Danse-thérapie et Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

Identifieur interne : 000289 ( Pmc/Corpus ); précédent : 000288; suivant : 000290

A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

Auteurs : Riccardo Bravi ; Eros Quarta ; Erez J. Cohen ; Anna Gottard ; Diego Minciacchi

Source :

RBID : PMC:4174732

Abstract

A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.


Url:
DOI: 10.3389/fnsys.2014.00181
PubMed: 25309355
PubMed Central: 4174732

Links to Exploration step

PMC:4174732

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements</title>
<author>
<name sortKey="Bravi, Riccardo" sort="Bravi, Riccardo" uniqKey="Bravi R" first="Riccardo" last="Bravi">Riccardo Bravi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quarta, Eros" sort="Quarta, Eros" uniqKey="Quarta E" first="Eros" last="Quarta">Eros Quarta</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Erez J" sort="Cohen, Erez J" uniqKey="Cohen E" first="Erez J." last="Cohen">Erez J. Cohen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gottard, Anna" sort="Gottard, Anna" uniqKey="Gottard A" first="Anna" last="Gottard">Anna Gottard</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Statistics, Informatics, Applications, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Minciacchi, Diego" sort="Minciacchi, Diego" uniqKey="Minciacchi D" first="Diego" last="Minciacchi">Diego Minciacchi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25309355</idno>
<idno type="pmc">4174732</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174732</idno>
<idno type="RBID">PMC:4174732</idno>
<idno type="doi">10.3389/fnsys.2014.00181</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000289</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000289</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements</title>
<author>
<name sortKey="Bravi, Riccardo" sort="Bravi, Riccardo" uniqKey="Bravi R" first="Riccardo" last="Bravi">Riccardo Bravi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Quarta, Eros" sort="Quarta, Eros" uniqKey="Quarta E" first="Eros" last="Quarta">Eros Quarta</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Erez J" sort="Cohen, Erez J" uniqKey="Cohen E" first="Erez J." last="Cohen">Erez J. Cohen</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gottard, Anna" sort="Gottard, Anna" uniqKey="Gottard A" first="Anna" last="Gottard">Anna Gottard</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Statistics, Informatics, Applications, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Minciacchi, Diego" sort="Minciacchi, Diego" uniqKey="Minciacchi D" first="Diego" last="Minciacchi">Diego Minciacchi</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Systems Neuroscience</title>
<idno type="eISSN">1662-5137</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Arias, P" uniqKey="Arias P">P. Arias</name>
</author>
<author>
<name sortKey="Cudeiro, J" uniqKey="Cudeiro J">J. Cudeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aydin, T" uniqKey="Aydin T">T. Aydin</name>
</author>
<author>
<name sortKey="Yildiz, Y" uniqKey="Yildiz Y">Y. Yildiz</name>
</author>
<author>
<name sortKey="Yanmis, I" uniqKey="Yanmis I">I. Yanmis</name>
</author>
<author>
<name sortKey="Yildiz, C" uniqKey="Yildiz C">C. Yildiz</name>
</author>
<author>
<name sortKey="Kalyon, T A" uniqKey="Kalyon T">T. A. Kalyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bove, M" uniqKey="Bove M">M. Bove</name>
</author>
<author>
<name sortKey="Tacchino, A" uniqKey="Tacchino A">A. Tacchino</name>
</author>
<author>
<name sortKey="Pelosin, E" uniqKey="Pelosin E">E. Pelosin</name>
</author>
<author>
<name sortKey="Moisello, C" uniqKey="Moisello C">C. Moisello</name>
</author>
<author>
<name sortKey="Abbruzzese, G" uniqKey="Abbruzzese G">G. Abbruzzese</name>
</author>
<author>
<name sortKey="Ghilardi, M F" uniqKey="Ghilardi M">M. F. Ghilardi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bravi, R" uniqKey="Bravi R">R. Bravi</name>
</author>
<author>
<name sortKey="Del Tongo, C" uniqKey="Del Tongo C">C. Del Tongo</name>
</author>
<author>
<name sortKey="Cohen, E J" uniqKey="Cohen E">E. J. Cohen</name>
</author>
<author>
<name sortKey="Dalle Mura, G" uniqKey="Dalle Mura G">G. Dalle Mura</name>
</author>
<author>
<name sortKey="Tognetti, A" uniqKey="Tognetti A">A. Tognetti</name>
</author>
<author>
<name sortKey="Minciacchi, D" uniqKey="Minciacchi D">D. Minciacchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaghan, M J" uniqKey="Callaghan M">M. J. Callaghan</name>
</author>
<author>
<name sortKey="Selfe, J" uniqKey="Selfe J">J. Selfe</name>
</author>
<author>
<name sortKey="Bagley, P J" uniqKey="Bagley P">P. J. Bagley</name>
</author>
<author>
<name sortKey="Oldham, J A" uniqKey="Oldham J">J. A. Oldham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dannenberg, R B" uniqKey="Dannenberg R">R. B. Dannenberg</name>
</author>
<author>
<name sortKey="Mohan, S" uniqKey="Mohan S">S. Mohan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Dreu, M J" uniqKey="De Dreu M">M. J. de Dreu</name>
</author>
<author>
<name sortKey="Van Der Wilk, A S D" uniqKey="Van Der Wilk A">A. S. D. van der Wilk</name>
</author>
<author>
<name sortKey="Poppe, E" uniqKey="Poppe E">E. Poppe</name>
</author>
<author>
<name sortKey="Kwakkel, G" uniqKey="Kwakkel G">G. Kwakkel</name>
</author>
<author>
<name sortKey="Van Wegen, E E H" uniqKey="Van Wegen E">E. E. H. van Wegen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delignieres, D" uniqKey="Delignieres D">D. Delignières</name>
</author>
<author>
<name sortKey="Lemoine, L" uniqKey="Lemoine L">L. Lemoine</name>
</author>
<author>
<name sortKey="Torre, K" uniqKey="Torre K">K. Torre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delignieres, D" uniqKey="Delignieres D">D. Delignières</name>
</author>
<author>
<name sortKey="Torre, K" uniqKey="Torre K">K. Torre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Olmo, M F" uniqKey="Del Olmo M">M. F. del Olmo</name>
</author>
<author>
<name sortKey="Arias, P" uniqKey="Arias P">P. Arias</name>
</author>
<author>
<name sortKey="Furio, M C" uniqKey="Furio M">M. C. Furio</name>
</author>
<author>
<name sortKey="Pozo, M A" uniqKey="Pozo M">M. A. Pozo</name>
</author>
<author>
<name sortKey="Cudeiro, J" uniqKey="Cudeiro J">J. Cudeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Del Olmo, M F" uniqKey="Del Olmo M">M. F. del Olmo</name>
</author>
<author>
<name sortKey="Cudeiro, J" uniqKey="Cudeiro J">J. Cudeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diggle, P" uniqKey="Diggle P">P. Diggle</name>
</author>
<author>
<name sortKey="Heagerty, P" uniqKey="Heagerty P">P. Heagerty</name>
</author>
<author>
<name sortKey="Liang, K Y" uniqKey="Liang K">K. Y. Liang</name>
</author>
<author>
<name sortKey="Zeger, S" uniqKey="Zeger S">S. Zeger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elliott, M T" uniqKey="Elliott M">M. T. Elliott</name>
</author>
<author>
<name sortKey="Welchman, A E" uniqKey="Welchman A">A. E. Welchman</name>
</author>
<author>
<name sortKey="Wing, A M" uniqKey="Wing A">A. M. Wing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellis, M" uniqKey="Ellis M">M. Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freyer, F" uniqKey="Freyer F">F. Freyer</name>
</author>
<author>
<name sortKey="Reinacher, M" uniqKey="Reinacher M">M. Reinacher</name>
</author>
<author>
<name sortKey="Nolte, G" uniqKey="Nolte G">G. Nolte</name>
</author>
<author>
<name sortKey="Dinse, H R" uniqKey="Dinse H">H. R. Dinse</name>
</author>
<author>
<name sortKey="Ritter, P" uniqKey="Ritter P">P. Ritter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grigg, P" uniqKey="Grigg P">P. Grigg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halseth, T" uniqKey="Halseth T">T. Halseth</name>
</author>
<author>
<name sortKey="Mcchesney, J W" uniqKey="Mcchesney J">J. W. McChesney</name>
</author>
<author>
<name sortKey="Debeliso, M" uniqKey="Debeliso M">M. Debeliso</name>
</author>
<author>
<name sortKey="Vaughn, R" uniqKey="Vaughn R">R. Vaughn</name>
</author>
<author>
<name sortKey="Lien, J" uniqKey="Lien J">J. Lien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, J T" uniqKey="Han J">J. T. Han</name>
</author>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hausdorff, J M" uniqKey="Hausdorff J">J. M. Hausdorff</name>
</author>
<author>
<name sortKey="Lowenthal, J" uniqKey="Lowenthal J">J. Lowenthal</name>
</author>
<author>
<name sortKey="Herman, T" uniqKey="Herman T">T. Herman</name>
</author>
<author>
<name sortKey="Gruendlinger, L" uniqKey="Gruendlinger L">L. Gruendlinger</name>
</author>
<author>
<name sortKey="Peretz, C" uniqKey="Peretz C">C. Peretz</name>
</author>
<author>
<name sortKey="Giladi, N" uniqKey="Giladi N">N. Giladi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huys, R" uniqKey="Huys R">R. Huys</name>
</author>
<author>
<name sortKey="Studenka, B E" uniqKey="Studenka B">B. E. Studenka</name>
</author>
<author>
<name sortKey="Rheaume, N R" uniqKey="Rheaume N">N. R. Rheaume</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Jirsa, V K" uniqKey="Jirsa V">V. K. Jirsa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
<author>
<name sortKey="Spencer, R" uniqKey="Spencer R">R. Spencer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kase, K" uniqKey="Kase K">K. Kase</name>
</author>
<author>
<name sortKey="Wallis, J" uniqKey="Wallis J">J. Wallis</name>
</author>
<author>
<name sortKey="Kase, T" uniqKey="Kase T">T. Kase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keele, S W" uniqKey="Keele S">S. W. Keele</name>
</author>
<author>
<name sortKey="Ivry, R" uniqKey="Ivry R">R. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelso, J A S" uniqKey="Kelso J">J. A. S. Kelso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kneeshaw, D" uniqKey="Kneeshaw D">D. Kneeshaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kugler, P N" uniqKey="Kugler P">P. N. Kugler</name>
</author>
<author>
<name sortKey="Kelso, J A S" uniqKey="Kelso J">J. A. S. Kelso</name>
</author>
<author>
<name sortKey="Turvey, M T" uniqKey="Turvey M">M. T. Turvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leiner, H C" uniqKey="Leiner H">H. C. Leiner</name>
</author>
<author>
<name sortKey="Leiner, A L" uniqKey="Leiner A">A. L. Leiner</name>
</author>
<author>
<name sortKey="Dow, R S" uniqKey="Dow R">R. S. Dow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitin, D J" uniqKey="Levitin D">D. J. Levitin</name>
</author>
<author>
<name sortKey="Cook, P R" uniqKey="Cook P">P. R. Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, M" uniqKey="Levy M">M. Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madison, G" uniqKey="Madison G">G. Madison</name>
</author>
<author>
<name sortKey="Paulin, J" uniqKey="Paulin J">J. Paulin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcintosh, G C" uniqKey="Mcintosh G">G. C. McIntosh</name>
</author>
<author>
<name sortKey="Brown, S H" uniqKey="Brown S">S. H. Brown</name>
</author>
<author>
<name sortKey="Rice, R R" uniqKey="Rice R">R. R. Rice</name>
</author>
<author>
<name sortKey="Thaut, M H" uniqKey="Thaut M">M. H. Thaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckinney, M F" uniqKey="Mckinney M">M. F. McKinney</name>
</author>
<author>
<name sortKey="Moelants, D" uniqKey="Moelants D">D. Moelants</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckinney, M F" uniqKey="Mckinney M">M. F. McKinney</name>
</author>
<author>
<name sortKey="Moelants, D" uniqKey="Moelants D">D. Moelants</name>
</author>
<author>
<name sortKey="Davies, E P" uniqKey="Davies E">E. P. Davies</name>
</author>
<author>
<name sortKey="Klapuri, A" uniqKey="Klapuri A">A. Klapuri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, D" uniqKey="Morris D">D. Morris</name>
</author>
<author>
<name sortKey="Jones, D" uniqKey="Jones D">D. Jones</name>
</author>
<author>
<name sortKey="Ryan, H" uniqKey="Ryan H">H. Ryan</name>
</author>
<author>
<name sortKey="Ryan, C G" uniqKey="Ryan C">C. G. Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthen, B O" uniqKey="Muthen B">B. O. Muthén</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nolte, G" uniqKey="Nolte G">G. Nolte</name>
</author>
<author>
<name sortKey="Bai, O" uniqKey="Bai O">O. Bai</name>
</author>
<author>
<name sortKey="Wheaton, L" uniqKey="Wheaton L">L. Wheaton</name>
</author>
<author>
<name sortKey="Mari, Z" uniqKey="Mari Z">Z. Mari</name>
</author>
<author>
<name sortKey="Vorbach, S" uniqKey="Vorbach S">S. Vorbach</name>
</author>
<author>
<name sortKey="Hallett, M" uniqKey="Hallett M">M. Hallett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinheiro, J C" uniqKey="Pinheiro J">J. C. Pinheiro</name>
</author>
<author>
<name sortKey="Bates, D M" uniqKey="Bates D">D. M. Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proske, U" uniqKey="Proske U">U. Proske</name>
</author>
<author>
<name sortKey="Gandevia, S C" uniqKey="Gandevia S">S. C. Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quinn, S" uniqKey="Quinn S">S. Quinn</name>
</author>
<author>
<name sortKey="Watt, R" uniqKey="Watt R">R. Watt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, S M" uniqKey="Rao S">S. M. Rao</name>
</author>
<author>
<name sortKey="Mayer, A R" uniqKey="Mayer A">A. R. Mayer</name>
</author>
<author>
<name sortKey="Harrington, D L" uniqKey="Harrington D">D. L. Harrington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, B H" uniqKey="Repp B">B. H. Repp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, B H" uniqKey="Repp B">B. H. Repp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, B H" uniqKey="Repp B">B. H. Repp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, B H" uniqKey="Repp B">B. H. Repp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Repp, B H" uniqKey="Repp B">B. H. Repp</name>
</author>
<author>
<name sortKey="Steinman, S R" uniqKey="Steinman S">S. R. Steinman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riemann, B" uniqKey="Riemann B">B. Riemann</name>
</author>
<author>
<name sortKey="Lephart, S" uniqKey="Lephart S">S. Lephart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, S D" uniqKey="Robertson S">S. D. Robertson</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Lantero, D A" uniqKey="Lantero D">D. A. Lantero</name>
</author>
<author>
<name sortKey="Bojczyk, K G" uniqKey="Bojczyk K">K. G. Bojczyk</name>
</author>
<author>
<name sortKey="Spencer, R M" uniqKey="Spencer R">R. M. Spencer</name>
</author>
<author>
<name sortKey="Doffin, J G" uniqKey="Doffin J">J. G. Doffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saijo, N" uniqKey="Saijo N">N. Saijo</name>
</author>
<author>
<name sortKey="Gomi, H" uniqKey="Gomi H">H. Gomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schlerf, J E" uniqKey="Schlerf J">J. E. Schlerf</name>
</author>
<author>
<name sortKey="Spencer, R M" uniqKey="Spencer R">R. M. Spencer</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoner, G" uniqKey="Schoner G">G. Schoner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semjen, A" uniqKey="Semjen A">A. Semjen</name>
</author>
<author>
<name sortKey="Garcia Colera, A" uniqKey="Garcia Colera A">A. Garcia-Colera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semjen, A" uniqKey="Semjen A">A. Semjen</name>
</author>
<author>
<name sortKey="Schulze, H H" uniqKey="Schulze H">H. H. Schulze</name>
</author>
<author>
<name sortKey="Vorberg, D" uniqKey="Vorberg D">D. Vorberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simoneau, G G" uniqKey="Simoneau G">G. G. Simoneau</name>
</author>
<author>
<name sortKey="Degner, R M" uniqKey="Degner R">R. M. Degner</name>
</author>
<author>
<name sortKey="Kramper, C A" uniqKey="Kramper C">C. A. Kramper</name>
</author>
<author>
<name sortKey="Kittleson, K H" uniqKey="Kittleson K">K. H. Kittleson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, R M C" uniqKey="Spencer R">R. M. C. Spencer</name>
</author>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, R M C" uniqKey="Spencer R">R. M. C. Spencer</name>
</author>
<author>
<name sortKey="Verstynen, T" uniqKey="Verstynen T">T. Verstynen</name>
</author>
<author>
<name sortKey="Brett, M" uniqKey="Brett M">M. Brett</name>
</author>
<author>
<name sortKey="Ivry, R" uniqKey="Ivry R">R. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, R M C" uniqKey="Spencer R">R. M. C. Spencer</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, R M C" uniqKey="Spencer R">R. M. C. Spencer</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Diedrichsen, J" uniqKey="Diedrichsen J">J. Diedrichsen</name>
</author>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Studenka, B E" uniqKey="Studenka B">B. E. Studenka</name>
</author>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teki, S" uniqKey="Teki S">S. Teki</name>
</author>
<author>
<name sortKey="Grube, M" uniqKey="Grube M">M. Grube</name>
</author>
<author>
<name sortKey="Griffiths, T D" uniqKey="Griffiths T">T. D. Griffiths</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, M H" uniqKey="Thaut M">M. H. Thaut</name>
</author>
<author>
<name sortKey="Mcintosh, G C" uniqKey="Mcintosh G">G. C. McIntosh</name>
</author>
<author>
<name sortKey="Rice, R R" uniqKey="Rice R">R. R. Rice</name>
</author>
<author>
<name sortKey="Miller, R A" uniqKey="Miller R">R. A. Miller</name>
</author>
<author>
<name sortKey="Rathbun, J" uniqKey="Rathbun J">J. Rathbun</name>
</author>
<author>
<name sortKey="Brault, J M" uniqKey="Brault J">J. M. Brault</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turvey, M T" uniqKey="Turvey M">M. T. Turvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wing, A M" uniqKey="Wing A">A. M. Wing</name>
</author>
<author>
<name sortKey="Kristofferson, A B" uniqKey="Kristofferson A">A. B. Kristofferson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wing, A M" uniqKey="Wing A">A. M. Wing</name>
</author>
<author>
<name sortKey="Kristofferson, A B" uniqKey="Kristofferson A">A. B. Kristofferson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wittwer, J E" uniqKey="Wittwer J">J. E. Wittwer</name>
</author>
<author>
<name sortKey="Webster, K E" uniqKey="Webster K">K. E. Webster</name>
</author>
<author>
<name sortKey="Hill, K" uniqKey="Hill K">K. Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D. Xu</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Ashe, J" uniqKey="Ashe J">J. Ashe</name>
</author>
<author>
<name sortKey="Bushara, K O" uniqKey="Bushara K">K. O. Bushara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zatorre, R J" uniqKey="Zatorre R">R. J. Zatorre</name>
</author>
<author>
<name sortKey="Halpern, A R" uniqKey="Halpern A">A. R. Halpern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Rosenbaum, D A" uniqKey="Rosenbaum D">D. A. Rosenbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zelaznik, H N" uniqKey="Zelaznik H">H. N. Zelaznik</name>
</author>
<author>
<name sortKey="Spencer, R M C" uniqKey="Spencer R">R. M. C. Spencer</name>
</author>
<author>
<name sortKey="Ivry, R B" uniqKey="Ivry R">R. B. Ivry</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Syst Neurosci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Syst Neurosci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Syst. Neurosci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Systems Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="epub">1662-5137</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25309355</article-id>
<article-id pub-id-type="pmc">4174732</article-id>
<article-id pub-id-type="doi">10.3389/fnsys.2014.00181</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Neuroscience</subject>
<subj-group>
<subject>Original Research Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Bravi</surname>
<given-names>Riccardo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Quarta</surname>
<given-names>Eros</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cohen</surname>
<given-names>Erez J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gottard</surname>
<given-names>Anna</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/180180"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Minciacchi</surname>
<given-names>Diego</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/116264"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Experimental and Clinical Medicine, University of Florence</institution>
<country>Florence, Italy</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Department of Statistics, Informatics, Applications, University of Florence</institution>
<country>Florence, Italy</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Mikhail Lebedev, Duke University, USA</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Peter Praamstra, Radboud University Nijmegen, Netherlands; Yuri P. Ivanenko, IRCCS Fondazione Santa Lucia, Italy</p>
</fn>
<corresp id="fn001">*Correspondence: Diego Minciacchi, Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 63, Florence I-50134, Italy e-mail:
<email xlink:type="simple">diego@unifi.it</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to the journal Frontiers in Systems Neuroscience.</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>25</day>
<month>9</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<volume>8</volume>
<elocation-id>181</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>6</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>9</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Bravi, Quarta, Cohen, Gottard and Minciacchi.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.</p>
</abstract>
<kwd-group>
<kwd>sensory-motor integration</kwd>
<kwd>timing</kwd>
<kwd>isochronous movements</kwd>
<kwd>auditory imagery</kwd>
<kwd>music</kwd>
</kwd-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="4"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="68"></ref-count>
<page-count count="13"></page-count>
<word-count count="11096"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="s1">
<title>Introduction</title>
<p>Considerable evidence suggest that the study of human motor rhythmic performance synchronized to auditory stimuli is useful in unraveling neural aspects of action timing. The effects of different types of audio information (i.e., metronome or music) on motor performance have been extensively investigated in studies of finger tapping (Repp,
<xref rid="B41" ref-type="bibr">1999a</xref>
,
<xref rid="B42" ref-type="bibr">b</xref>
; del Olmo and Cudeiro,
<xref rid="B11" ref-type="bibr">2005</xref>
) and of gait (see Wittwer et al.,
<xref rid="B64" ref-type="bibr">2013</xref>
). The interest for the effects of paced auditory stimuli on rhythmic activities stems from the proven notion that this design of sensorimotor integration is shown to be an effective tool for gross motor rehabilitation in neurological diseases by improving spatial-temporal parameters and decreasing temporal variability (Thaut et al.,
<xref rid="B60" ref-type="bibr">1996</xref>
; McIntosh et al.,
<xref rid="B31" ref-type="bibr">1997</xref>
; del Olmo and Cudeiro,
<xref rid="B11" ref-type="bibr">2005</xref>
; del Olmo et al.,
<xref rid="B10" ref-type="bibr">2006</xref>
; Hausdorff et al.,
<xref rid="B19" ref-type="bibr">2007</xref>
; Arias and Cudeiro,
<xref rid="B1" ref-type="bibr">2008</xref>
; de Dreu et al.,
<xref rid="B7" ref-type="bibr">2012</xref>
).</p>
<p>In a recent study we showed how do auditory stimuli with distinct characteristics, streams of clicks or excerpts of music, influence the precision of repeated isochronous wrist's flexion-extensions (IWFEs), performed with no direct surface opposition and minimizing visual information (Bravi et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
). Some reports have described a reduction of temporal variability for rhythmic movements in the presence of paced auditory stimuli. Our data, however, displayed clearly that when both tactile and visual information are minimized, the listening alone to paced auditory stimuli does not improve the precision of an isochronous performance. Also, in a previous study on timing of rhythmic movements a lack of reduction in temporal variability was observed during paced tapping when compared to unpaced tapping (Schlerf et al.,
<xref rid="B49" ref-type="bibr">2007</xref>
). These findings have prompted us to investigate other tools that might augment the precision of rhythmic movement.</p>
<p>In addition, investigations on the millisecond time scale distinguish two forms of time control, explicit timing and implicit timing, later renamed as event-based timing and emergent timing, respectively, (Spencer and Ivry,
<xref rid="B54" ref-type="bibr">2005</xref>
). Event-based timing has evolved from the information processing approach, asserting the existence of internal timekeepers for motor control, and is well represented by the two-level model proposed by Wing and Kristofferson (
<xref rid="B62" ref-type="bibr">1973a</xref>
,
<xref rid="B63" ref-type="bibr">b</xref>
). According to the Wing and Kristofferson model, temporal precision in a self-paced tapping is limited by variability in the central timekeeper and by variability arising from the peripheral motor system (Semjen et al.,
<xref rid="B52" ref-type="bibr">2000</xref>
). The emergent timing perspective is derived from the dynamic systems theory, claiming that there are no representational clocks (Kugler et al.,
<xref rid="B26" ref-type="bibr">1980</xref>
; Kelso,
<xref rid="B24" ref-type="bibr">1995</xref>
) and that timing emerges from dynamic control of nontemporal movements parameters (Schoner,
<xref rid="B50" ref-type="bibr">2002</xref>
; Huys et al.,
<xref rid="B20" ref-type="bibr">2008</xref>
) such as stiffness which is playing a major role for determining movement frequency (Turvey,
<xref rid="B61" ref-type="bibr">1977</xref>
; Delignières et al.,
<xref rid="B8" ref-type="bibr">2004</xref>
). For the study of timing, the task most widely employed was the performance of repeated movements. Among the rhythmic motor tasks, tapping is thought to be under the control of the event-based timing while circle drawing is thought to be under the control of the emergent timing (Zelaznik et al.,
<xref rid="B68" ref-type="bibr">2002</xref>
). Air tapping, a motor task performed in the air with no surface contact, represents a more recent approach for the study of timing. This motor task possesses specific characteristics of both the event-based and emergently motor rhythmic tasks due to the presence of salient motor events and smooth effector trajectories (Delignières and Torre,
<xref rid="B9" ref-type="bibr">2011</xref>
).</p>
<p>The participation of the cerebellum in timing was once a controversial issue (Leiner et al.,
<xref rid="B27" ref-type="bibr">1993</xref>
; Rao et al.,
<xref rid="B40" ref-type="bibr">2001</xref>
). To date, the cerebellar timing hypothesis, first formulated by Keele and Ivry (
<xref rid="B23" ref-type="bibr">1990</xref>
), is widely accepted. According to this hypothesis, the cerebellum functions as an internal timing device in the milliseconds range for both motor and non-motor processes (Ivry and Spencer,
<xref rid="B21" ref-type="bibr">2004</xref>
). In particular, the involvement of the inferior olive and the climbing fiber system in timing was shown to take part in encoding temporal information independent of motor behavior (Xu et al.,
<xref rid="B65" ref-type="bibr">2006</xref>
). Investigations using rhythmic tapping tasks have provided evidences to support this hypothesis. In a study on individuals with unilateral cerebellar lesions, participants were asked to perform timed tapping, intermittent circle drawing, and continuous circle drawing tasks. Performances were impaired only when tasks were executed with the ipsilesional hand and involved movements theorized to require event-based but not emergent timing (Spencer et al.,
<xref rid="B57" ref-type="bibr">2003</xref>
).</p>
<p>The timing mode of rhythmic movements can change over time within a single task (Studenka and Zelaznik,
<xref rid="B58" ref-type="bibr">2008</xref>
; Zelaznik and Rosenbaum,
<xref rid="B67" ref-type="bibr">2010</xref>
; Delignières and Torre,
<xref rid="B9" ref-type="bibr">2011</xref>
). The discrete or continuous character of movements performed in the rhythmic tasks is considered to be a key factor for the involvement of the event-based or the emergent timing mode (Robertson et al.,
<xref rid="B47" ref-type="bibr">1999</xref>
; Huys et al.,
<xref rid="B20" ref-type="bibr">2008</xref>
). In addition, neurophysiological and neuroanatomical studies provided bases to suggest that neural circuits are not completely independent of the timing functions. For discrete movements, it is proposed that explicit processes for timing arise as coordinated activity in the core striatal and olivo-cerebellar networks that are interconnected, with each other and with the cerebral cortex, through multiple synaptic pathways (Spencer et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
; Teki et al.,
<xref rid="B59" ref-type="bibr">2012</xref>
). Conversely continuous movements, by nature, lack an event structure. For these movements timing may be achieved through the control of a secondary variable, such as angular velocity, which does not involve the cerebellum.</p>
<p>Kinesio® Tex Tape is an elastic cotton strip with an acrylic adhesive developed by Japanese chiropractor, Dr. Kenso Kase, in the 1970's (Kase et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). Kinesio® Tex taping (KTT) is a kinesthetic method commonly used in clinical practice for treating athletic injuries and a variety of physical disorders, with the purpose of mimicking the thickness and flexibility of the skin (Morris et al.,
<xref rid="B34" ref-type="bibr">2013</xref>
). It is claimed that the application of KTT causes micro convolutions, or folds, in the skin; it brings about a lifting of the skin away from the tissue beneath, favoring the release of pressure from tender tissues underneath and providing space for lymphatic fluid movement (Morris et al.,
<xref rid="B34" ref-type="bibr">2013</xref>
).</p>
<p>It was proposed that KTT is able to enhance somatosensory inputs and influence proprioception through stimulation of cutaneous mechanoreceptors (Callaghan et al.,
<xref rid="B5" ref-type="bibr">2002</xref>
; Kneeshaw,
<xref rid="B25" ref-type="bibr">2002</xref>
; Halseth et al.,
<xref rid="B17" ref-type="bibr">2004</xref>
). We have, therefore, chosen KTT as a tool for possibly augmenting the precision of rhythmic movements. While little is known about the potential proprioceptive effect of KTT, the stimulation of cutaneous mechanoreceptors is believed to be induced by the pressure and stretching effect provoked by KTT application on the skin (Grigg,
<xref rid="B16" ref-type="bibr">1994</xref>
).</p>
<p>In the current study we investigate whether the application of KTT on skin is able to reduce the timing variability of repetitive rhythmic movements. We also attempt to understand whether a causal relationship subsists between such reduction and functional augmentation of central structures involved, brought about by relieving, at least partially, these structures from time control.</p>
<p>We thus performed an experiment in which subjects, tested with and without KTT, participated in sessions in which sets of repeated IWFEs were performed under different conditions (i.e., without audio information, with paced audio in the form of clicks or music, and in the recall conditions; see Bravi et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
). Our IWFEs performed with no direct surface opposition and while minimizing visual information, could potentially employ, as air finger tapping movements, both event-based and emergent timing processes. Participants were not instructed about the way to perform the IWFEs since it was showed that in the absence of specific instructions, the production of movements with no contact surface elicits alternatively different timing modes (Delignières and Torre,
<xref rid="B9" ref-type="bibr">2011</xref>
).</p>
<p>We hypothesize that KTT, due to its aforementioned characteristics, is able to cause an improvement of the wrist joint proprioception due to augmented afferent input via the stimulation of cutaneous mechanoreceptors (Riemann and Lephart,
<xref rid="B46" ref-type="bibr">2002</xref>
). The improvement in wrist joint proprioception would stabilize the motor effector during the performance, causing the IWFEs to be less discrete and thus smoother. Consequently this would entail the shifting from an event-based to emergent process to control the production of the IWFEs (Spencer et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
; Huys et al.,
<xref rid="B20" ref-type="bibr">2008</xref>
). Therefore, by relieving, at least partially, the central structures from timing control, KTT would release resources and allow for a net augmentation of the central efficiency and, consequently, reduce the timing variability of IWFEs.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<sec>
<title>Participants</title>
<p>A group of 25 right-handed volunteers (21 males, ages 20–27, mean 24.1 ± 2.4 years; 4 females, ages 18–27, mean 23.0 ± 2.7 years) took part in the recording sessions. All participants were naive to the purpose of the study; they were neither musically trained nor listeners of a classical music repertoire, and reported no auditory, motor, or other neurological impairments. The experimental protocol conformed to the requirements of the Federal Policy for the Protection of Human Subjects (U.S. Office of Science and Technology Policy) and of the Declaration of Helsinki, and has been approved by the Research Ethics Board of our Institution (Local Ethics Committee, Azienda Ospedaliero Universitaria Careggi, Florence, Italy). All participants provided an informed consent in written form.</p>
</sec>
<sec>
<title>Set up</title>
<p>Each subject was tested individually, sitting upright on a chair with the legs comfortably positioned on leg-rest (Figure
<xref ref-type="fig" rid="F1">1A</xref>
). The participant's right forearm was placed on the armrest, in a relaxed horizontal position. The wrist and hand of the subject were free to move in mid-air with no direct opposition, thus minimizing tactile information. In order to reduce possible interference of visual information, the subject was requested to wear a blindfold. Environmental noise was reduced by the use of headphones (K 240 Studio, AKG Acoustics GmbH, Wien, AT), which were also used for the clean delivery of audio information. This setup was designed to minimize all information that is known to influence motor strategies (i.e., visual, tactile, and environmental noise) and that may result in a different motor performance (Bove et al.,
<xref rid="B3" ref-type="bibr">2009</xref>
; Saijo and Gomi,
<xref rid="B48" ref-type="bibr">2010</xref>
). A triaxial accelerometer (ADXL330, Analog Devices Inc., Norwood, MA 02062) was placed on the dorsal aspect of the hand, over the proximal part of the 2nd–3rd metacarpal bones. The sensor, placed in a small pocket, was kept in position by an elastic band and secured by a Velcro strap. Sensor output was acquired and digitized at 200 Hz through PCI-6071E (12-Bit E Series Multifunction DAQ, National Instruments, Austin, TX, USA).</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>(A)</bold>
The subject is seated on a chair with armrests, wearing an eye-mask and headphones. The triaxial accelerometer is placed over the 2nd–3rd metacarpal bones. Subject is asked to perform sets of IWFEs.
<bold>(B)</bold>
The two sessions, one with N/KTT and one with KTT (color-coded in pink) are designed to record first IWFEs in condition free from auditory information (in the absence of auditory information, free = Fr, self-paced = SP; slower than SP = SP; faster than >SP = >>SP) and then in conditions related to clicks (during the listening of clicks = Cl; recall after 2 min from the end of the Cl condition = Cl2; one block consisting of three pairs of Cl and Cl2 sets performed at three different reference tempi: RT1, RT2, and RT3) followed by those related to music (during the listening of music = Mu; recall after 2 min from the end of the Mu condition = Mu2; one block consisting of three pairs Mu and Mu2 sets performed at three different reference tempi: RT1, RT2, and RT3), or vice versa. In this and in the following figures the conditions and associated results are color-coded.
<bold>(C)</bold>
KTT was placed between the lateral epicondyle of the humerus and phalanges, at the position of maximum flexion.
<bold>(D)</bold>
KTT was applied over the extensor carpi ulnaris, extensor carpi radialis longus and brevis, extensor digitorum, extensor indicis, extensor digiti minimi, and extensor pollicis longus.
<bold>(E)</bold>
Proximally, KTT was placed from 5 cm proximal to muscles insertion.
<bold>(F)</bold>
Each branch of tape was applied down on the back of phalanx until the nail. As in the N/KTT set up, the accelerometer was placed on the dorsal aspect of the hand, over the proximal part of the 2nd–3rd metacarpal bones, into a pocket kept in position by an elastic band and secured by a Velcro strap.</p>
</caption>
<graphic xlink:href="fnsys-08-00181-g0001"></graphic>
</fig>
</sec>
<sec>
<title>Stimuli</title>
<p>Audio stimuli were paced streams of clicks and excerpts of music. Music excerpts of 60 s duration were extracted from original professional productions. Selected fragments had a simple and explicit rhythmic structure and a tempo that remained constant throughout time. Music fragments were taken from musical styles popular among young people: rock, techno, dance, trance, hard rock, and film music. Three musical experts (professionals with musical experience) were asked to verify independently the tempo of the excerpts in order to be as accurate and sure as possible in the choice of unambiguous paced excerpts. It is known that the determination of perceptual musical tempo can be ambiguous (McKinney and Moelants,
<xref rid="B32" ref-type="bibr">2007</xref>
) and that algorithms for music tempo extraction have several limitations (McKinney et al.,
<xref rid="B33" ref-type="bibr">2007</xref>
), although recent effort has been put into methods to possibly improve the evaluation metrics used for automatic tempo estimation (Levy,
<xref rid="B29" ref-type="bibr">2011</xref>
). Only fragments for which the experts collectively agreed of having a single musical tempo were selected. All chosen fragments had small tempo variations due to live performance. Therefore, the tempo for each fragment was analyzed, beat-mapped, and set to fixed beats per minute (bpm, used as a measure of tempo in music) using the softwares Jackson (
<ext-link ext-link-type="uri" xlink:href="http://vanaeken.com/">http://vanaeken.com/</ext-link>
; accuracy is within a 0.001 bpm margin) and Audacity (GNU/GPL,
<ext-link ext-link-type="uri" xlink:href="http://audacity.sourceforge.net/">http://audacity.sourceforge.net/</ext-link>
). Our time manipulations were all well below 5% deviation of the mean music tempo (professional performances have minimal deviations from mean tempo; Dannenberg and Mohan,
<xref rid="B6" ref-type="bibr">2011</xref>
) and thus below the detection threshold for temporal changes in music (Ellis,
<xref rid="B14" ref-type="bibr">1991</xref>
; Madison and Paulin,
<xref rid="B30" ref-type="bibr">2010</xref>
). We didn't use fragments likely to be familiar to the listeners since it has been shown that high familiarity with a song installs an accurate long-term memory of its tempo (Levitin and Cook,
<xref rid="B28" ref-type="bibr">1996</xref>
; Quinn and Watt,
<xref rid="B39" ref-type="bibr">2006</xref>
). Streams of clicks of 60 s duration were produced using the audio editor Audacity, via the Generate Click Track function. The duration of an individual click was set to 10 ms and the click sound was set to white noise. The music and clicks stimuli were set to eight reference tempi ranging from 64 to 176 bpm (937.21 to 340.95 ms, Table
<xref ref-type="table" rid="T1">1</xref>
). The same eight tempi were chosen for both streams of clicks and excerpts of music. Audio files were all normalized to −0.3 dB as the highest peak and stored as waveform (waveform audio file; 44.1 kHz; 16-bit depth) using Audacity. Fade in and fade out (10 ms) were placed at the beginning and end of each file. Audio stimuli were presented binaurally to the subjects through headphones (Figure
<xref ref-type="fig" rid="F1">1A</xref>
).</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Musical names, ranking, and tempo equivalences between ranges of movement durations in Hertz and milliseconds</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Musical names</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Rank</bold>
</th>
<th align="center" colspan="6" rowspan="1">
<bold>Tempo equivalences</bold>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th align="center" colspan="3" rowspan="1">
<bold>Ranges (Hz)</bold>
</th>
<th align="center" colspan="3" rowspan="1">
<bold>Ranges (ms)</bold>
</th>
</tr>
<tr>
<th rowspan="1" colspan="1"></th>
<th rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">
<bold>Reference</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>From</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>To</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Reference</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>From</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>To</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Adagio</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">1.067</td>
<td align="center" rowspan="1" colspan="1">1.017</td>
<td align="center" rowspan="1" colspan="1">1.133</td>
<td align="center" rowspan="1" colspan="1">937.21</td>
<td align="center" rowspan="1" colspan="1">983.28</td>
<td align="center" rowspan="1" colspan="1">882.61</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Andante</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">1.333</td>
<td align="center" rowspan="1" colspan="1">1.283</td>
<td align="center" rowspan="1" colspan="1">1.400</td>
<td align="center" rowspan="1" colspan="1">750.19</td>
<td align="center" rowspan="1" colspan="1">779.42</td>
<td align="center" rowspan="1" colspan="1">714.29</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1">1.600</td>
<td align="center" rowspan="1" colspan="1">1.550</td>
<td align="center" rowspan="1" colspan="1">1.667</td>
<td align="center" rowspan="1" colspan="1">625.00</td>
<td align="center" rowspan="1" colspan="1">645.16</td>
<td align="center" rowspan="1" colspan="1">599.88</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Moderato</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">1.867</td>
<td align="center" rowspan="1" colspan="1">1.817</td>
<td align="center" rowspan="1" colspan="1">1.933</td>
<td align="center" rowspan="1" colspan="1">535.62</td>
<td align="center" rowspan="1" colspan="1">550.36</td>
<td align="center" rowspan="1" colspan="1">517.33</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">2.133</td>
<td align="center" rowspan="1" colspan="1">2.083</td>
<td align="center" rowspan="1" colspan="1">2.200</td>
<td align="center" rowspan="1" colspan="1">468.82</td>
<td align="center" rowspan="1" colspan="1">480.08</td>
<td align="center" rowspan="1" colspan="1">454.55</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allegro</td>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">2.400</td>
<td align="center" rowspan="1" colspan="1">2.350</td>
<td align="center" rowspan="1" colspan="1">2.467</td>
<td align="center" rowspan="1" colspan="1">416.67</td>
<td align="center" rowspan="1" colspan="1">425.53</td>
<td align="center" rowspan="1" colspan="1">405.35</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1">2.700</td>
<td align="center" rowspan="1" colspan="1">2.617</td>
<td align="center" rowspan="1" colspan="1">2.800</td>
<td align="center" rowspan="1" colspan="1">370.37</td>
<td align="center" rowspan="1" colspan="1">382.12</td>
<td align="center" rowspan="1" colspan="1">357.14</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Presto</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">2.933</td>
<td align="center" rowspan="1" colspan="1">2.817</td>
<td align="center" rowspan="1" colspan="1">3.000</td>
<td align="center" rowspan="1" colspan="1">340.95</td>
<td align="center" rowspan="1" colspan="1">354.99</td>
<td align="center" rowspan="1" colspan="1">333.33</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec>
<title>Data format</title>
<p>Subjects were asked to perform sets of IWFEs and kinematic parameters were evaluated. Data from the sensor were stored and an off-line analysis of raw data from the triaxial accelerometer was implemented. The signal extracted from the accelerometer presented a minimum when the wrist reached the maximum flexion and a maximum when it reached the maximum extension. The duration of a single wrist's flexion-extension (i.e., IWFE duration) was calculated as the difference between two consecutive flexion-extension minima (custom software developed in Matlab®). To avoid initial and final transients, the first and last 5 s of each recording were excluded from analysis (Repp,
<xref rid="B43" ref-type="bibr">2005</xref>
,
<xref rid="B44" ref-type="bibr">2011</xref>
). Considering that tempi of the recorded IWFEs sets were remarkably variable, giving rise to a quantitative redundancy of tempi obtained in overall, we have decided to rank them as ranges (Table
<xref ref-type="table" rid="T1">1</xref>
). IWFEs sets were then assigned to a defined range according to their tempo.</p>
</sec>
<sec>
<title>Session</title>
<p>Each subject had participated in two sessions, one with no KTT (N/KTT) and one with KTT (Figure
<xref ref-type="fig" rid="F1">1B</xref>
), that were performed at a week's distance. The order in which subjects performed the N/KTT or KTT sessions were set to obtain equivalent number of subjects that played first one or the other. The KTT session started approximately 10 min after mounting the tape since this interval is needed to overcome perception of tape on the skin (Kase et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). In each session the subject performed 16 sets of repeated IWFEs under various conditions. A single session was comprised of a baseline recording (4 sets) and 2 blocks (12 sets). In a single session the performance of the IWFEs sets was executed under five conditions: in absence of auditory information (free, Fr), while listening to a stream of clicks (Cl), after 2 min from the end of the Cl condition (Cl2), while listening to an excerpt of music (Mu), after 2 min from the end of the Mu condition (Mu2). Sets of IWFEs were recorded in all conditions. For each block IWFEs sets were performed using one type of auditory stimulus (Cl or Mu). One block consisted of three pairs of Cl and Cl2 sets, or Mu and Mu2 sets, performed at three different reference tempi, for the auditory Cl or Mu sets; the same tempi were then used for the auditory sets of the second block (Figure
<xref ref-type="fig" rid="F1">1B</xref>
). The order in which the clicks or music stimuli were presented was set to obtain equivalent number of subjects that received first one or the other.</p>
<p>The subject was instructed to restrain from listening to music during the day of the session. Each session began with instructions on how the sets of wrist's flexion-extensions were to be performed, followed by a short practice test. During the practice test, IWFEs were recorded and evaluated to assess whether the instructions were understood; after the practice test, the subject was asked if he/she felt comfortable with the task. Recordings from the practice test were not used for further analyses. The session started with recording in the Fr condition, which consisted of four IWFEs sets. In the first set, the subject was asked to perform IWFEs in a self-paced manner. In the second set, the subject was asked to perform IWFEs slower than those of the first set. In the third and fourth sets, the subject was asked to perform IWFEs faster than first recording and then faster than the third recording. The subject was then instructed to perform a set of repetitive IWFEs while listening to clicks or music at a similar pace concurrently with the tempo of the delivered audio (i.e., maintaining an in-phase 1:1 relationship between repeated wrist's flexion-extensions and the tempo of the audio, conditions Cl or Mu). Then, instructions to subject for IWFEs performances in recalls were of the kind: “now, try to hear in your head the auditory stimulus just heard” (immediately after the end of the stimulus, see Zatorre and Halpern,
<xref rid="B66" ref-type="bibr">2005</xref>
). After a 2 min break, the subject was asked to perform IWFEs as accurately as possible at the tempo of the auditory stimulus just heard while concurrently hearing mentally the stimulus itself (conditions Cl2 or Mu2). The session continued with the recordings of IWFEs in a reversed order (i.e., with the Mu conditions if Cl was recorded first, or vice versa). In order to obtain a balanced number of performances for the eight chosen reference tempi, the three tempi that were selected for the blocks were randomized for each single session.</p>
</sec>
<sec>
<title>Kinesio® Tex Tape application</title>
<p>The Kinesio® Tex Tape is comprised of a polymer elastic strand wrapped by 100% cotton fibers. It allow for a longitudinal stretch of 55–60% of its resting length. The Kinesio® Tex Tape is applied to the paper substrate with 25% of tension; the adhesive is 100% acrylic (Kase et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). For the KTT (Kinesio® Tex Gold™ FP—2″ Red) application the subject, already seated on the chair with own right forearm rested on the armrest, was asked to keep the wrist in a position of maximum flexion, and the distance between the lateral epicondyle of the humerus and the distal end of the third phalanx of the middle finger was measured. The purpose was to apply the tape over the open kinetic chain including wrist, metacarpal, and finger joints. During the application of KTT, between the lateral epicondyle of the humerus and phalanges, the wrist and forearm were maintained in full flexion and full pronation, respectively (Figure
<xref ref-type="fig" rid="F1">1C</xref>
). After manually assessing the origin and insertion of muscles, KTT was applied over the extensor carpi ulnaris, extensor carpi radialis longus and brevis, extensor digitorum, extensor indicis, extensor digiti minimi, and extensor pollicis longus (Figures
<xref ref-type="fig" rid="F1">1D–F</xref>
). The strip of Kinesio® Tex was cut 5 cm longer than the maximum length of the kinetic chain measured with the wrist in maximum flexion (Kase et al.,
<xref rid="B22" ref-type="bibr">2013</xref>
). The course of the tendons of the extensor muscles (for each finger) was then identified on the back of subject's hand and distances were measured between the distal end of each phalanx and the wrist. Measurements were used to cut the distal side of the elastic band into five branches to be placed over the metacarpal area and fingers following the course of the tendons. KTT was then applied from 5 cm proximal to muscles insertion to facilitate muscle function; the application tension was light, about 25%. From the lateral humeral epicondyle, KTT was applied—in a wave-like pattern—to wrap the wrist's extensors until reaching the wrist. Each branch was then applied down on the back of phalanx until the nail.</p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>To model directly the observed IWFEs durations we adopted random effect ANOVA models for repeated measurements (Pinheiro and Bates,
<xref rid="B37" ref-type="bibr">2000</xref>
; Diggle et al.,
<xref rid="B12" ref-type="bibr">2002</xref>
). Separate models were adopted for different kinds of conditions and also the response variable was chosen differently according to the presence of audio. In particular, the differences between observed and the expected IWFEs durations were considered as response variable for performances under audio (Cl and Mu) and recall (Cl2 and Mu2) conditions. This response variable measures the error observed in the IWFEs durations, the observed IWFEs duration was instead considered as the response variable for performances in the Fr condition. As the response variables have been recorded several times for each performance and for each individual, a random effect part had to be included to take into account the lack of independence among the observations. Typically, in the random effect ANOVA models adopted for the analyses, the main effects concern the effect of the overall mean of the absence/presence of KTT (N/KTT vs. KTT) and of the tempo (fast if <517.33 ms, slow otherwise). The random effect part of the ANOVA models was specified in order to separately measure the variability within individuals and within performances. Moreover, the residual variance among observations, once taken into account for the main fixed and the random effects, was further modeled to take into account possible residual heteroscedasticity.</p>
<p>Moreover, in order to evaluate the precision of IWFEs, we used coefficients of variation (CVs = standard deviation/mean × 100). CVs of IWFEs durations were used to investigate whether the KTT influences the precision of IWFEs performances under different conditions and, if not indicated otherwise, are to be considered as the condition's and the range's means.</p>
<p>Lag-one autocorrelation analysis is used as statistical signature to investigate the processes for temporal regulation. It is assumed (see Wing and Kristofferson,
<xref rid="B62" ref-type="bibr">1973a</xref>
,
<xref rid="B63" ref-type="bibr">b</xref>
) that series of produced time intervals regulated by the event-based process should have negative lag-one autocorrelation values (between −0.5 and 0). Conversely, emergent timing is characterized by positive lag-one autocorrelation values (between 0 and 0.5). To study the influence of KTT in the Cl and Cl2 conditions we computed series of windowed lag-one autocorrelations wγ(1) (Delignières and Torre,
<xref rid="B9" ref-type="bibr">2011</xref>
) for each set of IWFEs. Each windowed autocorrelation coefficient was computed as the mean of a set of 30 autocorrelations. Moving the set along the sequence, a series of windowed autocorrelation coefficients was computed for each performance, measuring autoregressive linear dependency within the IWFEs. Then, we calculated the mean of the obtained windowed lag series for each performance. We considered the mean wγ(1) as an estimator of overall dependence in the performance. Furthermore, we calculated the percentage of positive and negative windowed wγ(1) values for each performance. If not indicated otherwise, the mean of wγ(1) and the percentage of positive and negative wγ(1) are to be considered as the condition's and the range's means. To analyze the observed wγ(1) we adopted random effects ANOVA model for repeated measurements. In order to allow an appropriate use of parametric statistical tests, the Fisher's Z-transformation was used to normalize the distribution of autocorrelation coefficients (Nolte et al.,
<xref rid="B36" ref-type="bibr">2004</xref>
; Freyer et al.,
<xref rid="B15" ref-type="bibr">2012</xref>
).</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Timing variability</title>
<p>Examples of our datasets are illustrated in Figure
<xref ref-type="fig" rid="F2">2</xref>
as parallel box plots, for the Mu and Mu2 conditions. It is interesting to note that pairs of N/KTT—KTT plots are relatively analogous when compared for slow (≥517.33 ms) or fast (<517.33 ms) movements durations. Also, it is easily appreciable that while median, upper and lower hinges and whiskers are visibly similar for pairs of N/KTT—KTT parallel box plots in the slow and fast collections of movements durations, the position and especially number of outside values is reduced when KTT is applied, with the lonely exception of a single far out value in the condition Mu2 for slow movements with KTT.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>(A,B)</bold>
Box plots of the response variable, i.e., the difference between the observed and the expected interval durations, for datasets in the conditions Mu and Mu2, respectively. Pairs of N/KTT—KTT box plots are noticeably similar when compared for slow (≥517.33 ms) vs. fast (<517.33 ms) IWFEs durations. Also, easily appreciable is that the median, the upper and lower hinges and the whiskers are very similar for pairs of N/KTT—KTT parallel box plots in slow and fast collections of IWFEs durations. Conversely, the queues of the distributions are reduced when KTT is applied (the only exception is a single far out value in the condition Mu2 for slow IWFEs with KTT). KTT reduces the variability of IWFEs durations.</p>
</caption>
<graphic xlink:href="fnsys-08-00181-g0002"></graphic>
</fig>
<p>We estimated separate random effect ANOVA models for the different conditions: without audio information (Fr), with clicks (Cl), or music (Mu), and in the recall conditions (Cl2 and Mu2). The estimates for the main effects for the models in the two audio conditions Cl and Mu are reported in Table
<xref ref-type="table" rid="T2">2</xref>
, together with their
<italic>p</italic>
-values and confidence intervals. As aforementioned, for these models the response variable is the difference between the observed and the expected IWFEs durations. As can be seen in Table
<xref ref-type="table" rid="T2">2</xref>
, the overall mean is negative and significant in both models. This implies that, under a slow stimulus, observed IWFEs durations are, on mean, shorter than expected. The effect of tempo (movement duration) is significant in both Cl and Mu conditions, correcting the mean error toward zero. Conversely, KTT has no significant effect on the mean error.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Estimate,
<italic>p</italic>
-values (in parenthesis) and confidence intervals for model parameters in random effects ANOVA models for the Cl and Mu conditions</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="center" colspan="2" rowspan="1">
<bold>Cl</bold>
</th>
<th align="center" colspan="2" rowspan="1">
<bold>Mu</bold>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Main fixed effects</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Estimate (
<italic>p</italic>
-value)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Estimate (
<italic>p</italic>
-value)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Overall mean</td>
<td align="center" rowspan="1" colspan="1">−0.0063 (0.0000)</td>
<td align="center" rowspan="1" colspan="1">−0.0086; −0.0039</td>
<td align="center" rowspan="1" colspan="1">−0.0056 (0.0100)</td>
<td align="center" rowspan="1" colspan="1">−0.0099; −0.0013</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Movement duration</td>
<td align="center" rowspan="1" colspan="1">0.0021 (0.0283)</td>
<td align="center" rowspan="1" colspan="1">0.0002; 0.0040</td>
<td align="center" rowspan="1" colspan="1">0.0042 (0.0401)</td>
<td align="center" rowspan="1" colspan="1">0.0002; 0.0083</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N/KTT vs. KTT</td>
<td align="center" rowspan="1" colspan="1">−0.0009 (0.3349)</td>
<td align="center" rowspan="1" colspan="1">−0.0009; 0.0026</td>
<td align="center" rowspan="1" colspan="1">−0.0020 (0.3004)</td>
<td align="center" rowspan="1" colspan="1">−0.0058; 0.0018</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Random effects</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Estimate</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Estimate</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Within-individual SD</td>
<td align="center" rowspan="1" colspan="1">0.0045</td>
<td align="center" rowspan="1" colspan="1">0.0032; 0.0064</td>
<td align="center" rowspan="1" colspan="1">0.0066</td>
<td align="center" rowspan="1" colspan="1">0.0042; 0.0101</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Within-set SD</td>
<td align="center" rowspan="1" colspan="1">0.0049</td>
<td align="center" rowspan="1" colspan="1">0.0042; 0.0057</td>
<td align="center" rowspan="1" colspan="1">0.0115</td>
<td align="center" rowspan="1" colspan="1">0.0101; 0.131</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KTT residual variance ratio</td>
<td align="center" rowspan="1" colspan="1">0.8635</td>
<td align="center" rowspan="1" colspan="1">0.8440; 0.8835</td>
<td align="center" rowspan="1" colspan="1">0.9242</td>
<td align="center" rowspan="1" colspan="1">0.9036; 0.9452</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The parameters concerning the random effects are also of interest. These parameters specifically shape the variability of the response variable. All the parameters for the random effects reported in Table
<xref ref-type="table" rid="T2">2</xref>
are significant according to the appropriate likelihood ratio test. Remarkably, the most relevant result concerns the fact that the residual variability resulted heterogeneous between N/KTT or KTT cases. The KTT-specific residual variances (usually called factor-specific residual variances, see Muthén,
<xref rid="B35" ref-type="bibr">1989</xref>
; for details on random effects model for heterogeneous population) result significantly different (Table
<xref ref-type="table" rid="T3">3</xref>
). Table
<xref ref-type="table" rid="T3">3</xref>
reports the estimate of the ratio between the residual variance for N/KTT and KTT cases. Both in the case of Mu and of Cl stimuli, this ratio is significantly less than one, assessing that the presence of the tape significantly help to decrease the variability of the errors in IWFEs durations. In particular, residual variance for KTT cases is about 14% less of the variance for N/KTT cases in Cl and 8% less in Mu.</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>
<bold>Factor specific residual variances (σ
<sup>2</sup>
) for N/KTT vs. KTT movements</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Condition</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>N/KTT (σ
<sup>
<bold>2</bold>
</sup>
)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>KTT (σ
<sup>
<bold>2</bold>
</sup>
)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>N/KTT vs. KTT (
<italic>p</italic>
-value)</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Cl</td>
<td align="center" rowspan="1" colspan="1">0.00076729</td>
<td align="center" rowspan="1" colspan="1">0.0006625549</td>
<td align="center" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mu</td>
<td align="center" rowspan="1" colspan="1">0.000772</td>
<td align="center" rowspan="1" colspan="1">0.000714</td>
<td align="center" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Recalls (Cl2 and Mu2)</td>
<td align="center" rowspan="1" colspan="1">0.00085849</td>
<td align="center" rowspan="1" colspan="1">0.0008080108</td>
<td align="center" rowspan="1" colspan="1"><0.0001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fr</td>
<td align="center" rowspan="1" colspan="1">0.00082369</td>
<td align="center" rowspan="1" colspan="1">0.0007996383</td>
<td align="center" rowspan="1" colspan="1">0.005</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>A similar model was adopted for the recalls Cl2 and Mu2, recorded 2 min after the audio stimuli (Table
<xref ref-type="table" rid="T4">4</xref>
). In this second model, the main effects are the overall mean, the condition and the movement duration, and the absence or presence of KTT. None of the estimates are significant, suggesting that, on mean, there is no evidence of a systematic error in IWFEs durations when movements are performed during recalls of music or clicks, recalls of fast or slow audio stimuli, and recalls with N/KTT or KTT. Interestingly, the presence of KTT still helps to significantly reduce the residual variance of about 6% (Table
<xref ref-type="table" rid="T3">3</xref>
). The KTT residual variance ratio is estimated 0.9412 (95% confidence interval: 0.9252; 0.9575).</p>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>
<bold>Estimate,
<italic>p</italic>
-values (in parenthesis) and confidence intervals for model parameters in random effects ANOVA models for the Recalls and Fr conditions</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="center" colspan="2" rowspan="1">
<bold>Recalls (Cl2 and Mu2)</bold>
</th>
<th align="center" colspan="2" rowspan="1">
<bold>Fr</bold>
</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Main fixed effects</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Estimate (
<italic>p</italic>
-value)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Estimate (
<italic>p</italic>
-value)</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Overall mean</td>
<td align="center" rowspan="1" colspan="1">−0.0014 (0.7492)</td>
<td align="center" rowspan="1" colspan="1">−0.0071; −0.0099</td>
<td align="center" rowspan="1" colspan="1">0.7218 (0.0000)</td>
<td align="center" rowspan="1" colspan="1">0.6865; 0.7571</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Movement duration</td>
<td align="center" rowspan="1" colspan="1">−0.0034 (0.4347)</td>
<td align="center" rowspan="1" colspan="1">−0.0121; 0.0052</td>
<td align="center" rowspan="1" colspan="1">−0.3147 (0.0000)</td>
<td align="center" rowspan="1" colspan="1">−0.3571; −0.2723</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">N/KTT vs. KTT</td>
<td align="center" rowspan="1" colspan="1">0.0031 (0.4836)</td>
<td align="center" rowspan="1" colspan="1">−0.0055; 0.0117</td>
<td align="center" rowspan="1" colspan="1">0.0114 (0.5934)</td>
<td align="center" rowspan="1" colspan="1">−0.0306; 0.0533</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>Random effects</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Estimate</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Estimate</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>95% confidence interval</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Within-individual SD</td>
<td align="center" rowspan="1" colspan="1">0.0031</td>
<td align="center" rowspan="1" colspan="1">1e-04; 0.0993</td>
<td align="center" rowspan="1" colspan="1">0.0127</td>
<td align="center" rowspan="1" colspan="1">1e-04; 1.2508</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Within-set SD</td>
<td align="center" rowspan="1" colspan="1">0.0377</td>
<td align="center" rowspan="1" colspan="1">0.0347; 0.0410</td>
<td align="center" rowspan="1" colspan="1">0.1452</td>
<td align="center" rowspan="1" colspan="1">0.1306; 0.1614</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KTT residual variance ratio</td>
<td align="center" rowspan="1" colspan="1">0.9412</td>
<td align="center" rowspan="1" colspan="1">0.9252; 0.9575</td>
<td align="center" rowspan="1" colspan="1">0.9708</td>
<td align="center" rowspan="1" colspan="1">0.9511; 0.9908</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>For the condition without audio stimulus (Fr), the model considers as the response variable directly the observed duration (Table
<xref ref-type="table" rid="T4">4</xref>
). Consequently, the overall mean simply measures the mean movement duration chosen for performances of slow movements with N/KTT, while the main effect of movement duration measures the increment in bpm implied by a faster tempo. The overall mean and the main effect of tempo are then obviously significant by construction. The main effect of KTT is not significant. For this particular model, this result implies that individuals choose the tempo of the performance independently of the presence of the tape on their arm. Regarding the random part of the model, again it is worth to notice that the effect of the KTT in reducing the residual variability is still significant (Table
<xref ref-type="table" rid="T3">3</xref>
). The residual variance, small but still present, is about the 3% less in KTT cases (estimate: 0.9708; 95% confidence interval: 0.9511; 0.9908).</p>
<p>The CV of IWFEs is used to normalize measures of temporal variability. We plotted the CVs of IWFEs as a function of the ranges of movement duration to visualize the rate dependent changes of the precision of isochronous performances and the interactions between these changes and the different experimental cases (N/KTT or KTT). The CVs of IWFEs, ranked per within-ranges of IWFEs durations, are illustrated in Figure
<xref ref-type="fig" rid="F3">3</xref>
for all conditions (Figures
<xref ref-type="fig" rid="F3">3A–E</xref>
). CVs values appear to change with movement duration. In particular, CVs of IWFEs become smaller as IWFEs become faster and, within the same condition and for the same range of movement duration, CVs values are very often smaller in KTT than in N/KTT cases. In Figure
<xref ref-type="fig" rid="F3">3F</xref>
the five within-condition CVs of IWFEs durations are compared for N/KTT and KTT cases. The CVs values of IWFEs are below 5% in all conditions and for both N/KTT and KTT cases. It is also noticeable that the within-condition CVs values are always smaller in KTT, when values for the same condition are compared, and that the difference is maximal for the condition Cl. Also, in Figure
<xref ref-type="fig" rid="F3">3G</xref>
are shown the percent reductions for the within-condition CVs in the case of KTT application. The percent reduction for the within-condition CVs values is maximal when IWFEs are performed while listening to an audio stimulus such as clicks (10.33%, for Cl). Impressively, a percent reduction for within-condition CVs values in KTT is visible in all other conditions (5.47%, for Mu; 4.03%, for Cl2; 5.96%, for Mu2; and 3.50%, for Fr; see Figure
<xref ref-type="fig" rid="F3">3G</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>(A–E)</bold>
For each condition the CVs of IWFEs durations, ranked per within-ranges of durations, are illustrated.
<bold>(F)</bold>
The five within-condition CVs of IWFEs durations are compared for N/KTT and KTT.
<bold>(G)</bold>
The percent reduction of the within-condition CVs values when KTT is applied. The reduction is more than 3% in all conditions; the most evident reduction, more than 10%, is for the Cl condition. Values are plotted as black (N/KTT) and pink (KTT) outlined circles, filled-in color-coded per condition. Color-coded connecting lines are shown to ease reading. CVs = within-range or, in
<bold>(F)</bold>
, within-condition CVs values. WRMD, within-ranges movements durations.</p>
</caption>
<graphic xlink:href="fnsys-08-00181-g0003"></graphic>
</fig>
</sec>
<sec>
<title>The processes for temporal regulation</title>
<p>To explore whether, and to what extent, the processes for temporal regulation are influenced by the application of KTT, the mean wγ(1) values and the percentages of positive wγ(1) of IWFEs computed in N/KTT and KTT cases are compared. We plot the mean wγ(1) values and the percentages of positive wγ(1) as function of ranges of movement durations of IWFEs. As an exemplar comparison, we here describe and analyze the Cl and Cl2 conditions since we already showed them to be the most subjective to the application of KTT.</p>
<p>The mean wγ(1) values of IWFEs ranked per within-ranges of movement durations are displayed in Figure
<xref ref-type="fig" rid="F4">4</xref>
for the N/KTT and KTT cases of the Cl and Cl2 conditions. In all cases mean wγ(1) values appear to change with movement durations. In the N/KTT case of the Cl condition (Figure
<xref ref-type="fig" rid="F4">4A</xref>
) mean wγ(1) values are almost all negative with only one exception in range 5 (for this and the following references to ranges of movement durations see Table
<xref ref-type="table" rid="T1">1</xref>
) whereas in the KTT case of the Cl condition (Figure
<xref ref-type="fig" rid="F4">4A</xref>
) mean wγ(1) values are negative for only the half of eight ranges of movement durations. The highest peaks of mean wγ(1) values are expressed within the moderato, allegro and presto tempi in the last four ranges of interval durations (Cl of N/KTT) and in the last five ranges of movement durations (Cl of KTT).</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>(A,B)</bold>
Mean windowed wγ(1) values, ranked per within-ranges of durations, are illustrated. The conditions Cl and Cl2 are compared for N/KTT and KTT. Note that mean wγ(1) values appear to change with movement durations and are, for both Cl and Cl2 conditions, biased toward more positive values when KTT is applied. Values are plotted as black (N/KTT) and pink (KTT) outlined circles, filled-in color-coded per condition. WRMD, within-ranges movements durations.</p>
</caption>
<graphic xlink:href="fnsys-08-00181-g0004"></graphic>
</fig>
<p>In the N/KTT case of the Cl2 condition (Figure
<xref ref-type="fig" rid="F4">4B</xref>
) mean wγ(1) values are all negative with only one exception in range 6 whereas in the KTT case of the Cl2 condition (Figure
<xref ref-type="fig" rid="F4">4B</xref>
) mean wγ(1) values are positive for more than half of ranges of movement durations. The highest peaks of mean wγ(1) values for the Cl2 condition are expressed within the moderato, allegro and presto tempi in the last five ranges of movement durations in both N/KTT and KTT cases.</p>
<p>The percentages of positive and negative wγ(1) values ranked per within-ranges of movement durations are displayed in Figure
<xref ref-type="fig" rid="F5">5</xref>
as radar charts for the N/KTT and KTT cases of the Cl and Cl2 conditions. Here also, it appears evident that the percentage of positive wγ(1) values is sensitive to movement durations.</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>(A–D)</bold>
On the radar charts are illustrated, for the N/KTT and KTT cases of Cl and Cl2 conditions, the percentages of positive and negative wγ(1) values ranked per within-ranges of durations. Note that the areas generated by the eight within-range percentages of positive wγ(1) values are wider in the KTT than in N/KTT cases for both Cl and Cl2 conditions.
<bold>(E,F)</bold>
The percentages of N/KTT vs. KTT positive wγ(1) values are compared for the Cl and the Cl2 conditions, respectively. The red area indicates for each of the eight within-ranges of durations the differential percent of positive wγ(1) values. This area is wider in the KTT than in the N/KTT case, both for the Cl and the Cl2 conditions. Compound shapes are obtained by combination of areas of positive wγ(1) values in the N/KTT and KTT cases for both the Cl and Cl2 conditions. The overlapping area was excluded, turning the filled region into a hole.
<bold>(G)</bold>
The increase of positive wγ(1) values in the KTT case is comprehensively indicated as differential percent equivalent both for the Cl and Cl2 conditions (see text for more explanations). %pos (red) = percentages of positive wγ(1) values. %neg (black) = percentages of negative wγ(1) values. δ%pos (red) = differential percent equivalent for percentages of positive wγ(1) values. δ%neg (black) = differential percent equivalent for percentages of negative wγ(1) values.</p>
</caption>
<graphic xlink:href="fnsys-08-00181-g0005"></graphic>
</fig>
<p>The values of wγ(1) of IWFEs in the Cl condition are mostly negative for the N/KTT case (75.27% of negative values and 24.73% of positive values). In the KTT case, although the amount of positive values increases, negative wγ(1) values continue to outnumber positive ones (61.43% of negative values and 38.57% of positive values). In the N/KTT case of the Cl condition (Figure
<xref ref-type="fig" rid="F5">5A</xref>
), percentages of positive wγ(1) values are extremely low in the first four ranges of movement durations. The highest peaks for percentages of positive wγ(1) are evident in the last four ranges of movement durations. The highest peaks for percentages of positive wγ(1) values are always less than 50%, with only one exception (range 6, 53.23%). In the KTT case of the Cl condition (Figure
<xref ref-type="fig" rid="F5">5C</xref>
), percentages of positive wγ(1) values are extremely low only in the first two ranges of movement durations. However, the percentages of positive wγ(1) values in the two successive ranges (3 and 4) increase from the 2.19 and 12.38% in the N/KTT case to the 34.38 and 49.93% in the KTT case, respectively. Also, in the last four ranges of movement durations of KTT case, the percentages of positive wγ(1) values are similar to those in N/KTT case.</p>
<p>The values of wγ(1) of IWFEs in the Cl2 condition are somewhat negative for the N/KTT case (61.09% of negative values and 38.91% of positive values) while in the KTT case negative wγ(1) values slightly outnumber positive ones (54.74% of negative values and 45.26% of positive values). In the N/KTT case of the Cl2 condition (Figure
<xref ref-type="fig" rid="F5">5B</xref>
), percentages of positive wγ(1) reach lowest values in the first and third ranges of movement durations. In the KTT case of the Cl2 condition (Figure
<xref ref-type="fig" rid="F5">5D</xref>
), percentages of positive wγ(1) reach extremely low values only in the first three ranges of movement durations. The highest peaks for percentages of positive wγ(1) values are in the five last ranges of movement durations both in the N/KTT and KTT case. It is also well perceivable that while in the N/KTT case only one of the within-range percentage of positive wγ(1) values is above the 50%, in the KTT case five of the eight within-range percentages of positive wγ(1) values are above the 50%.</p>
<p>In Figures
<xref ref-type="fig" rid="F5">5E,F</xref>
the percentages of positive wγ(1) values of N/KTT vs. KTT cases are compared separately for the Cl and the Cl2 conditions. As illustrated, the area generated by eight ranges percentages of positive wγ(1) values is wider in the KTT than in the N/KTT case, both for the Cl and the Cl2 conditions. For the Cl condition, the differential percent of positive wγ(1) values is of 13.84% (calculated as difference between the percentages of positive wγ(1) of 38.57% in KTT case and that of 24.73% in N/KTT case). This differential percent is equivalent to an increase of 55.96% of positive wγ(1) values in the KTT case (Figure
<xref ref-type="fig" rid="F5">5G</xref>
). Similarly, for the Cl2 condition, the differential percent of positive wγ(1) values is of 6.34% (calculated as difference between the percentages of positive wγ(1) of 45.26% in the KTT case and that of 38.91% in the N/KTT case). In the Cl2 condition, the differential percent is equivalent to an increase of 16.30% of positive wγ(1) values in the KTT case.</p>
<p>Finally, random effect ANOVA model for repeated measurements is performed for the wγ(1) values in Cl and Cl2 conditions, respectively. The model for Cl reveals a highly significant effect for the presence of KTT [
<italic>F</italic>
<sub>(1, 98)</sub>
= 15.126,
<italic>p</italic>
< 0.001] and tempo [
<italic>F</italic>
<sub>(1, 98)</sub>
= 59.62,
<italic>p</italic>
< 0.001]. The interaction between the presence of KTT and tempo shows also a significant effect [
<italic>F</italic>
<sub>(1, 98)</sub>
= 5.05,
<italic>p</italic>
< 0.05]. The model for Cl2 fails to reveal a significant effect of presence of KTT, [
<italic>F</italic>
<sub>(1, 101)</sub>
= 0.34,
<italic>p</italic>
> 0.05] and tempo, [
<italic>F</italic>
<sub>(1, 101)</sub>
= 3.69,
<italic>p</italic>
> 0.05]. Conversely, the interaction between the presence of KTT and tempo shows a significant effect [
<italic>F</italic>
<sub>(1, 101)</sub>
= 5.05,
<italic>p</italic>
< 0.05]. It should be remembered here that in the Cl2 condition mean within-range wγ(1) values become more positive in KTT than in N/KTT only for fast tempi (see Figure
<xref ref-type="fig" rid="F4">4B</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>In this study, we examined whether the application of KTT on skin is able to reduce the timing variability of repetitive rhythmic movements in healthy subjects.</p>
<p>Overall, our results indicate that the temporal variability of IWFEs is influenced by the application of KTT. Using a task of auditory-motor integration recently developed in our laboratory (see Bravi et al.,
<xref rid="B4" ref-type="bibr">2014</xref>
) we demonstrate that the timing variability is reduced in the KTT case, independently of the type of sensorimotor integration required from the participant to accomplish the motor performance (i.e., without audio information, with paced audio in the form of clicks or music, and in the recall conditions). Quantitatively, the reduction in the timing variability is different for the different conditions, and is greatest for the Cl and smallest for the Fr conditions. However, even though the reduction in timing variability for the Fr condition is quantitatively smaller than those estimated for the other conditions, the residual variance for KTT case is about 3% less than the variance of N/KTT case, which is of great importance. In fact, the residual variance evaluates the variability in the IWFEs durations when subjects are following their own tempo, which is mostly linked to the physical performance of the movement, without the effort of following or recalling a tempo proposed by others. Also, our analysis of the CVs of IWFEs show that, in general, when IWFEs are performed in presence of KTT the within-condition CVs values are smaller than those obtained in the N/KTT case. Here, again, the reduction in the CVs value is maximal when IWFEs are performed while listening to an audio stimulus such as clicks and minimal when performed in the Fr condition.</p>
<p>Our first experimental hypothesis is that KTT brings about an improvement of wrist joint proprioception due to augmented afferent input via the stimulation of cutaneous mechanoreceptors. This effect would, in turn, augment the coordination of the wrist joint during the rhythmic motor performance and consequently contribute to the reduction in timing variability of the IWFEs. The type of KTT application that we used allowed us to speculate about this possible effect provided by KTT: indeed, since the elastic band, placed between the lateral epicondyle of the humerus and the phalanges, is applied with the wrist positioned in maximum flexion, it cannot provide a facilitation of the ascent phase of the movement by means of elastic return to the starting position. This consents us to discard the possibility that the reduction of timing variability in the KTT condition is due to the dampening of gravity, but leads us toward an explanation that KTT might enhance proprioceptive information provided by activating cutaneous receptors.</p>
<p>Proprioception consists of a combination of joint position sense, i.e., the ability to sense the position and movement of a limb in space (Aydin et al.,
<xref rid="B2" ref-type="bibr">2001</xref>
), and the sense of muscular effort and tension (Proske and Gandevia,
<xref rid="B38" ref-type="bibr">2009</xref>
). The joint position sense is a very important contributor to joint coordination, maintenance of muscle stiffness, and to the production of natural movements for appropriate task performance (Han and Lee,
<xref rid="B18" ref-type="bibr">2014</xref>
). It was demonstrated that the principal muscle receptor in joint position sense is the muscle spindle; however, also cutaneous receptors have become recognized as playing an important role (Proske and Gandevia,
<xref rid="B38" ref-type="bibr">2009</xref>
). The cutaneous receptors, subserving a sense of position and movement, respond to the stretching of skin (Proske and Gandevia,
<xref rid="B38" ref-type="bibr">2009</xref>
). As proposed by Grigg (
<xref rid="B16" ref-type="bibr">1994</xref>
), it is plausible that the application of KTT induces, during the joint movement, a pressure and a stretching/deformation of the skin, thus activating cutaneous mechanoreceptors. Therefore, the mechanical effects of KTT applied to skin, augmenting skin receptor output, might enhance kinesthetic and joint position sense (Simoneau et al.,
<xref rid="B53" ref-type="bibr">1997</xref>
; Halseth et al.,
<xref rid="B17" ref-type="bibr">2004</xref>
).</p>
<p>Zelaznik and Rosenbaum (
<xref rid="B67" ref-type="bibr">2010</xref>
) performed an analysis in which timing precision was measured at different locations during both the performance of tapping and circle drawing tasks. Evidences showed that the highest values of CVs during the performance of the tapping task were at a location opposite to the specified timing location, that is, the maximum of the extension point. Earlier, Semjen and Garcia-Colera (
<xref rid="B51" ref-type="bibr">1986</xref>
) also noted that, in a tapping motor performance, timing variability showed smallest values at the instructed timing location. Hence, in tapping tasks the subject is timed to a location and the timing variability is best controlled at the corresponding event (e.g., the contact with the tap key); in circle drawing the subject is not timed to a place (i.e., is not required to rely on a target location or event) but is controlling evenly the entire movement trajectory (Spencer and Zelaznik,
<xref rid="B56" ref-type="bibr">2003</xref>
). Our experimental design is not based on a tapping task, although the IWFEs, having clear turning points that provide salient sensory information (Elliott et al.,
<xref rid="B13" ref-type="bibr">2009</xref>
), are fairly similar. The KTT seemingly relieves, at least in part, from the need of a target or an event inherent with the kinematics of IWFEs. This is particularly evident in the Cl (see Figure
<xref ref-type="fig" rid="F3">3</xref>
) but also in the Mu audio conditions in which movements are performed with additional sensory cues. The extra proprioceptive information provided by KTT, augmenting the stability of wrist joint during the performance, could very well account for the reduction in IWFEs temporal variability that we observed as being more pronounced in our cued conditions.</p>
<p>In addition, we explore the possible influences of our KTT on the neural processes governing the temporal regulation for production of rhythmic movements. The mean wγ(1) values and the percentages of positive wγ(1) of IWFEs, calculated in N/KTT and KTT cases, and compared for the exemplar Cl and Cl2 conditions, show that the processes for temporal regulation can be influenced by the application of KTT. We demonstrate that the mean wγ(1) and percentages of positive wγ(1) are in fact biased toward values congruent with the emergent mode for control of timing.</p>
<p>Overall, these results have important implications for the event-emergent timing distinction. Heretofore, it was suggested that a task is controlled via event timing or via emergent timing depending on the kinematic of the performed movement (Zelaznik and Rosenbaum,
<xref rid="B67" ref-type="bibr">2010</xref>
). Huys et al. (
<xref rid="B20" ref-type="bibr">2008</xref>
) using a rhythmic motor task, such as tapping, have demonstrated that discrete and continuous movements are two classes of movements topologically distinct. Indeed, it was shown that when finger flexion-extensions are performed as slow and discrete movements, the engagement of an explicit timing (event-based) process is required; whereas when the tapping is performed as rapid and smooth movements, the employment of a self-organized limit-cycle (emergent) process is necessary. The clarity with which such events are delineated in a particular experimental situation is considered to be the factor determining the weight of the event-based timing component. The continuity of the movement largely determines the strength of emergent timing component (Repp and Steinman,
<xref rid="B45" ref-type="bibr">2010</xref>
). In addition, in a timing study on air finger tapping, participants performed discrete movements, being instructed to pause before each flexion cycle, and continuous movements, being instructed to move as smoothly as possible without pausing (Spencer et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
). Despite the subtle difference between these discrete and continuous movements, activation in the cerebellum was greater when participants were instructed to perform discrete movements, suggesting that the engagement of the cerebellum may depend on how movements are produced or, even better, on how they are represented (Spencer et al.,
<xref rid="B55" ref-type="bibr">2007</xref>
).</p>
<p>Our experimental hypothesis is that the application of KTT, by stabilization of the motor effector during the performance, causes the IWFEs to be less discrete and thus more continuous. According to the dichotomic view of the event-based vs. emergent modes of temporal control (Delignières and Torre,
<xref rid="B9" ref-type="bibr">2011</xref>
), KTT could promote the involvement of emergent timing control and, consequently, reduce the contribution of event-based timing. As a consequence, the control for timing would no longer need to refer to a nervous structure such as, for example, the cerebellum, in the building of an abstract representation of the time intervals to produce. Rather, the dynamics of the system could be sufficient
<italic>per se</italic>
to keep the movement cycle constant.</p>
<p>We demonstrate a reduction in timing variability with KTT, as seen by the CVs values and their dispersion, being very often smaller in the KTT than in the N/KTT cases (see Figures
<xref ref-type="fig" rid="F2">2</xref>
,
<xref ref-type="fig" rid="F3">3</xref>
). Such reduction seemingly suggests a transition toward an emergent timing control. This emergence of the emergent timing strategy (see Figures
<xref ref-type="fig" rid="F4">4</xref>
,
<xref ref-type="fig" rid="F5">5E–G</xref>
) appears to be by virtue of the KTT's to render movements less audio sensitive or dependent (compare, in Figures
<xref ref-type="fig" rid="F5">5A–C</xref>
vs.
<xref ref-type="fig" rid="F5">B–D</xref>
). This mechanism ultimately results in a reduced variability and thus, in a better—more homogenous—performance. The same concept is analogous to a computer that allocates memory for a better performance; so do the cortical and subcortical circuits, which are usually required to bear the load of motor control and of other cognitive activities. Being less dependent on external/discrete events, central structures are partially relieved from timing control, thus freeing resources and allowing for a net augmentation of the central efficiency for motor control and cognition.</p>
<p>In conclusion, KTT was used in this study as a tool to possibly augment the precision of rhythmic movements. Our results show that KTT does, in fact, reduce the timing variability of rhythmic movements performed with no direct surface opposition and minimizing visual information. In particular, our results suggest that KTT—on the one hand by providing extra proprioceptive information, and on the other hand by relieving, at least partially, the central structures from time control—allows for a net augmentation of the central efficiency for motor control.</p>
</sec>
<sec>
<title>Author contributions</title>
<p>Riccardo Bravi: Substantial contributions to the conception of the work, the data acquisition, analysis, and the interpretation of data; Substantial contribution in drafting the work and revising it critically for important intellectual content; final approval of the version to be published; agreement to be accountable for accuracy and integrity of any part of the work. Eros Quarta: Substantial contributions to the design of the work and data acquisition; Substantial contribution in drafting the work; final approval of the version to be published; agreement to be accountable for accuracy and integrity of any part of the work. Erez J. Cohen: Substantial contributions to the design and the data acquisition of the work; Substantial contribution in drafting the work; final approval of the version to be published; agreement to be accountable for accuracy and integrity of any part of the work. Anna Gottard: Substantial contributions to the analysis and interpretation of data for the work; Substantial contribution in drafting the work; final approval of the version to be published; agreement to be accountable for accuracy and integrity of any part of the work. Diego Minciacchi: Substantial contributions to the conception of the work, analysis, and interpretation of data for the work; Substantial contribution in revising the work critically for important intellectual content; final approval of the version to be published; agreement to be accountable for accuracy and integrity of any part of the work.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We are grateful for the seminal contribution of Dr. Giacomo Margiacchi, for the valuable contribution of Dr. Claudia del Tongo and Dr. Stefano Marletta during the setup of the experimental design and to the first experiments. We are also indebted with Mr. Filippo Cocchetti who kindly helped for the realization of the methodological Figure.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arias</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cudeiro</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson's disease patients</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>186</volume>
,
<fpage>589</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-007-1263-y</pub-id>
<pub-id pub-id-type="pmid">18214453</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aydin</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yildiz</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yanmis</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yildiz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kalyon</surname>
<given-names>T. A.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Shoulder proprioception: a comparison between the shoulder joint in healthy and surgically repaired shoulders</article-title>
.
<source>Arch. Orthop. Trauma Surg</source>
.
<volume>121</volume>
,
<fpage>422</fpage>
<lpage>425</lpage>
<pub-id pub-id-type="doi">10.1007/s004020000245</pub-id>
<pub-id pub-id-type="pmid">11510910</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bove</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tacchino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pelosin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Moisello</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Abbruzzese</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ghilardi</surname>
<given-names>M. F.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Spontaneous movement tempo is influenced by observation of rhythmical actions</article-title>
.
<source>Brain Res. Bull</source>
.
<volume>80</volume>
,
<fpage>122</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainresbull.2009.04.008</pub-id>
<pub-id pub-id-type="pmid">19394410</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bravi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Del Tongo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Dalle Mura</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tognetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Minciacchi</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Modulation of isochronous movements in a flexible environment: links between motion and auditory experience</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>232</volume>
,
<fpage>1663</fpage>
<lpage>1675</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-014-3845-9</pub-id>
<pub-id pub-id-type="pmid">24652281</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Callaghan</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Selfe</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bagley</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Oldham</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The effects of patellar taping on knee joint proprioception</article-title>
.
<source>J. Athl. Train</source>
.
<volume>37</volume>
,
<fpage>19</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1016/S0031-9406(05)61377-6</pub-id>
<pub-id pub-id-type="pmid">12937439</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dannenberg</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<source>Characterizing Tempo Change in Musical Performances</source>
.
<publisher-loc>Ann Arbor, MI</publisher-loc>
:
<publisher-name>ICMC Proc</publisher-name>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Dreu</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>van der Wilk</surname>
<given-names>A. S. D.</given-names>
</name>
<name>
<surname>Poppe</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kwakkel</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>van Wegen</surname>
<given-names>E. E. H.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Rehabilitation, exercise therapy and music in patients with Parkinson's disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life</article-title>
.
<source>Parkinsonism Relat. Disord</source>
.
<volume>18</volume>
(
<issue>Suppl. 1</issue>
),
<fpage>S114</fpage>
<lpage>S119</lpage>
<pub-id pub-id-type="doi">10.1016/S1353-8020(11)70036-0</pub-id>
<pub-id pub-id-type="pmid">22166406</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delignières</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lemoine</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Time intervals production in tapping and oscillatory motion</article-title>
.
<source>Hum. Mov. Sci</source>
.
<volume>23</volume>
,
<fpage>87</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2004.07.001</pub-id>
<pub-id pub-id-type="pmid">15474171</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delignières</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Torre</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Event-based and emergent timing: dichotomy or continuum? A reply to Repp and Steinman (2010)</article-title>
.
<source>J. Mot. Behav</source>
.
<volume>43</volume>
,
<fpage>311</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="doi">10.1080/00222895.2011.588274</pub-id>
<pub-id pub-id-type="pmid">21774607</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>del Olmo</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Arias</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Furio</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Pozo</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Cudeiro</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients–a combined motor and [18F]-FDG PET study</article-title>
.
<source>Parkinsonism Relat. Disord</source>
.
<volume>12</volume>
,
<fpage>155</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="doi">10.1016/j.parkreldis.2005.11.002</pub-id>
<pub-id pub-id-type="pmid">16459124</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>del Olmo</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Cudeiro</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues</article-title>
.
<source>Parkinsonism Relat. Disord</source>
.
<volume>11</volume>
,
<fpage>25</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1016/j.parkreldis.2004.09.002</pub-id>
<pub-id pub-id-type="pmid">15619459</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Diggle</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Heagerty</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>K. Y.</given-names>
</name>
<name>
<surname>Zeger</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<source>Analysis of Longitudinal Data</source>
.
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Oxford University Press</publisher-name>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elliott</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Welchman</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Wing</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Being discrete helps keep to the beat</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>192</volume>
,
<fpage>731</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-008-1646-8</pub-id>
<pub-id pub-id-type="pmid">19048241</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellis</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Thresholds for detecting tempo change</article-title>
.
<source>Psychol. Music</source>
<volume>19</volume>
,
<fpage>164</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1177/0305735691192007</pub-id>
<pub-id pub-id-type="pmid">15288231</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freyer</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Reinacher</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nolte</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Dinse</surname>
<given-names>H. R.</given-names>
</name>
<name>
<surname>Ritter</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline</article-title>
.
<source>Front. Hum. Neurosci</source>
.
<volume>6</volume>
:
<issue>144</issue>
<pub-id pub-id-type="doi">10.3389/fnhum.2012.00144</pub-id>
<pub-id pub-id-type="pmid">22654748</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grigg</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Peripheral neural mechanisms in proprioception</article-title>
.
<source>J. Sport Rehabil</source>
.
<volume>3</volume>
,
<fpage>2</fpage>
<lpage>17</lpage>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halseth</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>McChesney</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Debeliso</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vaughn</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lien</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The effects of kinesio™ taping on proprioception at the ankle</article-title>
.
<source>J. Sports Sci. Med</source>
.
<volume>3</volume>
,
<fpage>1</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">24497814</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>J. T.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J. H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Effects of kinesiology taping on repositioning error of the knee joint after quadriceps muscle fatigue</article-title>
.
<source>J. Phys. Ther. Sci</source>
.
<volume>26</volume>
,
<fpage>921</fpage>
<lpage>923</lpage>
<pub-id pub-id-type="doi">10.1589/jpts.26.921</pub-id>
<pub-id pub-id-type="pmid">25013297</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hausdorff</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Lowenthal</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gruendlinger</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peretz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Giladi</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Rhythmic auditory stimulation modulates gait variability in Parkinson's disease</article-title>
.
<source>Eur. J. Neurosci</source>
.
<volume>26</volume>
,
<fpage>2369</fpage>
<lpage>2375</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2007.05810.x</pub-id>
<pub-id pub-id-type="pmid">17953624</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huys</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Studenka</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Rheaume</surname>
<given-names>N. R.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Jirsa</surname>
<given-names>V. K.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Distinct timing mechanisms produce discrete and continuous movements</article-title>
.
<source>PLoS Comput. Biol</source>
.
<volume>4</volume>
:
<fpage>e1000061</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1000061</pub-id>
<pub-id pub-id-type="pmid">18437236</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The neural representation of time</article-title>
.
<source>Curr. Opin. Neurobiol</source>
.
<volume>14</volume>
,
<fpage>225</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2004.03.013</pub-id>
<pub-id pub-id-type="pmid">15082329</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kase</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wallis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kase</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<source>Clinical Therapeutic Applications of the Kinesio Taping Method</source>
,
<edition>3rd Edn</edition>
<publisher-loc>New Mexico</publisher-loc>
:
<publisher-name>Kinesio Taping Ass</publisher-name>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keele</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis</article-title>
.
<source>Ann. N.Y. Acad. Sci</source>
.
<volume>608</volume>
,
<fpage>179</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="doi">10.1111/j.1749-6632.1990.tb48897.x</pub-id>
<pub-id pub-id-type="pmid">2075953</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kelso</surname>
<given-names>J. A. S.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<source>Dynamic Patterns</source>
.
<publisher-loc>Cambridge, MA</publisher-loc>
:
<publisher-name>MIT Press</publisher-name>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kneeshaw</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Shoulder taping in the clinical setting</article-title>
.
<source>J. Body Mov. Ther</source>
.
<volume>6</volume>
,
<fpage>2</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1054/jbmt.2001.0233</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kugler</surname>
<given-names>P. N.</given-names>
</name>
<name>
<surname>Kelso</surname>
<given-names>J. A. S.</given-names>
</name>
<name>
<surname>Turvey</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
(
<year>1980</year>
).
<article-title>On the concept of coordinative structures as dissipative structures I. Theoretical lines of convergence</article-title>
, in
<source>Tutorials in Motor Behavior</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Stelmach</surname>
<given-names>G. E.</given-names>
</name>
<name>
<surname>Requin</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<publisher-loc>Amsterdam</publisher-loc>
:
<publisher-name>North Holland</publisher-name>
),
<fpage>3</fpage>
<lpage>47</lpage>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leiner</surname>
<given-names>H. C.</given-names>
</name>
<name>
<surname>Leiner</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Dow</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Cognitive and language functions of the human cerebellum</article-title>
.
<source>Trends Neurosci</source>
.
<volume>16</volume>
,
<fpage>444</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="doi">10.1016/0166-2236(93)90072-T</pub-id>
<pub-id pub-id-type="pmid">7507614</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levitin</surname>
<given-names>D. J.</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>P. R.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Memory for musical tempo: additional evidence that auditory memory is absolute</article-title>
.
<source>Percept. Psychophys</source>
.
<volume>58</volume>
,
<fpage>927</fpage>
<lpage>935</lpage>
<pub-id pub-id-type="doi">10.3758/BF03205494</pub-id>
<pub-id pub-id-type="pmid">8768187</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Improving perceptual tempo estimation with crowd-sourced annotations</article-title>
, in
<source>12th International Society for Music Information Retrieval Conference (ISMIR 2011)</source>
(
<publisher-loc>Miami, FL</publisher-loc>
),
<fpage>317</fpage>
<lpage>322</lpage>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madison</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Paulin</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Ratings of speed in real music as a function of both original and manipulated beat tempo</article-title>
.
<source>J. Acoust. Soc. Am</source>
.
<volume>128</volume>
,
<fpage>3032</fpage>
<lpage>3040</lpage>
<pub-id pub-id-type="doi">10.1121/1.3493462</pub-id>
<pub-id pub-id-type="pmid">21110598</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McIntosh</surname>
<given-names>G. C.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Thaut</surname>
<given-names>M. H.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson's disease</article-title>
.
<source>J. Neurol. Neurosurg. Psychiatry</source>
<volume>62</volume>
,
<fpage>22</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1136/jnnp.62.1.22</pub-id>
<pub-id pub-id-type="pmid">9010395</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKinney</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Moelants</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Ambiguity in tempo perception: what draws listeners to different metric levels?</article-title>
<source>Music Percept</source>
.
<volume>24</volume>
,
<fpage>155</fpage>
<lpage>165</lpage>
<pub-id pub-id-type="doi">10.1525/mp.2006.24.2.155</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKinney</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Moelants</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>E. P.</given-names>
</name>
<name>
<surname>Klapuri</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Evaluation of audio beat tracking and music tempo extraction algorithms</article-title>
.
<source>J. New Music Res</source>
.
<volume>36</volume>
,
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1080/09298210701653252</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>C. G.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>The clinical effects of Kinesio® Tex taping: a systematic review</article-title>
.
<source>Physiother. Theory Pract</source>
.
<volume>29</volume>
,
<fpage>259</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.3109/09593985.2012.731675</pub-id>
<pub-id pub-id-type="pmid">23088702</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthén</surname>
<given-names>B. O.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>Latent variable modeling in heterogeneous populations</article-title>
.
<source>Psychometrika</source>
<volume>54</volume>
,
<fpage>557</fpage>
<lpage>585</lpage>
<pub-id pub-id-type="doi">10.1007/BF02296397</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nolte</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Wheaton</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Mari</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Vorbach</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Identifying true brain interaction from EEG data using the imaginary part of coherency</article-title>
.
<source>Clin. Neurophysiol</source>
.
<volume>115</volume>
,
<fpage>2292</fpage>
<lpage>2307</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2004.04.029</pub-id>
<pub-id pub-id-type="pmid">15351371</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pinheiro</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<source>Mixed Effects Models in S and S-PLUS</source>
.
<publisher-loc>New York, NY</publisher-loc>
:
<publisher-name>Springer-Verlag</publisher-name>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Proske</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Gandevia</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>The kinaesthetic senses</article-title>
.
<source>J. Physiol. (Lond.)</source>
<volume>587</volume>
,
<fpage>4139</fpage>
<lpage>4146</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2009.175372</pub-id>
<pub-id pub-id-type="pmid">19581378</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quinn</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>The perception of tempo in music</article-title>
.
<source>Perception</source>
<volume>35</volume>
,
<fpage>267</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1068/p5353</pub-id>
<pub-id pub-id-type="pmid">16583770</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Harrington</surname>
<given-names>D. L.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>The evolution of brain activation during temporal processing</article-title>
.
<source>Nat. Neurosci</source>
.
<volume>4</volume>
,
<fpage>317</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.1038/85191</pub-id>
<pub-id pub-id-type="pmid">11224550</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>B. H.</given-names>
</name>
</person-group>
(
<year>1999a</year>
).
<article-title>Detecting deviations from metronomic timing in music: effects of perceptual structure on mental timekeeper</article-title>
.
<source>Percept. Psychophys</source>
.
<volume>61</volume>
,
<fpage>529</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="doi">10.3758/BF03211971</pub-id>
<pub-id pub-id-type="pmid">10334099</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>B. H.</given-names>
</name>
</person-group>
(
<year>1999b</year>
).
<article-title>Control of expressive and metronomic timing in pianists</article-title>
.
<source>J. Motor Behav</source>
.
<volume>31</volume>
,
<fpage>145</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="doi">10.1080/00222899909600985</pub-id>
<pub-id pub-id-type="pmid">11177628</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>B. H.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Sensorimotor synchronization: a review of the tapping literature</article-title>
.
<source>Psychon. Bull. Rev</source>
.
<volume>12</volume>
,
<fpage>969</fpage>
<lpage>992</lpage>
<pub-id pub-id-type="doi">10.3758/BF03206433</pub-id>
<pub-id pub-id-type="pmid">16615317</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>B. H.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Temporal evolution of the phase correction response in synchronization of taps with perturbed two-interval rhythms</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>208</volume>
,
<fpage>89</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-010-2462-5</pub-id>
<pub-id pub-id-type="pmid">20981540</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Repp</surname>
<given-names>B. H.</given-names>
</name>
<name>
<surname>Steinman</surname>
<given-names>S. R.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Simultaneous event-based and emergent timing: synchronization, continuation, and phase correction</article-title>
.
<source>J. Mot. Behav</source>
.
<volume>42</volume>
,
<fpage>111</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1080/00222890903566418</pub-id>
<pub-id pub-id-type="pmid">20189907</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riemann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lephart</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The sensorimotor system, Part II: the role of proprioception in motor control and functional joint stability</article-title>
.
<source>J. Athl. Train</source>
.
<volume>37</volume>
,
<fpage>80</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">16558671</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>S. D.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Lantero</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Bojczyk</surname>
<given-names>K. G.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Doffin</surname>
<given-names>J. G.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1999</year>
).
<article-title>Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control</article-title>
.
<source>J. Exp. Psychol. Hum. Percept. Perform</source>
.
<volume>25</volume>
,
<fpage>1316</fpage>
<lpage>1330</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.25.5.1316</pub-id>
<pub-id pub-id-type="pmid">10531665</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saijo</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gomi</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Multiple motor learning strategies in visuomotor rotation</article-title>
.
<source>PLoS ONE</source>
<volume>5</volume>
:
<fpage>e9399</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0009399</pub-id>
<pub-id pub-id-type="pmid">20195373</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schlerf</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Timing of rhythmic movements in patients with cerebellar degeneration</article-title>
.
<source>Cerebellum</source>
<volume>6</volume>
,
<fpage>221</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1080/14734220701370643</pub-id>
<pub-id pub-id-type="pmid">17786818</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schoner</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Timing, clocks, and dynamical systems</article-title>
.
<source>Brain Cogn</source>
.
<volume>48</volume>
,
<fpage>31</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1006/brcg.2001.1302</pub-id>
<pub-id pub-id-type="pmid">11812031</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semjen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Garcia-Colera</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>Planning and timing of finger- tapping sequences with a stressed element</article-title>
.
<source>J. Mot. Behav</source>
.
<volume>18</volume>
,
<fpage>287</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1080/00222895.1986.10735383</pub-id>
<pub-id pub-id-type="pmid">15138149</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semjen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schulze</surname>
<given-names>H. H.</given-names>
</name>
<name>
<surname>Vorberg</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Timing precision in continuation and synchronization tapping</article-title>
.
<source>Psychol. Res</source>
.
<volume>63</volume>
,
<fpage>137</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1007/PL00008172</pub-id>
<pub-id pub-id-type="pmid">10946587</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simoneau</surname>
<given-names>G. G.</given-names>
</name>
<name>
<surname>Degner</surname>
<given-names>R. M.</given-names>
</name>
<name>
<surname>Kramper</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Kittleson</surname>
<given-names>K. H.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin</article-title>
.
<source>J. Athl. Train</source>
.
<volume>32</volume>
,
<fpage>141</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="pmid">16558444</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>R. M. C.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Comparison of patients with Parkinson's disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing</article-title>
.
<source>Brain Cogn</source>
.
<volume>58</volume>
,
<fpage>84</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1016/j.bandc.2004.09.010</pub-id>
<pub-id pub-id-type="pmid">15878729</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>R. M. C.</given-names>
</name>
<name>
<surname>Verstynen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Brett</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Cerebellar activation during discrete and not continuous timed movements: an fMRI study</article-title>
.
<source>Neuroimage</source>
<volume>36</volume>
,
<fpage>378</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.03.009</pub-id>
<pub-id pub-id-type="pmid">17459731</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>R. M. C.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Weber (slope) analyses of timing variability in tapping and drawing tasks</article-title>
.
<source>J. Mot. Behav</source>
.
<volume>35</volume>
,
<fpage>371</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="doi">10.1080/00222890309603157</pub-id>
<pub-id pub-id-type="pmid">14607774</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spencer</surname>
<given-names>R. M. C.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Diedrichsen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Disrupted timing of discontinuous but not continuous movements by cerebellar lesions</article-title>
.
<source>Science</source>
<volume>300</volume>
,
<fpage>1437</fpage>
<lpage>1439</lpage>
<pub-id pub-id-type="doi">10.1126/science.1083661</pub-id>
<pub-id pub-id-type="pmid">12775842</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Studenka</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The influence of dominant versus non-dominant hand on event and emergent motor timing</article-title>
.
<source>Hum. Mov. Sci</source>
.
<volume>27</volume>
,
<fpage>29</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.humov.2007.08.004</pub-id>
<pub-id pub-id-type="pmid">18191491</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Grube</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Griffiths</surname>
<given-names>T. D.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>A unified model of time perception accounts for duration-based and beat-based timing mechanisms</article-title>
.
<source>Front. Integr. Neurosci</source>
.
<volume>5</volume>
:
<issue>90</issue>
<pub-id pub-id-type="doi">10.3389/fnint.2011.00090</pub-id>
<pub-id pub-id-type="pmid">22319477</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thaut</surname>
<given-names>M. H.</given-names>
</name>
<name>
<surname>McIntosh</surname>
<given-names>G. C.</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>R. R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Rathbun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Brault</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Rhythmic auditory stimulation in gait training for Parkinson's disease patients</article-title>
.
<source>Mov. Disord</source>
.
<volume>11</volume>
,
<fpage>193</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1002/mds.870110213</pub-id>
<pub-id pub-id-type="pmid">8684391</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Turvey</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
(
<year>1977</year>
).
<article-title>Preliminaries to a theory of action with reference to vision</article-title>
, in
<source>Perceiving, Acting and Knowing: Toward an Ecological Psychology</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Shaw</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bransford</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<publisher-loc>Hillsdale, NJ</publisher-loc>
:
<publisher-name>Erlbaum</publisher-name>
),
<fpage>211</fpage>
<lpage>265</lpage>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wing</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Kristofferson</surname>
<given-names>A. B.</given-names>
</name>
</person-group>
(
<year>1973a</year>
).
<article-title>The timing of interresponse intervals</article-title>
.
<source>Percept. Psychophys</source>
.
<volume>13</volume>
,
<fpage>455</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="doi">10.3758/BF03205802</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wing</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Kristofferson</surname>
<given-names>A. B.</given-names>
</name>
</person-group>
(
<year>1973b</year>
).
<article-title>Response delays and timing of discrete motor responses</article-title>
.
<source>Percept. Psychophys</source>
.
<volume>14</volume>
,
<fpage>5</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.3758/BF03198607</pub-id>
<pub-id pub-id-type="pmid">11543514</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wittwer</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults</article-title>
.
<source>Gait Posture</source>
<volume>37</volume>
,
<fpage>219</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1016/j.gaitpost.2012.07.006</pub-id>
<pub-id pub-id-type="pmid">22871238</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ashe</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bushara</surname>
<given-names>K. O.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Role of the olivo-cerebellar system in timing</article-title>
.
<source>J. Neurosci</source>
.
<volume>26</volume>
,
<fpage>5990</fpage>
<lpage>5995</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0038-06.2006</pub-id>
<pub-id pub-id-type="pmid">16738241</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zatorre</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Halpern</surname>
<given-names>A. R.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Mental concerts: musical imagery and auditory cortex</article-title>
.
<source>Neuron</source>
<volume>47</volume>
,
<fpage>9</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2005.06.013</pub-id>
<pub-id pub-id-type="pmid">15996544</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Rosenbaum</surname>
<given-names>D. A.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Timing processes are correlated when tasks share a salient event</article-title>
.
<source>J. Exp. Psychol. Hum. Percept. Perform</source>
.
<volume>36</volume>
,
<fpage>1565</fpage>
<lpage>1575</lpage>
<pub-id pub-id-type="doi">10.1037/a0020380</pub-id>
<pub-id pub-id-type="pmid">20731516</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zelaznik</surname>
<given-names>H. N.</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>R. M. C.</given-names>
</name>
<name>
<surname>Ivry</surname>
<given-names>R. B.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Dissociation of explicit and implicit timing in repetitive tapping and drawing movements</article-title>
.
<source>J. Exp. Psychol. Hum. Percept. Perform</source>
.
<volume>28</volume>
,
<fpage>575</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="doi">10.1037/0096-1523.28.3.575</pub-id>
<pub-id pub-id-type="pmid">12075889</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>bpm</term>
<def>
<p>beats per minute</p>
</def>
</def-item>
<def-item>
<term>Cl</term>
<def>
<p>while listening to a stream of clicks</p>
</def>
</def-item>
<def-item>
<term>Cl2</term>
<def>
<p>after 2 min from the end of the Cl condition</p>
</def>
</def-item>
<def-item>
<term>CVs</term>
<def>
<p>coefficients of variation</p>
</def>
</def-item>
<def-item>
<term>Fr</term>
<def>
<p>free, in absence of auditory information</p>
</def>
</def-item>
<def-item>
<term>IWFEs</term>
<def>
<p>isochronous wrist's flexion-extensions</p>
</def>
</def-item>
<def-item>
<term>KTT</term>
<def>
<p>Kinesio® Tex taping</p>
</def>
</def-item>
<def-item>
<term>Mu</term>
<def>
<p>while listening to an excerpt of music</p>
</def>
</def-item>
<def-item>
<term>Mu2</term>
<def>
<p>after 2 min from the end of the Mu condition</p>
</def>
</def-item>
<def-item>
<term>N/KTT</term>
<def>
<p>no KTT</p>
</def>
</def-item>
<def-item>
<term>wγ(1)</term>
<def>
<p>windowed lag-one autocorrelations.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Psychologie/explor/DanceTherParkinsonV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000289 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000289 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Psychologie
   |area=    DanceTherParkinsonV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4174732
   |texte=   A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25309355" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a DanceTherParkinsonV1 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Sun Aug 9 17:42:30 2020. Site generation: Mon Feb 12 22:53:51 2024