Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Globoid cell leukodystrophy (Krabbe's disease) in a Japanese domestic cat

Identifieur interne : 000213 ( Pmc/Corpus ); précédent : 000212; suivant : 000214

Globoid cell leukodystrophy (Krabbe's disease) in a Japanese domestic cat

Auteurs : Mizue Ogawa ; Kazuyuki Uchida ; Kyoko Isobe ; Miyoko Saito ; Tomoyuki Harada ; James K. Chambers ; Hiroyuki Nakayama

Source :

RBID : PMC:7167846

Abstract

A male Japanese domestic cat developed progressive limb paralysis from 4 months of age. The cat showed visual disorder, trismus and cognitive impairment and died at 9 months of age. At necropsy, significant discoloration of the white matter was observed throughout the brain and spinal cord. Histologically, severe myelin loss and gliosis were observed, especially in the internal capsule and cerebellum. In the lesions, severe infiltration of macrophages with broad cytoplasm filled with PAS‐positive and non‐metachromatic granules (globoid cells) was evident. On the basis of these findings, the case was diagnosed as feline globoid cell leukodystrophy (Krabbe's disease). Immunohistochemical observation indicated the involvement of oxidative stress and small HSP in the disease.


Url:
DOI: 10.1111/neup.12076
PubMed: 24812701
PubMed Central: 7167846

Links to Exploration step

PMC:7167846

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Globoid cell leukodystrophy (
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease) in a
<styled-content style="fixed-case" toggle="no">J</styled-content>
apanese domestic cat</title>
<author>
<name sortKey="Ogawa, Mizue" sort="Ogawa, Mizue" uniqKey="Ogawa M" first="Mizue" last="Ogawa">Mizue Ogawa</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uchida, Kazuyuki" sort="Uchida, Kazuyuki" uniqKey="Uchida K" first="Kazuyuki" last="Uchida">Kazuyuki Uchida</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Isobe, Kyoko" sort="Isobe, Kyoko" uniqKey="Isobe K" first="Kyoko" last="Isobe">Kyoko Isobe</name>
<affiliation>
<nlm:aff id="neup12076-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saito, Miyoko" sort="Saito, Miyoko" uniqKey="Saito M" first="Miyoko" last="Saito">Miyoko Saito</name>
<affiliation>
<nlm:aff id="neup12076-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harada, Tomoyuki" sort="Harada, Tomoyuki" uniqKey="Harada T" first="Tomoyuki" last="Harada">Tomoyuki Harada</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chambers, James K" sort="Chambers, James K" uniqKey="Chambers J" first="James K." last="Chambers">James K. Chambers</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nakayama, Hiroyuki" sort="Nakayama, Hiroyuki" uniqKey="Nakayama H" first="Hiroyuki" last="Nakayama">Hiroyuki Nakayama</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24812701</idno>
<idno type="pmc">7167846</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167846</idno>
<idno type="RBID">PMC:7167846</idno>
<idno type="doi">10.1111/neup.12076</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000213</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000213</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Globoid cell leukodystrophy (
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease) in a
<styled-content style="fixed-case" toggle="no">J</styled-content>
apanese domestic cat</title>
<author>
<name sortKey="Ogawa, Mizue" sort="Ogawa, Mizue" uniqKey="Ogawa M" first="Mizue" last="Ogawa">Mizue Ogawa</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Uchida, Kazuyuki" sort="Uchida, Kazuyuki" uniqKey="Uchida K" first="Kazuyuki" last="Uchida">Kazuyuki Uchida</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Isobe, Kyoko" sort="Isobe, Kyoko" uniqKey="Isobe K" first="Kyoko" last="Isobe">Kyoko Isobe</name>
<affiliation>
<nlm:aff id="neup12076-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saito, Miyoko" sort="Saito, Miyoko" uniqKey="Saito M" first="Miyoko" last="Saito">Miyoko Saito</name>
<affiliation>
<nlm:aff id="neup12076-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harada, Tomoyuki" sort="Harada, Tomoyuki" uniqKey="Harada T" first="Tomoyuki" last="Harada">Tomoyuki Harada</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chambers, James K" sort="Chambers, James K" uniqKey="Chambers J" first="James K." last="Chambers">James K. Chambers</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nakayama, Hiroyuki" sort="Nakayama, Hiroyuki" uniqKey="Nakayama H" first="Hiroyuki" last="Nakayama">Hiroyuki Nakayama</name>
<affiliation>
<nlm:aff id="neup12076-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuropathology</title>
<idno type="ISSN">0919-6544</idno>
<idno type="eISSN">1440-1789</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A male
<styled-content style="fixed-case" toggle="no">J</styled-content>
apanese domestic cat developed progressive limb paralysis from 4 months of age. The cat showed visual disorder, trismus and cognitive impairment and died at 9 months of age. At necropsy, significant discoloration of the white matter was observed throughout the brain and spinal cord. Histologically, severe myelin loss and gliosis were observed, especially in the internal capsule and cerebellum. In the lesions, severe infiltration of macrophages with broad cytoplasm filled with
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
‐positive and non‐metachromatic granules (globoid cells) was evident. On the basis of these findings, the case was diagnosed as feline globoid cell leukodystrophy (
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease). Immunohistochemical observation indicated the involvement of oxidative stress and small
<styled-content style="fixed-case" toggle="no">HSP</styled-content>
in the disease.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="case-report">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Neuropathology</journal-id>
<journal-id journal-id-type="iso-abbrev">Neuropathology</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1440-1789</journal-id>
<journal-id journal-id-type="publisher-id">NEUP</journal-id>
<journal-title-group>
<journal-title>Neuropathology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0919-6544</issn>
<issn pub-type="epub">1440-1789</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24812701</article-id>
<article-id pub-id-type="pmc">7167846</article-id>
<article-id pub-id-type="doi">10.1111/neup.12076</article-id>
<article-id pub-id-type="publisher-id">NEUP12076</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Case Reports</subject>
</subj-group>
<subj-group subj-group-type="overline">
<subject>Case Report</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Globoid cell leukodystrophy (
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease) in a
<styled-content style="fixed-case" toggle="no">J</styled-content>
apanese domestic cat</article-title>
<alt-title alt-title-type="right-running-head">Krabbe's disease in a cat</alt-title>
<alt-title alt-title-type="left-running-head">M Ogawa
<italic>et al</italic>
.</alt-title>
</title-group>
<contrib-group>
<contrib id="neup12076-cr-0001" contrib-type="author">
<name>
<surname>Ogawa</surname>
<given-names>Mizue</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0002" contrib-type="author" corresp="yes">
<name>
<surname>Uchida</surname>
<given-names>Kazuyuki</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0003" contrib-type="author">
<name>
<surname>Isobe</surname>
<given-names>Kyoko</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0004" contrib-type="author">
<name>
<surname>Saito</surname>
<given-names>Miyoko</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0005" contrib-type="author">
<name>
<surname>Harada</surname>
<given-names>Tomoyuki</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0006" contrib-type="author">
<name>
<surname>Chambers</surname>
<given-names>James K.</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="neup12076-cr-0007" contrib-type="author">
<name>
<surname>Nakayama</surname>
<given-names>Hiroyuki</given-names>
</name>
<xref ref-type="aff" rid="neup12076-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="neup12076-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Veterinary Pathology</named-content>
<named-content content-type="organisation-division">Graduate School of Agricultural and Life Sciences</named-content>
<institution>The University of Tokyo</institution>
<city>Tokyo</city>
<country>Japan</country>
</aff>
<aff id="neup12076-aff-0002">
<label>
<sup>2</sup>
</label>
<named-content content-type="organisation-division">Department of Surgery II</named-content>
<named-content content-type="organisation-division">School of Veterinary Medicine</named-content>
<institution>Azabu University</institution>
<city>Kanagawa</city>
<country>Japan</country>
</aff>
<aff id="neup12076-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">Department of Veterinary Teaching Hospital</named-content>
<named-content content-type="organisation-division">School of Veterinary Medicine</named-content>
<institution>Azabu University</institution>
<city>Kanagawa</city>
<country country="JP">Japan</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Correspondence: Kazuyuki Uchida, DVM, PhD, Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1‐1‐1 Yayoi, Bunkyo‐ku, Tokyo 113‐8657, Japan. Email:
<email>auchidak@mail.ecc.u-tokyo.ac.jp</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>08</day>
<month>11</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>4</month>
<year>2014</year>
</pub-date>
<volume>34</volume>
<issue>2</issue>
<issue-id pub-id-type="doi">10.1111/neup.2014.34.issue-2</issue-id>
<fpage>190</fpage>
<lpage>196</lpage>
<history>
<date date-type="received">
<day>07</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>29</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2014 Japanese Society of Neuropathology </pmc-comment>
<copyright-statement content-type="article-copyright">© 2013 Japanese Society of Neuropathology</copyright-statement>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="file://NEUP-34-190.pdf"></self-uri>
<abstract>
<p>A male
<styled-content style="fixed-case" toggle="no">J</styled-content>
apanese domestic cat developed progressive limb paralysis from 4 months of age. The cat showed visual disorder, trismus and cognitive impairment and died at 9 months of age. At necropsy, significant discoloration of the white matter was observed throughout the brain and spinal cord. Histologically, severe myelin loss and gliosis were observed, especially in the internal capsule and cerebellum. In the lesions, severe infiltration of macrophages with broad cytoplasm filled with
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
‐positive and non‐metachromatic granules (globoid cells) was evident. On the basis of these findings, the case was diagnosed as feline globoid cell leukodystrophy (
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease). Immunohistochemical observation indicated the involvement of oxidative stress and small
<styled-content style="fixed-case" toggle="no">HSP</styled-content>
in the disease.</p>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="neup12076-kwd-0001">cat</kwd>
<kwd id="neup12076-kwd-0002">central nervous system</kwd>
<kwd id="neup12076-kwd-0003">globoid cell leukodystrophy</kwd>
<kwd id="neup12076-kwd-0004">
<styled-content style="fixed-case" toggle="no">K</styled-content>
rabbe's disease</kwd>
<kwd id="neup12076-kwd-0005">macrophages</kwd>
</kwd-group>
<counts>
<page-count count="7"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>April 2014</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body id="neup12076-body-0001">
<sec id="neup12076-sec-0001">
<title>Introduction</title>
<p>Globoid cell leukodystrophy (GLD; also known as Krabbe's disease) is an early‐onset, rapidly progressive and fatal degenerative disease. The disease is pathologically characterized by almost complete myelin loss, reactive astrocytosis and the appearance of characteristic large round cells called globoid cells in the white matter of the CNS.
<xref rid="neup12076-bib-0001" ref-type="ref">1</xref>
Diseases identical to GLD have been reported in several animal species:
<xref rid="neup12076-bib-0002" ref-type="ref">2</xref>
dogs,
<xref rid="neup12076-bib-0003" ref-type="ref">3</xref>
,
<xref rid="neup12076-bib-0004" ref-type="ref">4</xref>
sheep,
<xref rid="neup12076-bib-0005" ref-type="ref">5</xref>
rhesus monkeys
<xref rid="neup12076-bib-0006" ref-type="ref">6</xref>
,
<xref rid="neup12076-bib-0007" ref-type="ref">7</xref>
and cats.
<xref rid="neup12076-bib-0008" ref-type="ref">8</xref>
,
<xref rid="neup12076-bib-0009" ref-type="ref">9</xref>
,
<xref rid="neup12076-bib-0010" ref-type="ref">10</xref>
GLD is defined by the deficiency of a lysosomal enzyme, galactocerebrosidase (GALC), resulting in the accumulation of a cytotoxic metabolite, psychosine.
<xref rid="neup12076-bib-0001" ref-type="ref">1</xref>
GALC‐deficient mice, such as Twitcher mice,
<xref rid="neup12076-bib-0011" ref-type="ref">11</xref>
,
<xref rid="neup12076-bib-0012" ref-type="ref">12</xref>
are being used as experimental GLD models.
<xref rid="neup12076-bib-0013" ref-type="ref">13</xref>
Besides GALC, the deficiency of saposin A,
<xref rid="neup12076-bib-0014" ref-type="ref">14</xref>
one of the sphingolipid activator proteins, also causes an identical disease to GLD in mice
<xref rid="neup12076-bib-0015" ref-type="ref">15</xref>
and humans.
<xref rid="neup12076-bib-0010" ref-type="ref">10</xref>
While GALC mutation was found in dogs
<xref rid="neup12076-bib-0016" ref-type="ref">16</xref>
and rhesus monkeys.
<xref rid="neup12076-bib-0017" ref-type="ref">17</xref>
To date, there have been only three reports of the disease in cats,
<xref rid="neup12076-bib-0008" ref-type="ref">8</xref>
,
<xref rid="neup12076-bib-0009" ref-type="ref">9</xref>
,
<xref rid="neup12076-bib-0010" ref-type="ref">10</xref>
indicating that the disease is extremely rare in cats. These previous reports on feline GLD revealed histopathological features characterized by symmetrical myelin loss, astrocytosis and perivascular accumulation of large macrophages with intracytoplasmic deposits (globoid cells).</p>
<p>The present report describes histopathological, immunohistochemical and ultrastructural features of GLD in a young cat. In addition, immunohistochemistry for nitric oxide (NOS) and two types of small HSP (sHSP) was performed to assess the involvement of oxidative stress and/or sHSP, which are commonly upregulated in glial cells in patients with neurodegenerative diseases.
<xref rid="neup12076-bib-0018" ref-type="ref">18</xref>
</p>
</sec>
<sec id="neup12076-sec-0002">
<title>Clinical Summary</title>
<p>A male Japanese domestic cat had exhibited hind limb paresis since 4 months of age. Then the symptom progressed and clear tetraparesis developed. Although temporary recovery was achieved, loss of voluntary movement, trismus, and visual and cognitive impairment were observed during the last 2 months before death at 9 months of age. No significant findings were detected by X‐ray examination or hematologic and biochemical analyses. The serum antibodies for feline immunodeficiency virus (FIV), feline leukemia virus (FeLV), feline coronavirus, feline parvovirus and
<italic>Toxoplasma</italic>
were all negative.</p>
</sec>
<sec id="neup12076-sec-0003">
<title>Materials and Methods</title>
<p>Tissue samples including the brain, spinal cord and brachial plexus were fixed in 10% neutral‐buffered formalin, processed routinely and embedded in paraffin wax. Paraffin sections 4 μm thick were stained with HE. Some selected sections were also subjected to PAS, toluidine blue (TB, pH 7.0), LFB, Sudan‐black and von‐Kossa staining. Immunohistochemistry was performed using the Envision polymer method. The primary antibodies used are listed in Table 
<xref rid="neup12076-tbl-0001" ref-type="table">1</xref>
. Deparaffinized sections were first autoclaved at 120°C for 10 min in 10 mmol/L citrate buffer (pH 6.0) or Target retrieval solution (pH 9.0), for antigen retrieval. Then, the tissue sections were treated with 3% hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
)‐methanol at room temperature for 5 min and incubated in 8% skimmed milk–Tris‐buffered saline with 0.2% Tween 20 (TBST) at 37°C for 1 h to avoid nonspecific reactions. The sections were then incubated at 4°C overnight with one of the primary antibodies. After washing three times in TBST, the sections were incubated with Envision horseradish peroxidase (HRP) mouse or rabbit polymer (Dako, Glostrup, Denmark) at 37°C for 40 min Then, the sections were washed with TBS and visualized with 0.05% 3‐3'diaminobenzidine and 0.03% H
<sub>2</sub>
O
<sub>2</sub>
in TBS. Counterstaining was performed with Mayer's hematoxylin.</p>
<table-wrap id="neup12076-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Primary antibodies used</p>
</caption>
<table frame="hsides" rules="groups">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<col align="left" span="1"></col>
<thead>
<tr style="border-bottom:solid 1px #000000">
<th rowspan="1" colspan="1">Antibody</th>
<th rowspan="1" colspan="1">Type</th>
<th rowspan="1" colspan="1">Dilution</th>
<th rowspan="1" colspan="1">Source</th>
<th rowspan="1" colspan="1">Marker for</th>
<th rowspan="1" colspan="1">Antigen retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">GFAP</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:1000</td>
<td rowspan="1" colspan="1">Dako, Glostrup, Denmark</td>
<td rowspan="1" colspan="1">Astrocyte</td>
<td rowspan="1" colspan="1">None</td>
</tr>
<tr>
<td rowspan="1" colspan="1">NF</td>
<td rowspan="1" colspan="1">m</td>
<td rowspan="1" colspan="1">pre‐diluted</td>
<td rowspan="1" colspan="1">Dako</td>
<td rowspan="1" colspan="1">Axon/neuron</td>
<td rowspan="1" colspan="1">None</td>
</tr>
<tr>
<td rowspan="1" colspan="1">pNF‐H&M</td>
<td rowspan="1" colspan="1">m</td>
<td rowspan="1" colspan="1">1:1000</td>
<td rowspan="1" colspan="1">Millipore, MA, USA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">None</td>
</tr>
<tr>
<td rowspan="1" colspan="1">MBP</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:200</td>
<td rowspan="1" colspan="1">Dako</td>
<td rowspan="1" colspan="1">Myelin</td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Olig2</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:500</td>
<td rowspan="1" colspan="1">Millipore</td>
<td rowspan="1" colspan="1">Oligodendrocyte</td>
<td rowspan="1" colspan="1">Target retrieval solution (Dako), pH 9.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CD3</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:50</td>
<td rowspan="1" colspan="1">Dako</td>
<td rowspan="1" colspan="1">T cell</td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">CD20</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:200</td>
<td rowspan="1" colspan="1">Thermo Scientific, CA, USA</td>
<td rowspan="1" colspan="1">B cell</td>
<td rowspan="1" colspan="1">None</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Iba1</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:500</td>
<td rowspan="1" colspan="1">Wako Pure Chemical Industries, Osaka, Japan</td>
<td rowspan="1" colspan="1">Microglia/macrophage</td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">HLA‐DR</td>
<td rowspan="1" colspan="1">m</td>
<td rowspan="1" colspan="1">1:100</td>
<td rowspan="1" colspan="1">Dako</td>
<td rowspan="1" colspan="1">Macrophage</td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">HSP27</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:100</td>
<td rowspan="1" colspan="1">Cell Signaling Technology, MA, USA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">αB‐crystallin</td>
<td rowspan="1" colspan="1">m</td>
<td rowspan="1" colspan="1">1:1000</td>
<td rowspan="1" colspan="1">Santa Cruz Biotechnology, CA, USA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">iNOS</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:200</td>
<td rowspan="1" colspan="1">Calbiochem, CA, USA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">HO‐1</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:100</td>
<td rowspan="1" colspan="1">ENZO Life Sciences, Plymouth Meeting, PA, USA</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">SOD1</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:200</td>
<td rowspan="1" colspan="1">ENZO Life Sciences</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">SOD2</td>
<td rowspan="1" colspan="1">p</td>
<td rowspan="1" colspan="1">1:200</td>
<td rowspan="1" colspan="1">ENZO Life Sciences</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">Citrate buffer, pH 6.0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="neup12076-note-0001">
<p>HLA‐DR, humanleukocyte antigen type DR; HO‐1, heme oxygenase‐1; Iba1, ionized calcium‐binding adapter molecule 1; iNOS, inducible nitric oxide synthase; m, mouse monoclonal; MBP, myelin basic protein; NF, neurofilament; Olig2, oligodendrocyte transcription factor 2; p, rabbit polyclonal; SOD, superoxide dismutase.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</table-wrap>
<p>For electron microscopic analysis, the formalin‐fixed cerebellar white matter was fixed again in 2% glutaraldehyde in 0.1 mol/L phosphate buffer (PB) at 4°C for 2 h, and post‐fixed in 1% OsO
<sub>4</sub>
at 4°C for 2 h. The samples were dehydrated in an ethanol series, replaced with QY‐1 solution (Nisshin EM Corporation, Tokyo, Japan) and embedded in Quetol651 resin (Nisshin EM). Ultrathin sections were stained with uranyl acetate and lead citrate and examined with a Hitachi H‐7500 transmission electron microscope (Hitachi High‐Technologies, Tokyo, Japan).</p>
</sec>
<sec id="neup12076-sec-0004">
<title>Pathological Findings</title>
<p>No marked gross lesions were detected in the CNS at necropsy, although discoloration of the white matter was observed on the cut surface of the formalin‐fixed brain (Fig. 
<xref rid="neup12076-fig-0001" ref-type="fig">1</xref>
) and spinal cord.</p>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Cut surfaces of the formalin‐fixed brain. Severe discoloration throughout the white matter (arrowheads). (a) Cerebrum and thalamus, hypothalamus level. (b) Frontal lobe. (c) Cerebellum and ventral pons. Scale bar = 1 cm.</p>
</caption>
<graphic id="nlm-graphic-1" xlink:href="NEUP-34-190-g001">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<p>Histologically, thinning of the white matter was observed throughout the brain and spinal cord. LFB staining (Figs 
<xref rid="neup12076-fig-0002" ref-type="fig">2</xref>
,
<xref rid="neup12076-fig-0003" ref-type="fig">3</xref>
a) and immunostaining for myelin basic protein (MBP) revealed marked myelin loss in the white matter. Severe axonal degeneration characterized by swollen and fragmented axons (Fig. 
<xref rid="neup12076-fig-0003" ref-type="fig">3</xref>
b) was also observed. Astrocytosis (Fig. 
<xref rid="neup12076-fig-0003" ref-type="fig">3</xref>
c) and infiltration of ionized calcium‐binding adapter molecule 1 (Iba‐1)‐positive cells (Fig. 
<xref rid="neup12076-fig-0003" ref-type="fig">3</xref>
d) were frequently observed in the lesions. Oligodendrocyte transcription factor 2 (Olig2)‐positive oligodendrocytes slightly decreased in number. These lesions were severe in the white matter of the internal capsule, cerebellum, medulla and spinal cord, but relatively less severe in the white matter of the cerebrum. In the deep white matter of the cerebellum, focal and symmetric necrosis was evident. In the necrotic areas, there were many calcified deposits forming psammoma bodies. The bodies were stained with LFB, PAS and von Kossa (Fig. 
<xref rid="neup12076-fig-0004" ref-type="fig">4</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>The cerebellum.
<styled-content style="fixed-case" toggle="no">LFB‐HE</styled-content>
. (a) The present case. (b) A normal adult cat. Almost complete myelin loss is observed in the present case (a), compared with the control (b). Scale bar = 1 cm.</p>
</caption>
<graphic id="nlm-graphic-3" xlink:href="NEUP-34-190-g002">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>A lesion of the cerebellar white matter. (a)
<styled-content style="fixed-case" toggle="no">LFB‐HE</styled-content>
. Immunostain for (b) neurofilament, (c)
<styled-content style="fixed-case" toggle="no">GFAP</styled-content>
and (d) Iba‐1. In addition to myelin loss (a), severe axonal degeneration/loss (b) and astrogliosis (c) are observed in the area with macrophage infiltration (d). Scale bar = 50 μm.</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="NEUP-34-190-g003">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Psammoma body in the cerebellar white matter. (b)–(e) are higher magnifications of (a): (a) and (b)
<styled-content style="fixed-case" toggle="no">HE</styled-content>
, (c)
<styled-content style="fixed-case" toggle="no">LFB‐HE</styled-content>
, (d)
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
, and (e) von
<styled-content style="fixed-case" toggle="no">K</styled-content>
ossa. The eosinophilic deposits were positive for
<styled-content style="fixed-case" toggle="no">LFB</styled-content>
,
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
and von Kossa stains. Scale bar = 100 μm (a) and 25 μm (b–e).</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="NEUP-34-190-g004">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<p>In the gray matter throughout the brain and spinal cord, prominent proliferation of gemistocytic astrocytes was observed. In the cerebellar cortex, there was moderate loss of granule cells and Purkinje cells with proliferation of Bergmann's glia. Neurofilament‐ and phosphorylated neurofilament‐positive torpedoes were frequently observed in the granular cell layer (Fig. 
<xref rid="neup12076-fig-0005" ref-type="fig">5</xref>
).</p>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>A torpedo in the cerebellum. (a)
<styled-content style="fixed-case" toggle="no">HE</styled-content>
. Immunostain for (b) neurofilament and (c) phosphorylated neurofilament. Neurofilament‐ and phospho‐neurofilament‐positive torpedoes were frequently observed. Scale bar = 25 μm.</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="NEUP-34-190-g005">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<p>A large number of macrophages with broad cytoplasm and single or multiple eccentric nuclei (globoid cells) were observed in the lesions of the brain white matter, especially in the perivascular area (Fig. 
<xref rid="neup12076-fig-0006" ref-type="fig">6</xref>
a). In the thoracic and lumbar cord, where myelin and axons were completely lost, there were a few globoid cells. Immunohistochemically, these globoid cells were strongly positive for Iba‐1 (Fig. 
<xref rid="neup12076-fig-0006" ref-type="fig">6</xref>
a, insertion) and HLA type DR (HLA‐DR). The globoid cells had fine granular or filamentous deposits in their cytoplasm, which were PAS‐positive (Fig. 
<xref rid="neup12076-fig-0006" ref-type="fig">6</xref>
b), Sudan‐black‐negative and non‐metachromatic by TB staining (Fig. 
<xref rid="neup12076-fig-0006" ref-type="fig">6</xref>
c). Ultrastructural examination indicated the detailed features of the cytoplasmic deposits: variably sized, and straight and curved tubular structures (Fig. 
<xref rid="neup12076-fig-0006" ref-type="fig">6</xref>
d). In the same area, mild perivascular infiltration of CD3‐positive lymphocytes was also observed, whereas there was no infiltration of CD20‐positive cells.</p>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Globoid cells in the cerebellar white matter. (a)
<styled-content style="fixed-case" toggle="no">HE</styled-content>
, (b)
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
, (c) toluidine blue (
<styled-content style="fixed-case" toggle="no">TB</styled-content>
) and (d) ultrastructural observation of a globoid cell. Globoid cells were round‐shaped macrophages with broad cytoplasm (a). The deposits in the cytoplasm of a globoid cell were
<styled-content style="fixed-case" toggle="no">PAS</styled-content>
‐positive (b) and non‐metachromatic with
<styled-content style="fixed-case" toggle="no">TB</styled-content>
stain (c). Ultrastructurally, fine tubular structures with a diameter of 30–100 nm were accumulated in the cytoplasm of a globoid cell (d). Scale bar = 25 μm (a), 50 μm (b, c) and 500 nm (d).</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="NEUP-34-190-g006">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<p>The results of immunohistochemistry also demonstrated that the cytoplasm of the globoid cells and of the few reactive astrocytes was positive for inducible nitric oxide (iNOS) (Fig. 
<xref rid="neup12076-fig-0007" ref-type="fig">7</xref>
). Superoxide dismutase (SOD)1 expression was seen in reactive astrocytes and degenerated axons. Granules strongly positive for SOD2 were observed in cytoplasm of globoid cells, excluded by cytoplasmic deposit. Reactive astrocytes were occasionally positive for heme oxygenase‐1 (HO‐1).</p>
<fig fig-type="Figure" xml:lang="en" id="neup12076-fig-0007" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>The cerebellum. Immunohistochemistry for inducible nitric oxide (
<styled-content style="fixed-case" toggle="no">iNOS</styled-content>
),
<styled-content style="fixed-case" toggle="no">SOD</styled-content>
, heme oxygenase‐1 (
<styled-content style="fixed-case" toggle="no">HO</styled-content>
‐1) and
<styled-content style="fixed-case" toggle="no">sHSPs</styled-content>
. (a)
<styled-content style="fixed-case" toggle="no">iNOS</styled-content>
, (b)
<styled-content style="fixed-case" toggle="no">SOD1</styled-content>
, (c)
<styled-content style="fixed-case" toggle="no">SOD2</styled-content>
, (d)
<styled-content style="fixed-case" toggle="no">HO</styled-content>
‐1, (e) αB‐crystallin and (f)
<styled-content style="fixed-case" toggle="no">HSP27</styled-content>
. Positive staining for
<styled-content style="fixed-case" toggle="no">iNOS</styled-content>
and
<styled-content style="fixed-case" toggle="no">SOD2</styled-content>
was observed in the cytoplasm of globoid cells, not including filamentous deposit (a, c).
<styled-content style="fixed-case" toggle="no">SOD1</styled-content>
(b) and
<styled-content style="fixed-case" toggle="no">HO</styled-content>
‐1 (d) expression was occasionally observed in reactive astrocytes. αB‐crystallin expression was observed in reactive astrocytes (e), whereas only few astrocytes were positive for
<styled-content style="fixed-case" toggle="no">HSP27</styled-content>
(f). Scale bar = 50 μm.</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="NEUP-34-190-g007">
<alt-text>figure</alt-text>
<permissions>
<copyright-holder>2013 Japanese Society of Neuropathology</copyright-holder>
<license>
<license-p>This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.</license-p>
</license>
</permissions>
</graphic>
</fig>
<p>On the other hand, reactive astrocytes were mostly positive for αB‐crystallin in a broad area of the CNS. HSP27‐positive astrocytes were rarely observed.</p>
<p>In the peripheral nerves including the brachial plexus, trigeminal nerve and dorsal and ventral roots of the spinal cord, various levels of myelin loss and axonal degeneration were observed, while there were no globoid cells in the lesions. No significant lesions were observed in the visceral organs.</p>
</sec>
<sec id="neup12076-sec-0005">
<title>Discussion</title>
<p>Considering the severe myelin loss throughout the CNS and the appearance of characteristic globoid cells with intracellular PAS‐positive and non‐metachromatic deposits, the present case was diagnosed as feline GLD. In addition, the formation of torpedoes observed in the present case is also common in human GLD.
<xref rid="neup12076-bib-0019" ref-type="ref">19</xref>
</p>
<p>As far as we know, there have been three reports on spontaneous GLD in cats
<xref rid="neup12076-bib-0008" ref-type="ref">8</xref>
,
<xref rid="neup12076-bib-0009" ref-type="ref">9</xref>
,
<xref rid="neup12076-bib-0010" ref-type="ref">10</xref>
and the distribution of the lesions and histological findings in the present case resemble those of GLD in humans
<xref rid="neup12076-bib-0020" ref-type="ref">20</xref>
and in cats,
<xref rid="neup12076-bib-0009" ref-type="ref">9</xref>
indicating that the present feline case is included in the same disease category. This is the first report of GLD in a Japanese domestic cat. In addition, despite the exact age of the cat being unknown, the present case may be relatively old compared with the previous feline GLD cases, probably because of effective care.</p>
<p>Psammoma body‐like calcium deposits probably contained decayed products of myelin because they were LFB‐positive. A slight decrease of olig2‐positive oligodendrocytes in spite of the severe myelin loss suggests that feline GLD may be a disease mostly caused by the dysfunction of myelination, maybe due to psychosine accumulation, rather than by the degeneration of mature myelin. Biochemical analysis or analysis of GALC or the saposin A gene was not performed because all tissues were unfortunately formalin‐fixed at nectropsy because of the suspicion of infectious diseases. To determine whether this feline disease is exactly the same as human GLD, gene analysis should be performed.</p>
<p>The infiltration of CD3‐positive T cells into the lesions in the present case indicates the involvement of immunological responses in the pathogenicity of the feline disease, like in human GLD.
<xref rid="neup12076-bib-0019" ref-type="ref">19</xref>
However, the infiltration was not very severe in view of the longer survival and/or because of steroid treatment.</p>
<p>The production of reactive oxygen species (ROS) was observed in Twitcher mice, a GLD model, as a secondary event following psychosine toxicity.
<xref rid="neup12076-bib-0021" ref-type="ref">21</xref>
The expression of iNOS, which results in ROS production, was reported to be distributed mostly in GFAP‐positive astrocytes in human GLD,
<xref rid="neup12076-bib-0021" ref-type="ref">21</xref>
and in both astrocytes and globoid cells of GLD of rhesus macaques,
<xref rid="neup12076-bib-0007" ref-type="ref">7</xref>
as well as in the present case. On the other hand, in the present case, SOD2, a mitochondrial antioxidant enzyme, was strongly expressed by globoid cells themselves. SOD1
<xref rid="neup12076-bib-0017" ref-type="ref">17</xref>
and HO‐1,
<xref rid="neup12076-bib-0023" ref-type="ref">23</xref>
the molecules usually induced by ROS, were also expressed by reactive astrocytes. Although it is interesting that the iNOS expression patterns vary among animals, it may be a common accelerating factor for disease progression, not an exclusive factor for the pathogenesis. The induction of the antioxidant enzymes may be a physiological consequence in the recovery of neuronal tissue following oxidative damage.</p>
<p>Increased expressions of αB‐crystallin and HSP27 were reported in Rosenthal fibers of Alexander's disease and in GFAP‐positive gliosis lesions of human neurodegenerative diseases,
<xref rid="neup12076-bib-0018" ref-type="ref">18</xref>
but the roles of these molecules in the pathogenicity of such neurodegenerative diseases are still controversial. The strong expressions of the molecules in the CNS of the present case suggest involvement of the molecules in disease progression also in feline GLD.</p>
</sec>
</body>
<back>
<ref-list id="neup12076-bibl-0001">
<title>References</title>
<ref id="neup12076-bib-0001">
<label>1</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0001">
<string-name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Globoid cell leukodystrophy (Krabbe's disease): update</article-title>
.
<source xml:lang="en">J Child Neurol</source>
<year>2003</year>
;
<volume>18</volume>
(
<issue>9</issue>
):
<fpage>595</fpage>
<lpage>603</lpage>
.
<pub-id pub-id-type="pmid">14572137</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0002">
<label>2</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0002">
<string-name>
<surname>Wenger</surname>
<given-names>DA</given-names>
</string-name>
.
<article-title>Murine, canine and non‐human primate models of Krabbe disease</article-title>
.
<source xml:lang="en">Mol Med Today</source>
<year>2000</year>
;
<volume>6</volume>
(
<issue>11</issue>
):
<fpage>449</fpage>
<lpage>451</lpage>
.
<pub-id pub-id-type="pmid">11074371</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0003">
<label>3</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0003">
<string-name>
<surname>Fletcher</surname>
<given-names>JL</given-names>
</string-name>
,
<string-name>
<surname>Williamson</surname>
<given-names>P</given-names>
</string-name>
,
<string-name>
<surname>Horan</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Taylor</surname>
<given-names>RM</given-names>
</string-name>
.
<article-title>Clinical signs and neuropathologic abnormalities in working Australian Kelpies with globoid cell leukodystrophy (Krabbe disease)</article-title>
.
<source xml:lang="en">J Am Vet Med Assoc</source>
<year>2010</year>
;
<volume>237</volume>
(
<issue>6</issue>
):
<fpage>682</fpage>
<lpage>688</lpage>
.
<pub-id pub-id-type="pmid">20839990</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0004">
<label>4</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0004">
<string-name>
<surname>McGraw</surname>
<given-names>RA</given-names>
</string-name>
,
<string-name>
<surname>Carmichael</surname>
<given-names>KP</given-names>
</string-name>
.
<article-title>Molecular basis of globoid cell leukodystrophy in Irish setters</article-title>
.
<source xml:lang="en">Vet J</source>
<year>2006</year>
;
<volume>171</volume>
(
<issue>2</issue>
):
<fpage>370</fpage>
<lpage>372</lpage>
.
<pub-id pub-id-type="pmid">16490723</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0005">
<label>5</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0005">
<string-name>
<surname>Pritchard</surname>
<given-names>DH</given-names>
</string-name>
,
<string-name>
<surname>Napthine</surname>
<given-names>DV</given-names>
</string-name>
,
<string-name>
<surname>Sinclair</surname>
<given-names>AJ</given-names>
</string-name>
.
<article-title>Globoid cell leucodystrophy in polled Dorset sheep</article-title>
.
<source xml:lang="en">Vet Pathol</source>
<year>1980</year>
;
<volume>17</volume>
(
<issue>4</issue>
):
<fpage>399</fpage>
<lpage>405</lpage>
.
<pub-id pub-id-type="pmid">7385575</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0006">
<label>6</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0006">
<string-name>
<surname>Baskin</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Ratterree</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Davison</surname>
<given-names>BB</given-names>
</string-name>
<italic>et al</italic>
<article-title>Genetic galactocerebrosidase deficiency (globoid cell leukodystrophy, Krabbe's disease) in rhesus monkeys (Macaca mulatta)</article-title>
.
<source xml:lang="en">Lab Anim Sci</source>
<year>1998</year>
;
<volume>48</volume>
(
<issue>5</issue>
):
<fpage>476</fpage>
<lpage>482</lpage>
.
<pub-id pub-id-type="pmid">10090061</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0007">
<label>7</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0007">
<string-name>
<surname>Borda</surname>
<given-names>JT</given-names>
</string-name>
,
<string-name>
<surname>Alvarez</surname>
<given-names>X</given-names>
</string-name>
,
<string-name>
<surname>Mohan</surname>
<given-names>M</given-names>
</string-name>
<italic>et al</italic>
<article-title>Clinical and immunopathologic alterations in rhesus macaques affected with globoid cell leukodystrophy</article-title>
.
<source xml:lang="en">Am J Pathol</source>
<year>2008</year>
;
<volume>172</volume>
(
<issue>1</issue>
):
<fpage>98</fpage>
<lpage>111</lpage>
.
<pub-id pub-id-type="pmid">18165263</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0008">
<label>8</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0008">
<string-name>
<surname>Johnson</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>Globoid leukodystrophy in the cat</article-title>
.
<source xml:lang="en">J Am Vet Med Assoc</source>
<year>1970</year>
;
<volume>157</volume>
:
<fpage>2057</fpage>
<lpage>2064</lpage>
.
<pub-id pub-id-type="pmid">5529768</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0009">
<label>9</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0009">
<string-name>
<surname>Salvadori</surname>
<given-names>C</given-names>
</string-name>
,
<string-name>
<surname>Modenato</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Corlazzoli</surname>
<given-names>D</given-names>
</string-name>
,
<string-name>
<surname>Arispici</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Cantile</surname>
<given-names>C</given-names>
</string-name>
.
<article-title>Clinicopathological features of globoid cell leucodystrophy in cats</article-title>
.
<source xml:lang="en">J Comp Pathol</source>
<year>2005</year>
;
<volume>132</volume>
(
<issue>4</issue>
):
<fpage>350</fpage>
<lpage>356</lpage>
.
<pub-id pub-id-type="pmid">15893994</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0010">
<label>10</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0010">
<string-name>
<surname>Sigurdson</surname>
<given-names>CJ</given-names>
</string-name>
,
<string-name>
<surname>Basaraba</surname>
<given-names>RJ</given-names>
</string-name>
,
<string-name>
<surname>Mazzaferro</surname>
<given-names>EM</given-names>
</string-name>
,
<string-name>
<surname>Gould</surname>
<given-names>DH</given-names>
</string-name>
.
<article-title>Globoid cell‐like leukodystrophy in a domestic longhaired cat</article-title>
.
<source xml:lang="en">Vet Pathol</source>
<year>2002</year>
;
<volume>39</volume>
(
<issue>4</issue>
):
<fpage>494</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="pmid">12126153</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0011">
<label>11</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0011">
<string-name>
<surname>Lee</surname>
<given-names>WC</given-names>
</string-name>
,
<string-name>
<surname>Tsoi</surname>
<given-names>YK</given-names>
</string-name>
,
<string-name>
<surname>Dickey</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>DeLucia</surname>
<given-names>MW</given-names>
</string-name>
,
<string-name>
<surname>Dickson</surname>
<given-names>DW</given-names>
</string-name>
,
<string-name>
<surname>Eckman</surname>
<given-names>CB</given-names>
</string-name>
.
<article-title>Suppression of galactosylceramidase (GALC) expression in the twitcher mouse model of globoid cell leukodystrophy (GLD) is caused by nonsense‐mediated mRNA decay (NMD)</article-title>
.
<source xml:lang="en">Neurobiol Dis</source>
<year>2006</year>
;
<volume>23</volume>
(
<issue>2</issue>
):
<fpage>273</fpage>
<lpage>280</lpage>
.
<pub-id pub-id-type="pmid">16759875</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0012">
<label>12</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0012">
<string-name>
<surname>Sakai</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Inui</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Tatsumi</surname>
<given-names>N</given-names>
</string-name>
,
<string-name>
<surname>Fukushima</surname>
<given-names>H</given-names>
</string-name>
<italic>et al</italic>
<article-title>Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe's disease</article-title>
.
<source xml:lang="en">J Neurochem</source>
<year>1996</year>
;
<volume>66</volume>
(
<issue>3</issue>
):
<fpage>1118</fpage>
<lpage>1124</lpage>
.
<pub-id pub-id-type="pmid">8769874</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0013">
<label>13</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0013">
<string-name>
<surname>Potter</surname>
<given-names>GB</given-names>
</string-name>
,
<string-name>
<surname>Santos</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Davisson</surname>
<given-names>MT</given-names>
</string-name>
<italic>et al</italic>
<article-title>Missense mutation in mouse GALC mimics human gene defect and offers new insights into Krabbe disease</article-title>
.
<source xml:lang="en">Hum Mol Genet</source>
<year>2013</year>
;
<volume>22</volume>
(
<issue>17</issue>
):
<fpage>3397</fpage>
<lpage>3414</lpage>
.
<pub-id pub-id-type="pmid">23620143</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0014">
<label>14</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0014">
<string-name>
<surname>Spiegel</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Bach</surname>
<given-names>G</given-names>
</string-name>
,
<string-name>
<surname>Sury</surname>
<given-names>V</given-names>
</string-name>
<italic>et al</italic>
<article-title>A mutation in the saposin A coding region of the prosaposin gene in an infant presenting as Krabbe disease: first report of saposin A deficiency in humans</article-title>
.
<source xml:lang="en">Mol Genet Metab</source>
<year>2005</year>
;
<volume>84</volume>
(
<issue>2</issue>
):
<fpage>160</fpage>
<lpage>166</lpage>
.
<pub-id pub-id-type="pmid">15773042</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0015">
<label>15</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0015">
<string-name>
<surname>Matsuda</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Vanier</surname>
<given-names>MT</given-names>
</string-name>
,
<string-name>
<surname>Saito</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Tohyama</surname>
<given-names>J</given-names>
</string-name>
,
<string-name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</string-name>
.
<article-title>A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late‐onset, chronic form of globoid cell leukodystrophy in the mouse</article-title>
.
<source xml:lang="en">Hum Mol Genet</source>
<year>2001</year>
;
<volume>10</volume>
(
<issue>11</issue>
):
<fpage>1191</fpage>
<lpage>1199</lpage>
.
<pub-id pub-id-type="pmid">11371512</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0016">
<label>16</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0016">
<string-name>
<surname>Victoria</surname>
<given-names>T</given-names>
</string-name>
,
<string-name>
<surname>Rafi</surname>
<given-names>MA</given-names>
</string-name>
,
<string-name>
<surname>Wenger</surname>
<given-names>DA</given-names>
</string-name>
.
<article-title>Cloning of the canine GALC cDNA and idntification of the mutation causing globoid cell leukodystrophy in West Highland White and Cairn terriers</article-title>
.
<source xml:lang="en">Genomics</source>
<year>1996</year>
;
<volume>33</volume>
(
<issue>3</issue>
):
<fpage>457</fpage>
<lpage>462</lpage>
.
<pub-id pub-id-type="pmid">8661004</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0017">
<label>17</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0017">
<string-name>
<surname>Andersen</surname>
<given-names>JK</given-names>
</string-name>
.
<article-title>Oxidative stress in neurodegeneration: cause or consequence?</article-title>
<source xml:lang="en">Nat Med</source>
<year>2004</year>
;
<volume>10</volume>
:
<fpage>S18</fpage>
<lpage>S25</lpage>
.
<pub-id pub-id-type="pmid">15298006</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0018">
<label>18</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0018">
<string-name>
<surname>Van Rijk</surname>
<given-names>A</given-names>
</string-name>
,
<string-name>
<surname>Bloemendal</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Alpha‐B‐crystallin in neuropathology</article-title>
.
<source xml:lang="en">Ophthalmologica</source>
<year>2000</year>
;
<volume>214</volume>
(
<issue>1</issue>
):
<fpage>7</fpage>
<lpage>12</lpage>
.
<pub-id pub-id-type="pmid">10657740</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0019">
<label>19</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0019">
<string-name>
<surname>Itoh</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Hayashi</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Fujioka</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Nagashima</surname>
<given-names>K</given-names>
</string-name>
,
<string-name>
<surname>Morimatsu</surname>
<given-names>Y</given-names>
</string-name>
,
<string-name>
<surname>Matsuyama</surname>
<given-names>H</given-names>
</string-name>
.
<article-title>Immunohistological study of globoid cell leukodystrophy</article-title>
.
<source xml:lang="en">Brain Dev</source>
<year>2002</year>
;
<volume>24</volume>
(
<issue>5</issue>
):
<fpage>284</fpage>
<lpage>290</lpage>
.
<pub-id pub-id-type="pmid">12142065</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0020">
<label>20</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0020">
<string-name>
<surname>Percy</surname>
<given-names>AK</given-names>
</string-name>
,
<string-name>
<surname>Odrezin</surname>
<given-names>GT</given-names>
</string-name>
,
<string-name>
<surname>Knowles</surname>
<given-names>PD</given-names>
</string-name>
,
<string-name>
<surname>Rouah</surname>
<given-names>E</given-names>
</string-name>
,
<string-name>
<surname>Armstrong</surname>
<given-names>DD</given-names>
</string-name>
.
<article-title>Globoid cell leukodystrophy: comparison of neuropathology with magnetic resonance imaging</article-title>
.
<source xml:lang="en">Acta Neuropathol</source>
<year>1994</year>
;
<volume>88</volume>
(
<issue>1</issue>
):
<fpage>26</fpage>
<lpage>32</lpage>
.
<pub-id pub-id-type="pmid">7941969</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0021">
<label>21</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0021">
<string-name>
<surname>Hawkins‐Salsbury</surname>
<given-names>JA</given-names>
</string-name>
,
<string-name>
<surname>Qin</surname>
<given-names>EY</given-names>
</string-name>
,
<string-name>
<surname>Reddy</surname>
<given-names>AS</given-names>
</string-name>
,
<string-name>
<surname>Vogler</surname>
<given-names>CA</given-names>
</string-name>
,
<string-name>
<surname>Sands</surname>
<given-names>MS</given-names>
</string-name>
.
<article-title>Oxidative stress as a therapeutic target in globoid cell leukodystrophy</article-title>
.
<source xml:lang="en">Exp Neurol</source>
<year>2012</year>
;
<volume>237</volume>
(
<issue>2</issue>
):
<fpage>444</fpage>
<lpage>452</lpage>
.
<pub-id pub-id-type="pmid">22849820</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0022">
<label>22</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0022">
<string-name>
<surname>Giri</surname>
<given-names>S</given-names>
</string-name>
,
<string-name>
<surname>Jatana</surname>
<given-names>M</given-names>
</string-name>
,
<string-name>
<surname>Rattan</surname>
<given-names>R</given-names>
</string-name>
,
<string-name>
<surname>Won</surname>
<given-names>JES</given-names>
</string-name>
,
<string-name>
<surname>Singh</surname>
<given-names>I</given-names>
</string-name>
,
<string-name>
<surname>Singh</surname>
<given-names>AK</given-names>
</string-name>
.
<article-title>Galactosylsphingosine (psychosine)‐induced expression of cytokine‐mediated inducible nitric oxide synthases via AP‐1 and C/EBP: implications for Krabbe disease</article-title>
.
<source xml:lang="en">FASEB J</source>
<year>2002</year>
;
<volume>16</volume>
(
<issue>7</issue>
):
<fpage>661</fpage>
<lpage>672</lpage>
.
<pub-id pub-id-type="pmid">11978730</pub-id>
</mixed-citation>
</ref>
<ref id="neup12076-bib-0023">
<label>23</label>
<mixed-citation publication-type="journal" id="neup12076-cit-0023">
<string-name>
<surname>Schipper</surname>
<given-names>HM</given-names>
</string-name>
,
<string-name>
<surname>Song</surname>
<given-names>W</given-names>
</string-name>
,
<string-name>
<surname>Zukor</surname>
<given-names>H</given-names>
</string-name>
<italic>et al</italic>
<article-title>Heme oxygenase‐1 and neurodegeneration: expanding frontiers of engagement</article-title>
.
<source xml:lang="en">J Neurochem</source>
<year>2009</year>
;
<volume>110</volume>
(
<issue>2</issue>
):
<fpage>469</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="pmid">19457088</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000213 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000213 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7167846
   |texte=   Globoid cell leukodystrophy (Krabbe's disease) in a Japanese domestic cat
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24812701" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021