spangelo, Hall, Ross, & Goldstein,
<xref rid="jane12985-bib-0084" ref-type="ref">1987</xref>
).</p>
<p>Males, with fewer reproductive constraints, demonstrate no clear shifts in seasonal serostatus at the population level. Nonetheless, recapture data suggest that male antibody titres subtly track seasonal peaks and troughs in body mass, increasing during the fruit‐abundant wet season and declining during the dry season. Understanding seasonal trade‐offs in bat immune investment will be critical to enhancing our capacity for predicting seasonal pulses in viral transmission and informing possible zoonotic risk. Paired field studies, tracking viral excretion in conjunction with individual serostatus, will be essential to elucidating these dynamics in the future.</p>
<p>One of the largest questions arising from our investigation addresses the extent to which seropositive status correlates with infectiousness and immunity. Previous work highlights notable seasonality in spillover of both Hendra (Plowright et al.,
<xref rid="jane12985-bib-0073" ref-type="ref">2015</xref>
) and Ebola viruses (Schmidt et al.,
<xref rid="jane12985-bib-0080" ref-type="ref">2017</xref>
), although the mechanistic contributions of bat demography versus physiology remain unclear. In our models, the force of infection varied seasonally as a result of birth pulse‐mediated cycles in the infectious population (Supporting Information Figure
<xref rid="jane12985-sup-0001" ref-type="supplementary-material">S13</xref>
). Seasonal fluctuations in the magnitude of transmission—which could emerge from changes in host contact rates (Ferrari et al.,
<xref rid="jane12985-bib-0025" ref-type="ref">2008</xref>
; Grenfell, Bjornstad, & Finkenstadt,
<xref rid="jane12985-bib-0031" ref-type="ref">2002</xref>
), variation in within‐host immunological susceptibility (Dowell,
<xref rid="jane12985-bib-0021" ref-type="ref">2001</xref>
) or periodicity in viral shedding (Plowright et al.,
<xref rid="jane12985-bib-0073" ref-type="ref">2015</xref>
)—might further modulate seasonality in FOI. Several studies have highlighted the possible role that latent infections and viral recrudescence could play in bat virus transmission (Plowright et al.,
<xref rid="jane12985-bib-0076" ref-type="ref">2016</xref>
; Rahman et al.,
<xref rid="jane12985-bib-0079" ref-type="ref">2011</xref>
), but data from longitudinally resampled individuals were too few to allow for evaluation of any such model in our study. If future field work is able to demonstrate a role for seasonal transmission independent of demography, then the extent to which observed seasonality in serotitre could serve as a biomarker for an individual bat's infectiousness or susceptibility will be critical to resolving predictive power from cross‐sectional serological data.</p>
<p>We fit age‐structured, epidemic models to age–seroprevalence data and recovered strong support for models incorporating waning humoral immunity (i.e. MSIRS, MSIRN). This result is consistent with previous experimental findings, which demonstrate rapidly declining antibody titres in Marburg‐infected
<italic>R. aegyptiacus,</italic>
after inoculation and seroconversion (Paweska et al.,
<xref rid="jane12985-bib-0062" ref-type="ref">2015</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
). In our system, we can eliminate the hypothesis by which simple SIR dynamics incorporating a seasonal birth pulse might drive seasonality in viral shedding (Plowright et al.,
<xref rid="jane12985-bib-0076" ref-type="ref">2016</xref>
); such a model yields a pattern of monotonically increasing seroprevalence with age at odds with our data. In our analysis, the MSIRN model consistently outperformed all other tested models in fits to the data, when constructed such that N‐class dams produced M‐class offspring. We hypothesize that N‐class serotitres could be dynamic: N‐class females may exhibit seasonally elevated seropositive titres during reproduction (consistent with findings from Aim 2), then subsequently reduce titres to seronegative levels post‐gestation.</p>
<p>In a few cases in our analysis, the late‐age seroprevalence plateau predicted by the MSIRS model was statistically indistinguishable from the decline predicted by MSIRN, likely due to low sample sizes among older age individuals. More extensive sampling will be needed to parse whether the seroprevalence decline witnessed in our dataset holds. Recent modelling of age–seroprevalence trends for NiV‐G in
<italic>E. helvum</italic>
suggests that in the African system at least, seroprevalence plateaus at older ages, consistent with MSIRS dynamics (Peel et al.,
<xref rid="jane12985-bib-0067" ref-type="ref">2018</xref>
), though it is possible that late‐age susceptibles in this system were captured during low titre periods in seasonally dynamic N‐class individuals. With our present data, we are unable to adequately distinguish between MSIRS and MSIRN hypotheses—and unable to assess the plausibility of an MSILI hypothesis—but both the experimental literature and our findings under Aim 2 suggest that the dynamics of humoral immunity post‐initial seroconversion are likely more complex than a complete return to the susceptible class would assume. Field and laboratory studies tracking viral pathogenesis in individual bats are greatly needed to enable construction of accurate within‐host models and to reduce our reliance on difficult‐to‐obtain wildlife age data (Borremans, Hens, Beutels, Leirs, & Reijniers,
<xref rid="jane12985-bib-0008" ref-type="ref">2016</xref>
; Pepin et al.,
<xref rid="jane12985-bib-0070" ref-type="ref">2017</xref>
). More nuanced within‐host models might, for example, incorporate multiple classes for seropositive bats, differentiated by MFI value: R‐class individuals could have extremely high MFIs, while N‐class individuals might have titres at some intermediate level. At present, there is a trade‐off in selecting an MFI cut‐off conservative enough to limit potential for false positives and lenient enough not to miss true seropositives with dynamic titres. If, in the future, chiropteran immunologists successfully develop assays capable of distinguishing N‐class bats (e.g. some marker of cell‐mediated immunity), construction of age–N‐prevalence curves would be illuminating. We would expect MSIRN dynamics to yield patterns of monotonically increasing N‐prevalence with age, while MSIRS and MSIRNR assumptions would yield age–N‐prevalence plateaus.</p>
<p>Finally, we note that late‐age declines in seroprevalence can be recaptured under assumptions of infection‐induced mortality (
<italic>e.g</italic>
. Williams, Gouws, Wilkinson, & Karim,
<xref rid="jane12985-bib-0091" ref-type="ref">2001</xref>
). Preliminary experimentation with such model forms indicated that they were unable to more effectively recapture our data than those simpler model constructions investigated here, making this added complexity statistically unjustifiable. To date, no study has yet demonstrated any clinical signature of infection‐induced morbidity or mortality in bats naturally or experimentally infected with henipa‐ or filoviruses (Amman et al.,
<xref rid="jane12985-bib-0002" ref-type="ref">2012</xref>
; Jones et al.,
<xref rid="jane12985-bib-0044" ref-type="ref">2015</xref>
; Paweska et al.,
<xref rid="jane12985-bib-0063" ref-type="ref">2012</xref>
; Schuh, Amman, Jones, et al.,
<xref rid="jane12985-bib-0081" ref-type="ref">2017</xref>
; Schuh, Amman, Sealy, et al.,
<xref rid="jane12985-bib-0082" ref-type="ref">2017</xref>
; Williamson, Hooper, Selleck, Westbury, & Slocombe,
<xref rid="jane12985-bib-0093" ref-type="ref">2000</xref>
; Williamson et al.,
<xref rid="jane12985-bib-0092" ref-type="ref">1998</xref>
). Although we chose not to explore models of this form at this time, we caution that we should remain cognizant of these possible mechanisms in the future.</p>
<p>Although no known bat‐borne zoonoses have been documented in Madagascar, our work confirms a history of exposure to potentially zoonotic henipaviruses and filoviruses in several widespread, endemic fruit bat species. These species are widely consumed throughout Madagascar, and the majority of bat hunting—and corresponding bat–human contact—is concentrated during the resource‐poor winter, overlapping with bat gestation and elevated anti‐viral seroprevalence in our data (Golden et al.,
<xref rid="jane12985-bib-0026" ref-type="ref">2014</xref>
; Jenkins & Racey,
<xref rid="jane12985-bib-0043" ref-type="ref">2008</xref>
; Jenkins et al.,
<xref rid="jane12985-bib-0042" ref-type="ref">2011</xref>
). If seasonal changes in serostatus are revealed to have any bearing on viral transmission, insights from our modelling will offer a predictive framework to safeguard public health.</p>
</sec>
<sec id="jane12985-sec-0018">
<title>AUTHORS' CONTRIBUTIONS</title>
<p>C.E.B., J.‐M.H., C.J.M. and A.P.D. conceived the ideas and designed methodology. C.E.B. and H.C.R. collected the field data. C.C.B., A.A.C. and J.L.N.W. designed the Luminex serological platform. L.G. carried out the serological assays. C.E.B. analysed all data with input from A.J.P., C.J.M. and A.P.D. C.C.B., A.A.C., J.‐M.H. and J.L.N.W. contributed materials and reagents. C.E.B. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data" id="jane12985-sup-0001">
<caption>
<p> </p>
</caption>
<media xlink:href="JANE-88-1001-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="jane12985-sec-0017">
<title>ACKNOWLEDGEMENTS</title>
<p>We gratefully acknowledge Tony Fooks, Animal & Plant Health Agency, UK; the Institut Pasteur de Madagascar; and the Madagascar Institute for the Conservation of Tropical Ecosystems (MICET) for logistical support on this project. We thank Yan‐Ru Feng and Lianying Yan for producing and supplying the viral glycoprotein Bio‐Plex beads and control monoclonal antibodies and Lalaina Nomenjanahary, Yun‐Yun‐Li and Miora Rasolomanantsoa for help in the field. We thank Bryan Grenfell, Andrea Graham, and members of the Graham Lab at Princeton University for valuable commentaries on this work. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Department of Defense, the Department of the Navy or the Uniformed Services University of the Health Sciences, and no official endorsement should be inferred.</p>
</ack>
<sec sec-type="data-availability" id="jane12985-sec-0019">
<title>DATA ACCESSIBILITY</title>
<p>Raw data used in all analyses described in this manuscript are available for public access in the following Dryad Digital Repository:
<ext-link ext-link-type="uri" xlink:href="https://doi.org/10.5061/dryad.61tc3hd" specific-use="dataset is-supplemented-by">https://doi.org/10.5061/dryad.61tc3hd</ext-link>
(Brook, Ranaivoson, Broder, et al.,
<xref rid="jane12985-bib-0014" ref-type="ref">2019</xref>
).</p>
</sec>
<ref-list content-type="cited-references" id="jane12985-bibl-0001">
<title>REFERENCES</title>
<ref id="jane12985-bib-0001">
<mixed-citation publication-type="journal" id="jane12985-cit-0001">
<string-name>
<surname>Almeida</surname>
,
<given-names>F. C.</given-names>
</string-name>
,
<string-name>
<surname>Giannini</surname>
,
<given-names>N. P.</given-names>
</string-name>
,
<string-name>
<surname>Simmons</surname>
,
<given-names>N. B.</given-names>
</string-name>
, &
<string-name>
<surname>Helgen</surname>
,
<given-names>K. M.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Each flying fox on its own branch: A phylogenetic tree for
<italic>Pteropus</italic>
and related genera (Chiroptera: Pteropodidae)</article-title>
.
<source xml:lang="en">Molecular Phylogenetics and Evolution</source>
,
<volume>77</volume>
,
<fpage>83</fpage>
<lpage>95</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ympev.2014.03.009</pub-id>
<pub-id pub-id-type="pmid">24662680</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0002">
<mixed-citation publication-type="journal" id="jane12985-cit-0002">
<string-name>
<surname>Amman</surname>
,
<given-names>B. R.</given-names>
</string-name>
,
<string-name>
<surname>Carroll</surname>
,
<given-names>S. A.</given-names>
</string-name>
,
<string-name>
<surname>Reed</surname>
,
<given-names>Z. D.</given-names>
</string-name>
,
<string-name>
<surname>Sealy</surname>
,
<given-names>T. K.</given-names>
</string-name>
,
<string-name>
<surname>Balinandi</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Swanepoel</surname>
,
<given-names>R.</given-names>
</string-name>
, …
<string-name>
<surname>Towner</surname>
,
<given-names>J. S.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Seasonal pulses of Marburg virus circulation in juvenile
<italic>Rousettus aegyptiacus</italic>
bats coincide with periods of increased risk of human infection</article-title>
.
<source xml:lang="en">PLoS Pathogens</source>
,
<volume>8</volume>
(
<issue>10</issue>
),
<fpage>e1002877</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002877</pub-id>
<pub-id pub-id-type="pmid">23055920</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0003">
<mixed-citation publication-type="journal" id="jane12985-cit-0003">
<string-name>
<surname>Amman</surname>
,
<given-names>B. R.</given-names>
</string-name>
,
<string-name>
<surname>Jones</surname>
,
<given-names>M. E. B.</given-names>
</string-name>
,
<string-name>
<surname>Sealy</surname>
,
<given-names>T. K.</given-names>
</string-name>
,
<string-name>
<surname>Uebelhoer</surname>
,
<given-names>L. S.</given-names>
</string-name>
,
<string-name>
<surname>Schuh</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Bird</surname>
,
<given-names>B. H.</given-names>
</string-name>
, …
<string-name>
<surname>Towner</surname>
,
<given-names>J. S.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Oral shedding of Marburg virus in experimentally infected Egyptian Fruit Bats (
<italic>Rousettus aegyptiacus</italic>
)</article-title>
.
<source xml:lang="en">Journal of Wildlife Diseases</source>
,
<volume>51</volume>
(
<issue>1</issue>
),
<fpage>113</fpage>
<lpage>124</lpage>
.
<pub-id pub-id-type="doi">10.7589/2014-08-198</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0004">
<mixed-citation publication-type="miscellaneous" id="jane12985-cit-0004">
<string-name>
<surname>Andrianaivoarivelo</surname>
,
<given-names>R.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Personal communication</article-title>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0005">
<mixed-citation publication-type="journal" id="jane12985-cit-0005">
<string-name>
<surname>Baker</surname>
,
<given-names>K. S.</given-names>
</string-name>
,
<string-name>
<surname>Suu‐Ire</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Barr</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
,
<string-name>
<surname>Broder</surname>
,
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Horton</surname>
,
<given-names>D. L.</given-names>
</string-name>
, …
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Viral antibody dynamics in a chiropteran host</article-title>
.
<source xml:lang="en">Journal of Animal Ecology</source>
,
<volume>83</volume>
(
<issue>2</issue>
),
<fpage>415</fpage>
<lpage>428</lpage>
.
<pub-id pub-id-type="doi">10.1111/1365-2656.12153</pub-id>
<pub-id pub-id-type="pmid">24111634</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0006">
<mixed-citation publication-type="journal" id="jane12985-cit-0006">
<string-name>
<surname>Bjornstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Finkenstadt</surname>
,
<given-names>B. F.</given-names>
</string-name>
, &
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
(
<year>2002</year>
).
<article-title>Dynamics of measles epidemics: Estimating scaling of transmission rates using a times series SIR model</article-title>
.
<source xml:lang="en">Ecological Monographs</source>
,
<volume>72</volume>
(
<issue>2</issue>
),
<fpage>169</fpage>
<lpage>184</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0007">
<mixed-citation publication-type="journal" id="jane12985-cit-0007">
<string-name>
<surname>Blackwood</surname>
,
<given-names>J. C.</given-names>
</string-name>
,
<string-name>
<surname>Streicker</surname>
,
<given-names>D. G.</given-names>
</string-name>
,
<string-name>
<surname>Altizer</surname>
,
<given-names>S.</given-names>
</string-name>
, &
<string-name>
<surname>Rohani</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2013</year>
).
<article-title>Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats</article-title>
.
<source xml:lang="en">Proceedings of the National Academy of Sciences of the United States of America</source>
,
<volume>110</volume>
(
<issue>51</issue>
),
<fpage>20837</fpage>
<lpage>20842</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1308817110</pub-id>
<pub-id pub-id-type="pmid">24297874</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0008">
<mixed-citation publication-type="journal" id="jane12985-cit-0008">
<string-name>
<surname>Borremans</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Hens</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Beutels</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Leirs</surname>
,
<given-names>H.</given-names>
</string-name>
, &
<string-name>
<surname>Reijniers</surname>
,
<given-names>J.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Estimating time of infection using prior serological and individual information can greatly improve incidence estimation of human and wildlife infections</article-title>
.
<source xml:lang="en">PLoS Computational Biology</source>
,
<volume>12</volume>
(
<issue>5</issue>
),
<fpage>e1004882</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1004882</pub-id>
<pub-id pub-id-type="pmid">27177244</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0009">
<mixed-citation publication-type="journal" id="jane12985-cit-0009">
<string-name>
<surname>Bossart</surname>
,
<given-names>K. N.</given-names>
</string-name>
,
<string-name>
<surname>McEachern</surname>
,
<given-names>J. A.</given-names>
</string-name>
,
<string-name>
<surname>Hickey</surname>
,
<given-names>A. C.</given-names>
</string-name>
,
<string-name>
<surname>Choudhry</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Dimitrov</surname>
,
<given-names>D. S.</given-names>
</string-name>
,
<string-name>
<surname>Eaton</surname>
,
<given-names>B. T.</given-names>
</string-name>
, &
<string-name>
<surname>Wang</surname>
,
<given-names>L. F.</given-names>
</string-name>
(
<year>2007</year>
).
<article-title>Neutralization assays for differential henipavirus serology using Bio‐Plex protein array systems</article-title>
.
<source xml:lang="en">Journal of Virological Methods</source>
,
<volume>142</volume>
(
<issue>1–2</issue>
),
<fpage>29</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2007.01.003</pub-id>
<pub-id pub-id-type="pmid">17292974</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0010">
<mixed-citation publication-type="journal" id="jane12985-cit-0010">
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
,
<string-name>
<surname>Bai</surname>
,
<given-names>Y.</given-names>
</string-name>
,
<string-name>
<surname>Dobson</surname>
,
<given-names>A. P.</given-names>
</string-name>
,
<string-name>
<surname>Osikowicz</surname>
,
<given-names>L. M.</given-names>
</string-name>
,
<string-name>
<surname>Ranaivoson</surname>
,
<given-names>H. C.</given-names>
</string-name>
,
<string-name>
<surname>Zhu</surname>
,
<given-names>Q.</given-names>
</string-name>
, &
<string-name>
<surname>Kosoy</surname>
,
<given-names>M. Y.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>
<italic>Bartonella</italic>
spp. in fruit bats and blood‐feeding ectoparasites in Madagascar</article-title>
.
<source xml:lang="en">PLoS Neglected Tropical Diseases</source>
,
<volume>10</volume>
(
<issue>2</issue>
),
<fpage>e0003532</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0003532</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0011">
<mixed-citation publication-type="journal" id="jane12985-cit-0011">
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
,
<string-name>
<surname>Bai</surname>
,
<given-names>Y.</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
,
<given-names>E. O.</given-names>
</string-name>
,
<string-name>
<surname>Ranaivoson</surname>
,
<given-names>H. C.</given-names>
</string-name>
,
<string-name>
<surname>Shin</surname>
,
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Dobson</surname>
,
<given-names>A. P.</given-names>
</string-name>
, …
<string-name>
<surname>Dittmar</surname>
,
<given-names>K.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Elucidating transmission dynamics and host‐parasite‐vector relationships for rodent‐borne
<italic>Bartonella</italic>
spp. in Madagascar</article-title>
.
<source xml:lang="en">Epidemics</source>
,
<volume>20</volume>
,
<fpage>56</fpage>
<lpage>66</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.epidem.2017.03.004</pub-id>
<pub-id pub-id-type="pmid">28351673</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0012">
<mixed-citation publication-type="journal" id="jane12985-cit-0012">
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
, &
<string-name>
<surname>Dobson</surname>
,
<given-names>A. P.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Bats as ‘special’ reservoirs for emerging zoonotic pathogens</article-title>
.
<source xml:lang="en">Trends in Microbiology</source>
,
<volume>23</volume>
(
<issue>3</issue>
),
<fpage>172</fpage>
<lpage>180</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tim.2014.12.004</pub-id>
<pub-id pub-id-type="pmid">25572882</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0013">
<mixed-citation publication-type="journal" id="jane12985-cit-0013">
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
,
<string-name>
<surname>Ranaivoson</surname>
,
<given-names>H. C.</given-names>
</string-name>
,
<string-name>
<surname>Andriafidison</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Ralisata</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Razafimanahaka</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Héraud</surname>
,
<given-names>J. M.</given-names>
</string-name>
, …
<string-name>
<surname>Metcalf</surname>
,
<given-names>C. J. E.</given-names>
</string-name>
(
<year>2019</year>
).
<article-title>Population trends for two Malagasy fruit bats</article-title>
.
<source xml:lang="en">Biological Conservation</source>
,
<volume>234</volume>
,
<fpage>165</fpage>
<lpage>171</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biocon.2019.03.032</pub-id>
<pub-id pub-id-type="pmid">31937976</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0014">
<mixed-citation publication-type="journal" id="jane12985-cit-0014">
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
,
<string-name>
<surname>Ranaivoson</surname>
,
<given-names>H. C.</given-names>
</string-name>
,
<string-name>
<surname>Broder</surname>
,
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Cunningham</surname>
,
<given-names>A. C.</given-names>
</string-name>
,
<string-name>
<surname>Héraud</surname>
,
<given-names>J.‐M.</given-names>
</string-name>
,
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
, …
<string-name>
<surname>Dobson</surname>
,
<given-names>A. P.</given-names>
</string-name>
(
<year>2019</year>
).
<article-title>Data from: Disentangling serology to elucidate henipa‐ and filovirus transmission in Madagascar fruit bats</article-title>
.
<source xml:lang="en">Dryad Digital Repository</source>
,
<pub-id pub-id-type="doi">10.5061/dryad.61tc3hd</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0015">
<mixed-citation publication-type="journal" id="jane12985-cit-0015">
<string-name>
<surname>Burroughs</surname>
,
<given-names>A. L.</given-names>
</string-name>
,
<string-name>
<surname>Durr</surname>
,
<given-names>P. A.</given-names>
</string-name>
,
<string-name>
<surname>Boyd</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Graham</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>White</surname>
,
<given-names>J. R.</given-names>
</string-name>
,
<string-name>
<surname>Todd</surname>
,
<given-names>S.</given-names>
</string-name>
, …
<string-name>
<surname>Wang</surname>
,
<given-names>L. F.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Hendra virus infection dynamics in the grey‐headed flying fox (
<italic>Pteropus poliocephalus</italic>
) at the southern‐most extent of its range: Further evidence this species does not readily transmit the virus to horses</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>11</volume>
(
<issue>6</issue>
),
<fpage>1</fpage>
<lpage>18</lpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0155252</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0016">
<mixed-citation publication-type="journal" id="jane12985-cit-0016">
<string-name>
<surname>Calisher</surname>
,
<given-names>C. H.</given-names>
</string-name>
,
<string-name>
<surname>Childs</surname>
,
<given-names>J. E.</given-names>
</string-name>
,
<string-name>
<surname>Field</surname>
,
<given-names>H. E.</given-names>
</string-name>
,
<string-name>
<surname>Holmes</surname>
,
<given-names>K. V.</given-names>
</string-name>
, &
<string-name>
<surname>Schountz</surname>
,
<given-names>T.</given-names>
</string-name>
(
<year>2006</year>
).
<article-title>Bats: Important reservoir hosts of emerging viruses</article-title>
.
<source xml:lang="en">Clinical Microbiology Reviews</source>
,
<volume>19</volume>
(
<issue>3</issue>
),
<fpage>531</fpage>
<lpage>545</lpage>
.
<pub-id pub-id-type="doi">10.1128/CMR.00017-06</pub-id>
<pub-id pub-id-type="pmid">16847084</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0017">
<mixed-citation publication-type="journal" id="jane12985-cit-0017">
<string-name>
<surname>Cardiff</surname>
,
<given-names>S. G.</given-names>
</string-name>
,
<string-name>
<surname>Ratrimomanarivo</surname>
,
<given-names>F. H.</given-names>
</string-name>
,
<string-name>
<surname>Rembert</surname>
,
<given-names>G.</given-names>
</string-name>
, &
<string-name>
<surname>Goodman</surname>
,
<given-names>S. M.</given-names>
</string-name>
(
<year>2009</year>
).
<article-title>Hunting, disturbance and roost persistence of bats in caves at Ankarana, northern Madagascar</article-title>
.
<source xml:lang="en">African Journal of Ecology</source>
,
<volume>47</volume>
(
<issue>4</issue>
),
<fpage>640</fpage>
<lpage>649</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2028.2008.01015.x</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0018">
<mixed-citation publication-type="journal" id="jane12985-cit-0018">
<string-name>
<surname>Chowdhury</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Khan</surname>
,
<given-names>S. U.</given-names>
</string-name>
,
<string-name>
<surname>Crameri</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Epstein</surname>
,
<given-names>J. H.</given-names>
</string-name>
,
<string-name>
<surname>Broder</surname>
,
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Islam</surname>
,
<given-names>A.</given-names>
</string-name>
, …
<string-name>
<surname>Luby</surname>
,
<given-names>S. P.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh</article-title>
.
<source xml:lang="en">PLoS Neglected Tropical Diseases</source>
,
<volume>8</volume>
(
<issue>11</issue>
),
<fpage>e3302</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0003302</pub-id>
<pub-id pub-id-type="pmid">25412358</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0019">
<mixed-citation publication-type="journal" id="jane12985-cit-0019">
<string-name>
<surname>Cool</surname>
,
<given-names>S. M.</given-names>
</string-name>
,
<string-name>
<surname>Bennet</surname>
,
<given-names>M. B.</given-names>
</string-name>
, &
<string-name>
<surname>Romaniuk</surname>
,
<given-names>K.</given-names>
</string-name>
(
<year>1994</year>
).
<article-title>Age estimation of pteropodid bats (Megachiroptera) from hard tissue parameters</article-title>
.
<source xml:lang="en">Wildlife Research</source>
,
<volume>21</volume>
(
<issue>3</issue>
),
<fpage>353</fpage>
<pub-id pub-id-type="doi">10.1071/WR9940353</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0020">
<mixed-citation publication-type="journal" id="jane12985-cit-0020">
<string-name>
<surname>Divljan</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Parry‐Jones</surname>
,
<given-names>K.</given-names>
</string-name>
, &
<string-name>
<surname>Wardle</surname>
,
<given-names>G. M.</given-names>
</string-name>
(
<year>2006</year>
).
<article-title>Age determination in the grey‐headed flying fox</article-title>
.
<source xml:lang="en">Journal of Wildlife Management</source>
,
<volume>70</volume>
(
<issue>2</issue>
),
<fpage>607</fpage>
<lpage>611</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0021">
<mixed-citation publication-type="journal" id="jane12985-cit-0021">
<string-name>
<surname>Dowell</surname>
,
<given-names>S. F.</given-names>
</string-name>
(
<year>2001</year>
).
<article-title>Seasonal variations in host susceptibility and cycles of certain infectious diseases</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>7</volume>
(
<issue>3</issue>
),
<fpage>369</fpage>
<lpage>374</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid0703.017301</pub-id>
<pub-id pub-id-type="pmid">11384511</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0022">
<mixed-citation publication-type="journal" id="jane12985-cit-0022">
<string-name>
<surname>Epstein</surname>
,
<given-names>J. H.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
,
<given-names>M. L.</given-names>
</string-name>
,
<string-name>
<surname>Zambrana‐Torrelio</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Middleton</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Barr</surname>
,
<given-names>J. A.</given-names>
</string-name>
,
<string-name>
<surname>DuBovi</surname>
,
<given-names>E.</given-names>
</string-name>
, …
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2013</year>
).
<article-title>Duration of maternal antibodies against Canine Distemper Virus and Hendra virus in Pteropid bats</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>8</volume>
(
<issue>6</issue>
),
<fpage>1</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0067584</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0023">
<mixed-citation publication-type="journal" id="jane12985-cit-0023">
<string-name>
<surname>Epstein</surname>
,
<given-names>J. H.</given-names>
</string-name>
,
<string-name>
<surname>Prakash</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
,
<given-names>C. S.</given-names>
</string-name>
,
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>McLaughlin</surname>
,
<given-names>A. B.</given-names>
</string-name>
,
<string-name>
<surname>Meehan</surname>
,
<given-names>G.</given-names>
</string-name>
, …
<string-name>
<surname>Cunningham</surname>
,
<given-names>A. A.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>Henipavirus infection in fruit bats (
<italic>Pteropus giganteus</italic>
), India</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>14</volume>
(
<issue>8</issue>
),
<fpage>1309</fpage>
<lpage>1311</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid1408.071492</pub-id>
<pub-id pub-id-type="pmid">18680665</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0024">
<mixed-citation publication-type="journal" id="jane12985-cit-0024">
<string-name>
<surname>Farrington</surname>
,
<given-names>C. P.</given-names>
</string-name>
(
<year>1990</year>
).
<article-title>Modelling forces of infection for measles, mumps, and rubella</article-title>
.
<source xml:lang="en">Statistics in Medicine</source>
,
<volume>9</volume>
,
<fpage>953</fpage>
<lpage>967</lpage>
.
<pub-id pub-id-type="pmid">2218197</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0025">
<mixed-citation publication-type="journal" id="jane12985-cit-0025">
<string-name>
<surname>Ferrari</surname>
,
<given-names>M. J.</given-names>
</string-name>
,
<string-name>
<surname>Grais</surname>
,
<given-names>R. F.</given-names>
</string-name>
,
<string-name>
<surname>Bharti</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Conlan</surname>
,
<given-names>A. J. K.</given-names>
</string-name>
,
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Wolfson</surname>
,
<given-names>L. J.</given-names>
</string-name>
, …
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>The dynamics of measles in sub‐Saharan Africa</article-title>
.
<source xml:lang="en">Nature</source>
,
<volume>451</volume>
(
<issue>7179</issue>
),
<fpage>679</fpage>
<lpage>684</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature06509</pub-id>
<pub-id pub-id-type="pmid">18256664</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0026">
<mixed-citation publication-type="journal" id="jane12985-cit-0026">
<string-name>
<surname>Golden</surname>
,
<given-names>C. D.</given-names>
</string-name>
,
<string-name>
<surname>Bonds</surname>
,
<given-names>M. H.</given-names>
</string-name>
,
<string-name>
<surname>Brashares</surname>
,
<given-names>J. S.</given-names>
</string-name>
,
<string-name>
<surname>Rodolph Rasolofoniaina</surname>
,
<given-names>B. J.</given-names>
</string-name>
, &
<string-name>
<surname>Kremen</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Economic valuation of subsistence harvest of wildlife in Madagascar</article-title>
.
<source xml:lang="en">Conservation Biology</source>
,
<volume>28</volume>
(
<issue>1</issue>
),
<fpage>234</fpage>
<lpage>243</lpage>
.
<pub-id pub-id-type="doi">10.1111/cobi.12174</pub-id>
<pub-id pub-id-type="pmid">24405165</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0027">
<mixed-citation publication-type="journal" id="jane12985-cit-0027">
<string-name>
<surname>Gombos</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Opelz</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Scherer</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Morath</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Zeier</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Schemmer</surname>
,
<given-names>P.</given-names>
</string-name>
, &
<string-name>
<surname>Süsal</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2013</year>
).
<article-title>Influence of test technique on sensitization status of patients on the kidney transplant waiting list</article-title>
.
<source xml:lang="en">American Journal of Transplantation</source>
,
<volume>13</volume>
(
<issue>8</issue>
),
<fpage>2075</fpage>
<lpage>2082</lpage>
.
<pub-id pub-id-type="doi">10.1111/ajt.12332</pub-id>
<pub-id pub-id-type="pmid">23841891</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0028">
<mixed-citation publication-type="book" id="jane12985-cit-0028">
<string-name>
<surname>Goodman</surname>
,
<given-names>S. M.</given-names>
</string-name>
(
<year>2011</year>
).
<source xml:lang="en">Les chauves‐souris de Madagascar [in French]</source>
.
<publisher-loc>Antananarivo, Madagascar</publisher-loc>
:
<publisher-name>Association Vahatra</publisher-name>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0029">
<mixed-citation publication-type="journal" id="jane12985-cit-0029">
<string-name>
<surname>Goodman</surname>
,
<given-names>S. M.</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
,
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Nowak</surname>
,
<given-names>M.</given-names>
</string-name>
, &
<string-name>
<surname>Yoder</surname>
,
<given-names>A. D.</given-names>
</string-name>
(
<year>2010</year>
).
<article-title>Phylogeny and biogeography of western Indian Ocean Rousettus (Chiroptera : Pteropodidae)</article-title>
.
<source xml:lang="en">Journal of Mammalogy</source>
,
<volume>91</volume>
(
<issue>3</issue>
),
<fpage>593</fpage>
<lpage>606</lpage>
.
<pub-id pub-id-type="doi">10.1644/09-MAMM-A-283.1.Key</pub-id>
<pub-id pub-id-type="pmid">32287379</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0030">
<mixed-citation publication-type="journal" id="jane12985-cit-0030">
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
, &
<string-name>
<surname>Anderson</surname>
,
<given-names>R. M.</given-names>
</string-name>
(
<year>1985</year>
).
<article-title>The estimation of age‐related rates of infection from case notifications and serological data</article-title>
.
<source xml:lang="en">The Journal of Hygiene</source>
,
<volume>95</volume>
(
<issue>2</issue>
),
<fpage>419</fpage>
<lpage>436</lpage>
. Retrieved from
<ext-link ext-link-type="uri" xlink:href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2129533&tool=pmcentrez&rendertype=abstract">http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2129533&tool=pmcentrez&rendertype=abstract</ext-link>
<pub-id pub-id-type="pmid">4067297</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0031">
<mixed-citation publication-type="journal" id="jane12985-cit-0031">
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
,
<string-name>
<surname>Bjornstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
, &
<string-name>
<surname>Finkenstadt</surname>
,
<given-names>B. F.</given-names>
</string-name>
(
<year>2002</year>
).
<article-title>Dynamics of measles epidemics: Scaling noise, determinism, and predictability with the TSIR model</article-title>
.
<source xml:lang="en">Ecological Monographs</source>
,
<volume>72</volume>
(
<issue>2</issue>
),
<fpage>185</fpage>
<lpage>202</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0032">
<mixed-citation publication-type="journal" id="jane12985-cit-0032">
<string-name>
<surname>Griffiths</surname>
,
<given-names>D. A.</given-names>
</string-name>
(
<year>1974</year>
).
<article-title>A catalytic model of infection for measles</article-title>
.
<source xml:lang="en">Journal of the Royal Statistical Society, Series C</source>
,
<volume>23</volume>
(
<issue>3</issue>
),
<fpage>330</fpage>
<lpage>339</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0033">
<mixed-citation publication-type="journal" id="jane12985-cit-0033">
<string-name>
<surname>Halpin</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Hyatt</surname>
,
<given-names>A. D.</given-names>
</string-name>
,
<string-name>
<surname>Fogarty</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Middleton</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Bingham</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Epstein</surname>
,
<given-names>J. H.</given-names>
</string-name>
, …
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>Pteropid bats are confirmed as the reservoir hosts of henipaviruses: A comprehensive experimental study of virus transmission</article-title>
.
<source xml:lang="en">The American Journal of Tropical Medicine and Hygiene</source>
,
<volume>85</volume>
(
<issue>5</issue>
),
<fpage>946</fpage>
<lpage>951</lpage>
.
<pub-id pub-id-type="doi">10.4269/ajtmh.2011.10-0567</pub-id>
<pub-id pub-id-type="pmid">22049055</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0034">
<mixed-citation publication-type="journal" id="jane12985-cit-0034">
<string-name>
<surname>Han</surname>
,
<given-names>B. A.</given-names>
</string-name>
,
<string-name>
<surname>Schmidt</surname>
,
<given-names>J. P.</given-names>
</string-name>
,
<string-name>
<surname>Alexander</surname>
,
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Bowden</surname>
,
<given-names>S. E.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
, &
<string-name>
<surname>Drake</surname>
,
<given-names>J. M.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Undiscovered bat hosts of filoviruses</article-title>
.
<source xml:lang="en">PLoS Neglected Tropical Diseases</source>
,
<volume>10</volume>
(
<issue>7</issue>
),
<fpage>e0004815</fpage>
<pub-id pub-id-type="doi">10.6084/m9.figshare.3114310</pub-id>
<pub-id pub-id-type="pmid">27414412</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0035">
<mixed-citation publication-type="journal" id="jane12985-cit-0035">
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Biannual birth pulses allow filoviruses to persist in bat populations</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B</source>
,
<volume>282</volume>
(
<issue>1803</issue>
),
<fpage>20142591</fpage>
<pub-id pub-id-type="doi">10.1098/rspb.2014.2591</pub-id>
<pub-id pub-id-type="pmid">25673678</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0036">
<mixed-citation publication-type="journal" id="jane12985-cit-0036">
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
,
<string-name>
<surname>Emmerich</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>L.‐F.</given-names>
</string-name>
,
<string-name>
<surname>Suu‐Ire</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Fooks</surname>
,
<given-names>A. R.</given-names>
</string-name>
, …
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
(
<year>2010</year>
).
<article-title>Long‐term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>5</volume>
(
<issue>8</issue>
),
<fpage>e11978</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0011978</pub-id>
<pub-id pub-id-type="pmid">20694141</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0037">
<mixed-citation publication-type="journal" id="jane12985-cit-0037">
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
,
<string-name>
<surname>McCrea</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Restif</surname>
,
<given-names>O.</given-names>
</string-name>
,
<string-name>
<surname>Suu‐Ire</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Fooks</surname>
,
<given-names>A. R.</given-names>
</string-name>
,
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
, …
<string-name>
<surname>Rowcliffe</surname>
,
<given-names>J. M.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Demography of straw‐colored fruit bats in Ghana</article-title>
.
<source xml:lang="en">Journal of Mammalogy</source>
,
<volume>93</volume>
(
<issue>5</issue>
),
<fpage>1393</fpage>
<lpage>1404</lpage>
.
<pub-id pub-id-type="doi">10.1644/11-MAMM-A-270.1</pub-id>
<pub-id pub-id-type="pmid">23525358</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0038">
<mixed-citation publication-type="journal" id="jane12985-cit-0038">
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
,
<string-name>
<surname>Suu‐Ire</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Breed</surname>
,
<given-names>A. C.</given-names>
</string-name>
,
<string-name>
<surname>McEachern</surname>
,
<given-names>J. A.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
, &
<string-name>
<surname>Cunningham</surname>
,
<given-names>A. A.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>Evidence of henipavirus infection in West African fruit bats</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>3</volume>
(
<issue>7</issue>
),
<fpage>e2739</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0002739</pub-id>
<pub-id pub-id-type="pmid">18648649</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0039">
<mixed-citation publication-type="journal" id="jane12985-cit-0039">
<string-name>
<surname>Heisey</surname>
,
<given-names>D. M.</given-names>
</string-name>
,
<string-name>
<surname>Joly</surname>
,
<given-names>D. O.</given-names>
</string-name>
, &
<string-name>
<surname>Messier</surname>
,
<given-names>F.</given-names>
</string-name>
(
<year>2006</year>
).
<article-title>The fitting of general force‐of‐infection models to wildlife disease prevalence data</article-title>
.
<source xml:lang="en">Ecology</source>
,
<volume>87</volume>
(
<issue>9</issue>
),
<fpage>2356</fpage>
<lpage>2365</lpage>
.
<pub-id pub-id-type="pmid">16995636</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0040">
<mixed-citation publication-type="journal" id="jane12985-cit-0040">
<string-name>
<surname>Hens</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Aerts</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Faes</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Shkedy</surname>
,
<given-names>Z.</given-names>
</string-name>
,
<string-name>
<surname>Lejeune</surname>
,
<given-names>O.</given-names>
</string-name>
,
<string-name>
<surname>Damme</surname>
,
<given-names>P. Van.</given-names>
</string-name>
, &
<string-name>
<surname>Beutels</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2010</year>
).
<article-title>75 years of estimating the force of infection</article-title>
.
<source xml:lang="en">Epidemiology and Infection</source>
,
<volume>1</volume>
(
<issue>C</issue>
),
<fpage>1</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="doi">10.1017/CBO9781107415324.004</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0041">
<mixed-citation publication-type="journal" id="jane12985-cit-0041">
<string-name>
<surname>Iehlé</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Razafitrimo</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Razainirina</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Andriaholinirina</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Goodman</surname>
,
<given-names>S. M.</given-names>
</string-name>
, &
<string-name>
<surname>Faure</surname>
,
<given-names>C.</given-names>
</string-name>
(
<year>2007</year>
).
<article-title>Henipavirus and Tioman virus antibodies in Pteropodid bats, Madagascar</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>13</volume>
(
<issue>1</issue>
),
<fpage>159</fpage>
<lpage>161</lpage>
.
<pub-id pub-id-type="pmid">17370536</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0042">
<mixed-citation publication-type="journal" id="jane12985-cit-0042">
<string-name>
<surname>Jenkins</surname>
,
<given-names>R. K. B.</given-names>
</string-name>
,
<string-name>
<surname>Keane</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Rakotoarivelo</surname>
,
<given-names>A. R.</given-names>
</string-name>
,
<string-name>
<surname>Rakotomboavonjy</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Randrianandrianina</surname>
,
<given-names>F. H.</given-names>
</string-name>
,
<string-name>
<surname>Razafimanahaka</surname>
,
<given-names>H. J.</given-names>
</string-name>
, …
<string-name>
<surname>Jones</surname>
,
<given-names>J. P. G.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>Analysis of patterns of bushmeat consumption reveals extensive exploitation of protected species in eastern Madagascar</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>6</volume>
(
<issue>12</issue>
),
<fpage>e27570</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0027570</pub-id>
<pub-id pub-id-type="pmid">22194787</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0043">
<mixed-citation publication-type="journal" id="jane12985-cit-0043">
<string-name>
<surname>Jenkins</surname>
,
<given-names>R. K. B.</given-names>
</string-name>
, &
<string-name>
<surname>Racey</surname>
,
<given-names>P. A.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>Bats as bushmeat in Madagascar</article-title>
.
<source xml:lang="en">Madagascar Conservation and Development</source>
,
<volume>3</volume>
(
<issue>1</issue>
),
<fpage>22</fpage>
<lpage>30</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0044">
<mixed-citation publication-type="journal" id="jane12985-cit-0044">
<string-name>
<surname>Jones</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Schuh</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Amman</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Sealy</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Zaki</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Nichol</surname>
,
<given-names>S.</given-names>
</string-name>
, &
<string-name>
<surname>Towner</surname>
,
<given-names>J.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Experimental inoculation of Egyptian rousette bats (
<italic>Rousettus aegyptiacus</italic>
) with viruses of the Ebolavirus and Marburgvirus genera</article-title>
.
<source xml:lang="en">Viruses</source>
,
<volume>7</volume>
(
<issue>7</issue>
),
<fpage>3420</fpage>
<lpage>3442</lpage>
.
<pub-id pub-id-type="doi">10.3390/v7072779</pub-id>
<pub-id pub-id-type="pmid">26120867</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0045">
<mixed-citation publication-type="journal" id="jane12985-cit-0045">
<string-name>
<surname>Klepac</surname>
,
<given-names>P.</given-names>
</string-name>
, &
<string-name>
<surname>Caswell</surname>
,
<given-names>H.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>The stage‐structured epidemic: Linking disease and demography with a multi‐state matrix approach model</article-title>
.
<source xml:lang="en">Theoretical Ecology</source>
,
<volume>4</volume>
(
<issue>3</issue>
),
<fpage>301</fpage>
<lpage>319</lpage>
.
<pub-id pub-id-type="doi">10.1007/s12080-010-0079-8</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0046">
<mixed-citation publication-type="journal" id="jane12985-cit-0046">
<string-name>
<surname>Klepac</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Pomeroy</surname>
,
<given-names>L. W.</given-names>
</string-name>
,
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Kuiken</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Osterhaus</surname>
,
<given-names>A. D. M. E.</given-names>
</string-name>
, &
<string-name>
<surname>Rijks</surname>
,
<given-names>J. M.</given-names>
</string-name>
(
<year>2009</year>
).
<article-title>Stage‐structured transmission of phocine distemper virus in the Dutch 2002 outbreak</article-title>
.
<source xml:lang="en">Proceedings. Biological Sciences/The Royal Society</source>
,
<volume>276</volume>
(
<issue>1666</issue>
),
<fpage>2469</fpage>
<lpage>2476</lpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2009.0175</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0047">
<mixed-citation publication-type="miscellaneous" id="jane12985-cit-0047">
<string-name>
<surname>Legendre</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>lmodel2: Model II Regression. R package version 1.7‐2</article-title>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0048">
<mixed-citation publication-type="journal" id="jane12985-cit-0048">
<string-name>
<surname>Leroy</surname>
,
<given-names>E. M.</given-names>
</string-name>
,
<string-name>
<surname>Kumulungui</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Pourrut</surname>
,
<given-names>X.</given-names>
</string-name>
,
<string-name>
<surname>Rouquet</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Hassanin</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Yaba</surname>
,
<given-names>P.</given-names>
</string-name>
, …
<string-name>
<surname>Swanepoel</surname>
,
<given-names>R.</given-names>
</string-name>
(
<year>2005</year>
).
<article-title>Fruit bats as reservoirs of Ebola virus</article-title>
.
<source xml:lang="en">Nature</source>
,
<volume>438</volume>
(
<issue>7068</issue>
),
<fpage>575</fpage>
<lpage>576</lpage>
.
<pub-id pub-id-type="doi">10.1038/438575a</pub-id>
<pub-id pub-id-type="pmid">16319873</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0049">
<mixed-citation publication-type="journal" id="jane12985-cit-0049">
<string-name>
<surname>Long</surname>
,
<given-names>G. H.</given-names>
</string-name>
,
<string-name>
<surname>Sinha</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Read</surname>
,
<given-names>A. F.</given-names>
</string-name>
,
<string-name>
<surname>Pritt</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Kline</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Harvill</surname>
,
<given-names>E. T.</given-names>
</string-name>
, …
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
(
<year>2010</year>
).
<article-title>Identifying the age cohort responsible for transmission in a natural outbreak of Bordetella bronchiseptica</article-title>
.
<source xml:lang="en">PLoS Pathogens</source>
,
<volume>6</volume>
(
<issue>12</issue>
),
<fpage>e1001224</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1001224</pub-id>
<pub-id pub-id-type="pmid">21187891</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0050">
<mixed-citation publication-type="journal" id="jane12985-cit-0050">
<string-name>
<surname>MacNeil</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Reed</surname>
,
<given-names>Z.</given-names>
</string-name>
, &
<string-name>
<surname>Rollin</surname>
,
<given-names>P. E.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>Serologic cross‐reactivity of human IgM and IgG antibodies to five species of Ebola virus</article-title>
.
<source xml:lang="en">PLoS Neglected Tropical Diseases</source>
,
<volume>5</volume>
(
<issue>6</issue>
),
<fpage>e1175</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0001175</pub-id>
<pub-id pub-id-type="pmid">21666792</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0051">
<mixed-citation publication-type="journal" id="jane12985-cit-0051">
<string-name>
<surname>Mathiot</surname>
,
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Fontenille</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Georges</surname>
,
<given-names>A. J.</given-names>
</string-name>
, &
<string-name>
<surname>Coulanges</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>1989</year>
).
<article-title>Antibodies populations to haemorrhagic fever viruses in Madagascar</article-title>
.
<source xml:lang="en">Transactions of the Royal Society of Tropical Medicine and Hygiene</source>
,
<volume>83</volume>
,
<fpage>407</fpage>
<lpage>409</lpage>
.
<pub-id pub-id-type="pmid">2515626</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0052">
<mixed-citation publication-type="journal" id="jane12985-cit-0052">
<string-name>
<surname>Metcalf</surname>
,
<given-names>C. J. E.</given-names>
</string-name>
,
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Ferrari</surname>
,
<given-names>M. J.</given-names>
</string-name>
,
<string-name>
<surname>Klepac</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Bharti</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Lopez‐Gatell</surname>
,
<given-names>H.</given-names>
</string-name>
, &
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>The epidemiology of rubella in Mexico: Seasonality, stochasticity and regional variation</article-title>
.
<source xml:lang="en">Epidemiology and Infection</source>
,
<volume>139</volume>
(
<issue>7</issue>
),
<fpage>1029</fpage>
<lpage>1038</lpage>
.
<pub-id pub-id-type="doi">10.1017/S0950268810002165.The</pub-id>
<pub-id pub-id-type="pmid">20843389</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0053">
<mixed-citation publication-type="journal" id="jane12985-cit-0053">
<string-name>
<surname>Metcalf</surname>
,
<given-names>C. J. E.</given-names>
</string-name>
,
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
, &
<string-name>
<surname>Andreasen</surname>
,
<given-names>V.</given-names>
</string-name>
(
<year>2009</year>
).
<article-title>Seasonality and comparative dynamics of six childhood infections in pre‐vaccination Copenhagen</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B</source>
,
<volume>276</volume>
(
<issue>1676</issue>
),
<fpage>4111</fpage>
<lpage>4118</lpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2009.1058</pub-id>
<pub-id pub-id-type="pmid">19740885</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0054">
<mixed-citation publication-type="journal" id="jane12985-cit-0054">
<string-name>
<surname>Metcalf</surname>
,
<given-names>C. J. E.</given-names>
</string-name>
,
<string-name>
<surname>Lessler</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Klepac</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Morice</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Grenfell</surname>
,
<given-names>B. T.</given-names>
</string-name>
, &
<string-name>
<surname>Bjørnstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Structured models of infectious disease: Inference with discrete data</article-title>
.
<source xml:lang="en">Theoretical Population Biology</source>
,
<volume>82</volume>
(
<issue>4</issue>
),
<fpage>275</fpage>
<lpage>282</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tpb.2011.12.001</pub-id>
<pub-id pub-id-type="pmid">22178687</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0055">
<mixed-citation publication-type="journal" id="jane12985-cit-0055">
<string-name>
<surname>Middleton</surname>
,
<given-names>D. J.</given-names>
</string-name>
,
<string-name>
<surname>Morrissy</surname>
,
<given-names>C. J.</given-names>
</string-name>
,
<string-name>
<surname>van der Heide</surname>
,
<given-names>B. M.</given-names>
</string-name>
,
<string-name>
<surname>Russell</surname>
,
<given-names>G. M.</given-names>
</string-name>
,
<string-name>
<surname>Braun</surname>
,
<given-names>M. A.</given-names>
</string-name>
,
<string-name>
<surname>Westbury</surname>
,
<given-names>H. A.</given-names>
</string-name>
, …
<string-name>
<surname>Daniels</surname>
,
<given-names>P. W.</given-names>
</string-name>
(
<year>2007</year>
).
<article-title>Experimental Nipah virus infection in pteropid bats (
<italic>Pteropus poliocephalus</italic>
)</article-title>
.
<source xml:lang="en">Journal of Comparative Pathology</source>
,
<volume>136</volume>
(
<issue>4</issue>
),
<fpage>266</fpage>
<lpage>272</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jcpa.2007.03.002</pub-id>
<pub-id pub-id-type="pmid">17498518</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0056">
<mixed-citation publication-type="book" id="jane12985-cit-0056">
<string-name>
<surname>Muench</surname>
,
<given-names>H.</given-names>
</string-name>
(
<year>1959</year>
).
<source xml:lang="en">Catalytic models in epidemiology</source>
.
<publisher-loc>Boston, MA</publisher-loc>
:
<publisher-name>Harvard University Press</publisher-name>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0057">
<mixed-citation publication-type="journal" id="jane12985-cit-0057">
<string-name>
<surname>Munster</surname>
,
<given-names>V. J.</given-names>
</string-name>
,
<string-name>
<surname>Adney</surname>
,
<given-names>D. R.</given-names>
</string-name>
,
<string-name>
<surname>van Doremalen</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Brown</surname>
,
<given-names>V. R.</given-names>
</string-name>
,
<string-name>
<surname>Miazgowicz</surname>
,
<given-names>K. L.</given-names>
</string-name>
,
<string-name>
<surname>Milne‐Price</surname>
,
<given-names>S.</given-names>
</string-name>
, …
<string-name>
<surname>Bowen</surname>
,
<given-names>R. A.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Replication and shedding of MERS‐CoV in Jamaican fruit bats (
<italic>Artibeus jamaicensis</italic>
)</article-title>
.
<source xml:lang="en">Scientific Reports</source>
,
<volume>6</volume>
,
<fpage>21878</fpage>
<pub-id pub-id-type="doi">10.1038/srep21878</pub-id>
<pub-id pub-id-type="pmid">26899616</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0058">
<mixed-citation publication-type="journal" id="jane12985-cit-0058">
<string-name>
<surname>Ng</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Ndungo</surname>
,
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Kaczmarek</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Herbert</surname>
,
<given-names>A. S.</given-names>
</string-name>
,
<string-name>
<surname>Binger</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>James</surname>
,
<given-names>R.</given-names>
</string-name>
, …
<string-name>
<surname>Chandran</surname>
,
<given-names>K.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>NPC1 contributes to species‐specific patterns of Ebola virus infection in bats</article-title>
.
<source xml:lang="en">ELife</source>
,
<volume>4</volume>
,
<fpage>e11785</fpage>
<pub-id pub-id-type="doi">10.7554/eLife.11785</pub-id>
<pub-id pub-id-type="pmid">26698106</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0059">
<mixed-citation publication-type="journal" id="jane12985-cit-0059">
<string-name>
<surname>Ogawa</surname>
,
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Miyamoto</surname>
,
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Nakayama</surname>
,
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Yoshida</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Nakamura</surname>
,
<given-names>I.</given-names>
</string-name>
,
<string-name>
<surname>Sawa</surname>
,
<given-names>H.</given-names>
</string-name>
, …
<string-name>
<surname>Takada</surname>
,
<given-names>A.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Seroepidemiological prevalence of multiple species of filoviruses in fruit bats (
<italic>Eidolon helvum</italic>
) migrating in Africa</article-title>
.
<source xml:lang="en">Journal of Infectious Diseases</source>
,
<volume>212</volume>
(
<issue>Suppl 2</issue>
),
<fpage>S101</fpage>
<lpage>S108</lpage>
.
<pub-id pub-id-type="doi">10.1093/infdis/jiv063</pub-id>
<pub-id pub-id-type="pmid">25786916</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0060">
<mixed-citation publication-type="journal" id="jane12985-cit-0060">
<string-name>
<surname>Olival</surname>
,
<given-names>K.</given-names>
</string-name>
, &
<string-name>
<surname>Hayman</surname>
,
<given-names>D.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Filoviruses in bats: Current knowledge and future directions</article-title>
.
<source xml:lang="en">Viruses</source>
,
<volume>6</volume>
(
<issue>4</issue>
),
<fpage>1759</fpage>
<lpage>1788</lpage>
.
<pub-id pub-id-type="doi">10.3390/v6041759</pub-id>
<pub-id pub-id-type="pmid">24747773</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0061">
<mixed-citation publication-type="journal" id="jane12985-cit-0061">
<string-name>
<surname>Olival</surname>
,
<given-names>K. J.</given-names>
</string-name>
,
<string-name>
<surname>Hosseini</surname>
,
<given-names>P. R.</given-names>
</string-name>
,
<string-name>
<surname>Zambrana‐Torrelio</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Ross</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Bogich</surname>
,
<given-names>T. L.</given-names>
</string-name>
, &
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Host and viral traits predict zoonotic spillover from mammals</article-title>
.
<source xml:lang="en">Nature</source>
,
<volume>546</volume>
(
<issue>7660</issue>
),
<fpage>646</fpage>
<lpage>650</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature22975</pub-id>
<pub-id pub-id-type="pmid">28636590</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0062">
<mixed-citation publication-type="journal" id="jane12985-cit-0062">
<string-name>
<surname>Paweska</surname>
,
<given-names>J. T.</given-names>
</string-name>
,
<string-name>
<surname>Jansen van Vuren</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Fenton</surname>
,
<given-names>K. A.</given-names>
</string-name>
,
<string-name>
<surname>Graves</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Grobbelaar</surname>
,
<given-names>A. A.</given-names>
</string-name>
,
<string-name>
<surname>Moolla</surname>
,
<given-names>N.</given-names>
</string-name>
, …
<string-name>
<surname>Kemp</surname>
,
<given-names>A.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Lack of Marburg virus transmission from experimentally infected to susceptible in‐contact Egyptian fruit bats</article-title>
.
<source xml:lang="en">Journal of Infectious Diseases</source>
,
<volume>212</volume>
(
<issue>Suppl 2</issue>
),
<fpage>S109</fpage>
<lpage>S118</lpage>
.
<pub-id pub-id-type="doi">10.1093/infdis/jiv132</pub-id>
<pub-id pub-id-type="pmid">25838270</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0063">
<mixed-citation publication-type="journal" id="jane12985-cit-0063">
<string-name>
<surname>Paweska</surname>
,
<given-names>J. T.</given-names>
</string-name>
,
<string-name>
<surname>Jansen van Vuren</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Masumu</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Leman</surname>
,
<given-names>P. A.</given-names>
</string-name>
,
<string-name>
<surname>Grobbelaar</surname>
,
<given-names>A. A.</given-names>
</string-name>
,
<string-name>
<surname>Birkhead</surname>
,
<given-names>M.</given-names>
</string-name>
, …
<string-name>
<surname>Kemp</surname>
,
<given-names>A.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Virological and serological findings in
<italic>Rousettus aegyptiacus</italic>
experimentally inoculated with Vero cells‐adapted Hogan strain of Marburg virus</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>7</volume>
(
<issue>9</issue>
),
<fpage>e45479</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0045479</pub-id>
<pub-id pub-id-type="pmid">23029039</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0064">
<mixed-citation publication-type="journal" id="jane12985-cit-0064">
<string-name>
<surname>Paweska</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Storm</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Grobbelaar</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Markotter</surname>
,
<given-names>W.</given-names>
</string-name>
,
<string-name>
<surname>Kemp</surname>
,
<given-names>A.</given-names>
</string-name>
, &
<string-name>
<surname>Jansen van Vuren</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Experimental inoculation of Egyptian fruit bats (
<italic>Rousettus aegyptiacus</italic>
) with Ebola Virus</article-title>
.
<source xml:lang="en">Viruses</source>
,
<volume>8</volume>
(
<issue>2</issue>
),
<fpage>29</fpage>
<pub-id pub-id-type="doi">10.3390/v8020029</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0065">
<mixed-citation publication-type="journal" id="jane12985-cit-0065">
<string-name>
<surname>Pearce</surname>
,
<given-names>R. D.</given-names>
</string-name>
,
<string-name>
<surname>O'Shea</surname>
,
<given-names>T. J.</given-names>
</string-name>
, &
<string-name>
<surname>Wunder</surname>
,
<given-names>B. A.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>Evaluation of morphological indices and total body electrical conductivity to assess body composition in big brown bats</article-title>
.
<source xml:lang="en">Acta Chiropterologica</source>
,
<volume>10</volume>
(
<issue>1</issue>
),
<fpage>153</fpage>
<lpage>159</lpage>
.
<pub-id pub-id-type="doi">10.3161/150811008X331171</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0066">
<mixed-citation publication-type="journal" id="jane12985-cit-0066">
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
,
<given-names>K. S.</given-names>
</string-name>
,
<string-name>
<surname>Crameri</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Barr</surname>
,
<given-names>J. A.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T.</given-names>
</string-name>
,
<string-name>
<surname>Wright</surname>
,
<given-names>E.</given-names>
</string-name>
, …
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Henipavirus neutralising antibodies in an isolated island population of African fruit bats</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>7</volume>
(
<issue>1</issue>
),
<fpage>e30346</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0030346</pub-id>
<pub-id pub-id-type="pmid">22253928</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0067">
<mixed-citation publication-type="journal" id="jane12985-cit-0067">
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
,
<given-names>K. S.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
,
<string-name>
<surname>Broder</surname>
,
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Cunningham</surname>
,
<given-names>A. A.</given-names>
</string-name>
,
<string-name>
<surname>Fooks</surname>
,
<given-names>A. R.</given-names>
</string-name>
, …
<string-name>
<surname>Restif</surname>
,
<given-names>O.</given-names>
</string-name>
(
<year>2018</year>
).
<article-title>Support for viral persistence in bats from age‐specific serology and models of maternal immunity</article-title>
.
<source xml:lang="en">Scientific Reports</source>
,
<volume>8</volume>
(
<issue>1</issue>
),
<fpage>3859</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-018-22236-6</pub-id>
<pub-id pub-id-type="pmid">29497106</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0068">
<mixed-citation publication-type="journal" id="jane12985-cit-0068">
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>McKinley</surname>
,
<given-names>T. J.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
,
<given-names>K. S.</given-names>
</string-name>
,
<string-name>
<surname>Barr</surname>
,
<given-names>J. A.</given-names>
</string-name>
,
<string-name>
<surname>Crameri</surname>
,
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
, …
<string-name>
<surname>Wood</surname>
,
<given-names>J. L. N.</given-names>
</string-name>
(
<year>2013</year>
).
<article-title>Use of cross‐reactive serological assays for detecting novel pathogens in wildlife: Assessing an appropriate cutoff for henipavirus assays in African bats</article-title>
.
<source xml:lang="en">Journal of Virological Methods</source>
,
<volume>193</volume>
(
<issue>2</issue>
),
<fpage>295</fpage>
<lpage>303</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2013.06.030</pub-id>
<pub-id pub-id-type="pmid">23835034</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0069">
<mixed-citation publication-type="journal" id="jane12985-cit-0069">
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Pulliam</surname>
,
<given-names>J. R. C.</given-names>
</string-name>
,
<string-name>
<surname>Luis</surname>
,
<given-names>A. D.</given-names>
</string-name>
,
<string-name>
<surname>Plowright</surname>
,
<given-names>R. K.</given-names>
</string-name>
,
<string-name>
<surname>Shea</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Hayman</surname>
,
<given-names>D. T. S.</given-names>
</string-name>
, …
<string-name>
<surname>Restif</surname>
,
<given-names>O.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>The effect of seasonal birth pulses on pathogen persistence in wild mammal populations</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B</source>
,
<volume>281</volume>
,
<fpage>20132962</fpage>
.
<pub-id pub-id-type="pmid">24827436</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0070">
<mixed-citation publication-type="journal" id="jane12985-cit-0070">
<string-name>
<surname>Pepin</surname>
,
<given-names>K. M.</given-names>
</string-name>
,
<string-name>
<surname>Kay</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Golas</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Shriner</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Gilbert</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Miller</surname>
,
<given-names>R.</given-names>
</string-name>
, …
<string-name>
<surname>Buhnerkempe</surname>
,
<given-names>M.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Inferring infection hazard in wildlife populations by linking data across individual and population scales</article-title>
.
<source xml:lang="en">Ecology Letters</source>
,
<volume>20</volume>
(
<issue>3</issue>
),
<fpage>275</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="doi">10.1111/ele.12732</pub-id>
<pub-id pub-id-type="pmid">28090753</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0071">
<mixed-citation publication-type="journal" id="jane12985-cit-0071">
<string-name>
<surname>Pigott</surname>
,
<given-names>D. M.</given-names>
</string-name>
,
<string-name>
<surname>Golding</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Mylne</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
,
<given-names>Z.</given-names>
</string-name>
,
<string-name>
<surname>Henry</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Weiss</surname>
,
<given-names>D. J.</given-names>
</string-name>
, …
<string-name>
<surname>Hay</surname>
,
<given-names>S. I.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Mapping the zoonotic niche of Ebola virus disease in Africa</article-title>
.
<source xml:lang="en">ELife</source>
,
<volume>3</volume>
,
<fpage>1</fpage>
<lpage>29</lpage>
.
<pub-id pub-id-type="doi">10.7554/eLife.04395</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0072">
<mixed-citation publication-type="journal" id="jane12985-cit-0072">
<string-name>
<surname>Pigott</surname>
,
<given-names>D. M.</given-names>
</string-name>
,
<string-name>
<surname>Golding</surname>
,
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Mylne</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Huang</surname>
,
<given-names>Z.</given-names>
</string-name>
,
<string-name>
<surname>Weiss</surname>
,
<given-names>D. J.</given-names>
</string-name>
,
<string-name>
<surname>Brady</surname>
,
<given-names>O. J.</given-names>
</string-name>
, …
<string-name>
<surname>Hay</surname>
,
<given-names>S. I.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Mapping the zoonotic niche of Marburg virus disease in Africa</article-title>
.
<source xml:lang="en">Transactions of the Royal Society of Tropical Medicine and Hygiene</source>
,
<volume>109</volume>
(
<issue>6</issue>
),
<fpage>366</fpage>
<lpage>378</lpage>
.
<pub-id pub-id-type="doi">10.1093/trstmh/trv024</pub-id>
<pub-id pub-id-type="pmid">25820266</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0073">
<mixed-citation publication-type="journal" id="jane12985-cit-0073">
<string-name>
<surname>Plowright</surname>
,
<given-names>R. K.</given-names>
</string-name>
,
<string-name>
<surname>Eby</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Hudson</surname>
,
<given-names>P. J.</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
,
<given-names>I. L.</given-names>
</string-name>
,
<string-name>
<surname>Westcott</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Bryden</surname>
,
<given-names>W. L.</given-names>
</string-name>
, …
<string-name>
<surname>McCallum</surname>
,
<given-names>H.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Ecological dynamics of emerging bat virus spillover</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B</source>
,
<volume>282</volume>
(
<issue>1798</issue>
),
<fpage>20142124</fpage>
<pub-id pub-id-type="doi">10.1098/rspb.2014.2124</pub-id>
<pub-id pub-id-type="pmid">25392474</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0074">
<mixed-citation publication-type="journal" id="jane12985-cit-0074">
<string-name>
<surname>Plowright</surname>
,
<given-names>R. K.</given-names>
</string-name>
,
<string-name>
<surname>Field</surname>
,
<given-names>H. E.</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Divljan</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Palmer</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Tabor</surname>
,
<given-names>G.</given-names>
</string-name>
, …
<string-name>
<surname>Foley</surname>
,
<given-names>J. E.</given-names>
</string-name>
(
<year>2008</year>
).
<article-title>Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (
<italic>Pteropus scapulatus</italic>
)</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B: Biological Sciences</source>
,
<volume>275</volume>
(
<issue>1636</issue>
),
<fpage>861</fpage>
<lpage>869</lpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2007.1260</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0075">
<mixed-citation publication-type="journal" id="jane12985-cit-0075">
<string-name>
<surname>Plowright</surname>
,
<given-names>R. K.</given-names>
</string-name>
,
<string-name>
<surname>Foley</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Field</surname>
,
<given-names>H. E.</given-names>
</string-name>
,
<string-name>
<surname>Dobson</surname>
,
<given-names>A. P.</given-names>
</string-name>
,
<string-name>
<surname>Foley</surname>
,
<given-names>J. E.</given-names>
</string-name>
,
<string-name>
<surname>Eby</surname>
,
<given-names>P.</given-names>
</string-name>
, &
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (
<italic>Pteropus</italic>
spp.)</article-title>
.
<source xml:lang="en">Proceedings. Biological Sciences/The Royal Society</source>
,
<volume>278</volume>
(
<issue>1725</issue>
),
<fpage>3703</fpage>
<lpage>3712</lpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2011.0522</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0076">
<mixed-citation publication-type="journal" id="jane12985-cit-0076">
<string-name>
<surname>Plowright</surname>
,
<given-names>R. K.</given-names>
</string-name>
,
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Streicker</surname>
,
<given-names>D. G.</given-names>
</string-name>
,
<string-name>
<surname>Gilbert</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>McCallum</surname>
,
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Wood</surname>
,
<given-names>J.</given-names>
</string-name>
, …
<string-name>
<surname>Restif</surname>
,
<given-names>O.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Transmission or within‐host dynamics driving pulses of zoonotic viruses in reservoir‐host populations</article-title>
.
<source xml:lang="en">PLoS Neglected Tropical Diseases</source>
,
<volume>10</volume>
(
<issue>8</issue>
),
<fpage>e0004796</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pntd.0004796</pub-id>
<pub-id pub-id-type="pmid">27489944</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0077">
<mixed-citation publication-type="journal" id="jane12985-cit-0077">
<string-name>
<surname>Pomeroy</surname>
,
<given-names>L. W.</given-names>
</string-name>
,
<string-name>
<surname>Bjornstad</surname>
,
<given-names>O. N.</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
,
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Jumbo</surname>
,
<given-names>S. D.</given-names>
</string-name>
,
<string-name>
<surname>Abdoulkadiri</surname>
,
<given-names>S.</given-names>
</string-name>
, &
<string-name>
<surname>Garabed</surname>
,
<given-names>R.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Serotype‐specific transmission and waning immunity of endemic foot‐and‐mouth disease virus in Cameroon</article-title>
.
<source xml:lang="en">PLoS ONE</source>
,
<volume>10</volume>
(
<issue>9</issue>
),
<fpage>1</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0136642</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0078">
<mixed-citation publication-type="journal" id="jane12985-cit-0078">
<string-name>
<surname>Raberg</surname>
,
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Vestberg</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Hasselquist</surname>
,
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Holmdahl</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Svensson</surname>
,
<given-names>E.</given-names>
</string-name>
, &
<string-name>
<surname>Nilsson</surname>
,
<given-names>J. A.</given-names>
</string-name>
(
<year>2002</year>
).
<article-title>Basal metabolic rate and the evolution of the adaptive immune system</article-title>
.
<source xml:lang="en">Proceedings of the Royal Society B: Biological Sciences</source>
,
<volume>269</volume>
(
<issue>1493</issue>
),
<fpage>817</fpage>
<lpage>821</lpage>
.
<pub-id pub-id-type="doi">10.1098/rspb.2001.1953</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0079">
<mixed-citation publication-type="journal" id="jane12985-cit-0079">
<string-name>
<surname>Rahman</surname>
,
<given-names>A. S.</given-names>
</string-name>
,
<string-name>
<surname>Hassan</surname>
,
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Sharifah</surname>
,
<given-names>S. H.</given-names>
</string-name>
,
<string-name>
<surname>Lazarus</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Zaini</surname>
,
<given-names>C. M.</given-names>
</string-name>
,
<string-name>
<surname>Epstein</surname>
,
<given-names>J. H.</given-names>
</string-name>
, …
<string-name>
<surname>Daszak</surname>
,
<given-names>P.</given-names>
</string-name>
(
<year>2011</year>
).
<article-title>Evidence for Nipah virus recrudescence and serological patterns of captive
<italic>Pteropus vampyrus</italic>
</article-title>
.
<source xml:lang="en">Epidemiology and Infection</source>
,
<volume>139</volume>
(
<issue>10</issue>
),
<fpage>1570</fpage>
<lpage>1579</lpage>
.
<pub-id pub-id-type="doi">10.1017/S0950268811000550</pub-id>
<pub-id pub-id-type="pmid">21524339</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0080">
<mixed-citation publication-type="journal" id="jane12985-cit-0080">
<string-name>
<surname>Schmidt</surname>
,
<given-names>J. P.</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
,
<given-names>A. W.</given-names>
</string-name>
,
<string-name>
<surname>Kramer</surname>
,
<given-names>A. M.</given-names>
</string-name>
,
<string-name>
<surname>Han</surname>
,
<given-names>B. A.</given-names>
</string-name>
,
<string-name>
<surname>Alexander</surname>
,
<given-names>L. W.</given-names>
</string-name>
, &
<string-name>
<surname>Drake</surname>
,
<given-names>J. M.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Spatiotemporal fluctuations and triggers of Ebola virus spillover</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>23</volume>
(
<issue>3</issue>
),
<fpage>415</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid2303.160101</pub-id>
<pub-id pub-id-type="pmid">28221131</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0081">
<mixed-citation publication-type="journal" id="jane12985-cit-0081">
<string-name>
<surname>Schuh</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Amman</surname>
,
<given-names>B. R.</given-names>
</string-name>
,
<string-name>
<surname>Jones</surname>
,
<given-names>M. E. B.</given-names>
</string-name>
,
<string-name>
<surname>Sealy</surname>
,
<given-names>T. K.</given-names>
</string-name>
,
<string-name>
<surname>Uebelhoer</surname>
,
<given-names>L. S.</given-names>
</string-name>
,
<string-name>
<surname>Spengler</surname>
,
<given-names>J. R.</given-names>
</string-name>
, …
<string-name>
<surname>Towner</surname>
,
<given-names>J. S.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats</article-title>
.
<source xml:lang="en">Nature Communications</source>
,
<volume>8</volume>
,
<fpage>14446</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms14446</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0082">
<mixed-citation publication-type="journal" id="jane12985-cit-0082">
<string-name>
<surname>Schuh</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Amman</surname>
,
<given-names>B. R.</given-names>
</string-name>
,
<string-name>
<surname>Sealy</surname>
,
<given-names>T. K.</given-names>
</string-name>
,
<string-name>
<surname>Spengler</surname>
,
<given-names>J. R.</given-names>
</string-name>
,
<string-name>
<surname>Nichol</surname>
,
<given-names>S. T.</given-names>
</string-name>
, &
<string-name>
<surname>Towner</surname>
,
<given-names>J. S.</given-names>
</string-name>
(
<year>2017</year>
).
<article-title>Egyptian rousette bats maintain long‐term protective immunity against Marburg virus infection despite diminished antibody levels</article-title>
.
<source xml:lang="en">Scientific Reports</source>
,
<volume>7</volume>
(
<issue>1</issue>
),
<fpage>1</fpage>
<lpage>7</lpage>
.
<pub-id pub-id-type="doi">10.1038/s41598-017-07824-2</pub-id>
<pub-id pub-id-type="pmid">28127051</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0083">
<mixed-citation publication-type="journal" id="jane12985-cit-0083">
<string-name>
<surname>Shi</surname>
,
<given-names>J. J.</given-names>
</string-name>
,
<string-name>
<surname>Chan</surname>
,
<given-names>L. M.</given-names>
</string-name>
,
<string-name>
<surname>Peel</surname>
,
<given-names>A. J.</given-names>
</string-name>
,
<string-name>
<surname>Lai</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Yoder</surname>
,
<given-names>A. D.</given-names>
</string-name>
, &
<string-name>
<surname>Goodman</surname>
,
<given-names>S. M.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>A deep divergence time between sister species of
<italic>Eidolon</italic>
(Pteropodidae) with evidence for widespread panmixia</article-title>
.
<source xml:lang="en">Acta Chiropterologica</source>
,
<volume>16</volume>
(
<issue>2</issue>
),
<fpage>279</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="doi">10.3161/150811014X687242</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0084">
<mixed-citation publication-type="journal" id="jane12985-cit-0084">
<string-name>
<surname>Spangelo</surname>
,
<given-names>B. L.</given-names>
</string-name>
,
<string-name>
<surname>Hall</surname>
,
<given-names>N. R. S.</given-names>
</string-name>
,
<string-name>
<surname>Ross</surname>
,
<given-names>P. C.</given-names>
</string-name>
, &
<string-name>
<surname>Goldstein</surname>
,
<given-names>A. L.</given-names>
</string-name>
(
<year>1987</year>
).
<article-title>Stimulation of in vivo antibody production and concanavalin‐A‐induced mouse spleen cell mitogenesis by prolactin</article-title>
.
<source xml:lang="en">Immunopharmacology</source>
,
<volume>14</volume>
(
<issue>1</issue>
),
<fpage>11</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1016/0162-3109(87)90004-X</pub-id>
<pub-id pub-id-type="pmid">3679801</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0085">
<mixed-citation publication-type="journal" id="jane12985-cit-0085">
<string-name>
<surname>Swanepoel</surname>
,
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Leman</surname>
,
<given-names>P. A.</given-names>
</string-name>
,
<string-name>
<surname>Burt</surname>
,
<given-names>F. J.</given-names>
</string-name>
,
<string-name>
<surname>Zachariades</surname>
,
<given-names>N. A.</given-names>
</string-name>
,
<string-name>
<surname>Braack</surname>
,
<given-names>L. E. O.</given-names>
</string-name>
,
<string-name>
<surname>Ksiazek</surname>
,
<given-names>T. G.</given-names>
</string-name>
, …
<string-name>
<surname>Peters</surname>
,
<given-names>C. J.</given-names>
</string-name>
(
<year>1996</year>
).
<article-title>Experimental inoculation of plants and animals with Ebola virus</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>2</volume>
(
<issue>4</issue>
),
<fpage>321</fpage>
<lpage>325</lpage>
.
<pub-id pub-id-type="pmid">8969248</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0086">
<mixed-citation publication-type="journal" id="jane12985-cit-0086">
<string-name>
<surname>Taniguchi</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Watanabe</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Masangkay</surname>
,
<given-names>J. S.</given-names>
</string-name>
,
<string-name>
<surname>Omatsu</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Ikegami</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Alviola</surname>
,
<given-names>P.</given-names>
</string-name>
, …
<string-name>
<surname>Morikawa</surname>
,
<given-names>S.</given-names>
</string-name>
(
<year>1999</year>
).
<article-title>Reston ebolavirus antibodies in bats, the Philippines</article-title>
.
<source xml:lang="en">Emerging Infectious Diseases</source>
,
<volume>179</volume>
(
<issue>Suppl 8</issue>
),
<fpage>S115</fpage>
<lpage>S119</lpage>
.
<pub-id pub-id-type="doi">10.1086/514314</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0087">
<mixed-citation publication-type="journal" id="jane12985-cit-0087">
<string-name>
<surname>Trang</surname>
,
<given-names>N. V.</given-names>
</string-name>
,
<string-name>
<surname>Choisy</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Nakagomi</surname>
,
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Chinh</surname>
,
<given-names>N. T. M.</given-names>
</string-name>
,
<string-name>
<surname>Doan</surname>
,
<given-names>Y. H.</given-names>
</string-name>
,
<string-name>
<surname>Yamashiro</surname>
,
<given-names>T.</given-names>
</string-name>
, …
<string-name>
<surname>Anh</surname>
,
<given-names>D. D.</given-names>
</string-name>
(
<year>2015</year>
).
<article-title>Determination of cut‐off cycle threshold values in routine RT‐PCR assays to assist differential diagnosis of norovirus in children hospitalized for acute gastroenteritis</article-title>
.
<source xml:lang="en">Epidemiology and Infection</source>
,
<volume>143</volume>
(
<issue>15</issue>
),
<fpage>3292</fpage>
<lpage>3299</lpage>
.
<pub-id pub-id-type="doi">10.1017/S095026881500059X</pub-id>
<pub-id pub-id-type="pmid">26418350</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0088">
<mixed-citation publication-type="journal" id="jane12985-cit-0088">
<string-name>
<surname>Wesolowski</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Mensah</surname>
,
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Brook</surname>
,
<given-names>C. E.</given-names>
</string-name>
,
<string-name>
<surname>Andrianjafimasy</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Winter</surname>
,
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Buckee</surname>
,
<given-names>C. O.</given-names>
</string-name>
, …
<string-name>
<surname>Metcalf</surname>
,
<given-names>C. J. E.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Introduction of rubella‐containing‐vaccine to Madagascar: Implications for roll‐out and local elimination</article-title>
.
<source xml:lang="en">Journal of the Royal Society Interface</source>
,
<volume>13</volume>
(
<issue>115</issue>
),
<fpage>20151101</fpage>
<pub-id pub-id-type="doi">10.1098/rsif.2015.1101</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0089">
<mixed-citation publication-type="journal" id="jane12985-cit-0089">
<string-name>
<surname>Wilkinson</surname>
,
<given-names>D. A.</given-names>
</string-name>
,
<string-name>
<surname>Mélade</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Dietrich</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Ramasindrazana</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Soarimalala</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Lagadec</surname>
,
<given-names>E.</given-names>
</string-name>
, …
<string-name>
<surname>Pascalis</surname>
,
<given-names>H.</given-names>
</string-name>
(
<year>2014</year>
).
<article-title>Highly diverse Morbillivirus‐related paramyxoviruses in the wild fauna of southwestern Indian Ocean islands: Evidence of exchange between introduced and endemic small mammals</article-title>
.
<source xml:lang="en">Journal of Virology</source>
,
<volume>88</volume>
(
<issue>15</issue>
),
<fpage>8268</fpage>
<lpage>8277</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.01211-14</pub-id>
<pub-id pub-id-type="pmid">24829336</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0090">
<mixed-citation publication-type="journal" id="jane12985-cit-0090">
<string-name>
<surname>Wilkinson</surname>
,
<given-names>D. A.</given-names>
</string-name>
,
<string-name>
<surname>Temmam</surname>
,
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Lebarbenchon</surname>
,
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Lagadec</surname>
,
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Chotte</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Guillebaud</surname>
,
<given-names>J.</given-names>
</string-name>
, …
<string-name>
<surname>Pascalis</surname>
,
<given-names>H.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean</article-title>
.
<source xml:lang="en">Virus Research</source>
,
<volume>170</volume>
(
<issue>1–2</issue>
),
<fpage>159</fpage>
<lpage>163</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.virusres.2012.08.022</pub-id>
<pub-id pub-id-type="pmid">22982204</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0091">
<mixed-citation publication-type="journal" id="jane12985-cit-0091">
<string-name>
<surname>Williams</surname>
,
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Gouws</surname>
,
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Wilkinson</surname>
,
<given-names>D.</given-names>
</string-name>
, &
<string-name>
<surname>Karim</surname>
,
<given-names>S. A.</given-names>
</string-name>
(
<year>2001</year>
).
<article-title>Estimating HIV incidence rates from age prevalence data in epidemic situations</article-title>
.
<source xml:lang="en">Statistics in Medicine</source>
,
<volume>20</volume>
,
<fpage>2003</fpage>
<lpage>2016</lpage>
.
<pub-id pub-id-type="doi">10.1002/sim.840</pub-id>
<pub-id pub-id-type="pmid">11427956</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0092">
<mixed-citation publication-type="journal" id="jane12985-cit-0092">
<string-name>
<surname>Williamson</surname>
,
<given-names>M. M.</given-names>
</string-name>
,
<string-name>
<surname>Hooper</surname>
,
<given-names>P. T.</given-names>
</string-name>
,
<string-name>
<surname>Selleck</surname>
,
<given-names>P. W.</given-names>
</string-name>
,
<string-name>
<surname>Gleeson</surname>
,
<given-names>L. J.</given-names>
</string-name>
,
<string-name>
<surname>Daniels</surname>
,
<given-names>P. W.</given-names>
</string-name>
,
<string-name>
<surname>Westbury</surname>
,
<given-names>H. A.</given-names>
</string-name>
, &
<string-name>
<surname>Murray</surname>
,
<given-names>P. K.</given-names>
</string-name>
(
<year>1998</year>
).
<article-title>Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats</article-title>
.
<source xml:lang="en">Australian Veterinary Journal</source>
,
<volume>76</volume>
(
<issue>12</issue>
),
<fpage>813</fpage>
<lpage>818</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1751-0813.1998.tb12335.x</pub-id>
<pub-id pub-id-type="pmid">9972433</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0093">
<mixed-citation publication-type="journal" id="jane12985-cit-0093">
<string-name>
<surname>Williamson</surname>
,
<given-names>M. M.</given-names>
</string-name>
,
<string-name>
<surname>Hooper</surname>
,
<given-names>P. T.</given-names>
</string-name>
,
<string-name>
<surname>Selleck</surname>
,
<given-names>P. W.</given-names>
</string-name>
,
<string-name>
<surname>Westbury</surname>
,
<given-names>H. A.</given-names>
</string-name>
, &
<string-name>
<surname>Slocombe</surname>
,
<given-names>R. F.</given-names>
</string-name>
(
<year>2000</year>
).
<article-title>Experimental Hendra virus infection in pregnant guinea‐pigs and fruit bats (
<italic>Pteropus poliocephalus</italic>
)</article-title>
.
<source xml:lang="en">Journal of Comparative Pathology</source>
,
<volume>122</volume>
(
<issue>2–3</issue>
),
<fpage>201</fpage>
<lpage>207</lpage>
.
<pub-id pub-id-type="doi">10.1053/jcpa.1999.0364</pub-id>
<pub-id pub-id-type="pmid">10684689</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0094">
<mixed-citation publication-type="journal" id="jane12985-cit-0094">
<string-name>
<surname>Wood</surname>
,
<given-names>S. N.</given-names>
</string-name>
(
<year>2001</year>
).
<article-title>mgcv: GAMs and generalized ridge regression for R</article-title>
.
<source xml:lang="en">R News</source>
,
<volume>1</volume>
(
<issue>2</issue>
),
<fpage>20</fpage>
<lpage>24</lpage>
.</mixed-citation>
</ref>
<ref id="jane12985-bib-0095">
<mixed-citation publication-type="journal" id="jane12985-cit-0095">
<string-name>
<surname>Yuan</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
,
<given-names>Y.</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
,
<given-names>Y.</given-names>
</string-name>
,
<string-name>
<surname>Wang</surname>
,
<given-names>L.‐F.</given-names>
</string-name>
, &
<string-name>
<surname>Shi</surname>
,
<given-names>Z.</given-names>
</string-name>
(
<year>2012</year>
).
<article-title>Serological evidence of ebolavirus infection in bats, China</article-title>
.
<source xml:lang="en">Virology Journal</source>
,
<volume>9</volume>
,
<fpage>236</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-9-236</pub-id>
<pub-id pub-id-type="pmid">23062147</pub-id>
</mixed-citation>
</ref>
<ref id="jane12985-bib-0096">
<mixed-citation publication-type="journal" id="jane12985-cit-0096">
<string-name>
<surname>Zhou</surname>
,
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Tachedjian</surname>
,
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Wynne</surname>
,
<given-names>J. W.</given-names>
</string-name>
,
<string-name>
<surname>Boyd</surname>
,
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Cui</surname>
,
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
,
<given-names>I.</given-names>
</string-name>
, …
<string-name>
<surname>Baker</surname>
,
<given-names>M. L.</given-names>
</string-name>
(
<year>2016</year>
).
<article-title>Contraction of the type I IFN locus and unusual constitutive expression of IFN‐α in bats</article-title>
.
<source xml:lang="en">Proceedings of the National Academy of Sciences of the United States of America</source>
,
<volume>113</volume>
(
<issue>10</issue>
),
<fpage>2696</fpage>
<lpage>2701</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1518240113</pub-id>
<pub-id pub-id-type="pmid">26903655</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000699  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000699  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021