Danse-thérapie et Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000239 ( Pmc/Corpus ); précédent : 0002389; suivant : 0002400 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation</title>
<author>
<name sortKey="Lei, Yuguo" sort="Lei, Yuguo" uniqKey="Lei Y" first="Yuguo" last="Lei">Yuguo Lei</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Chemical Engineering,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff3">California Institute for Quantitative Biosciences</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Helen Wills Neuroscience Institute,
<institution>University of California</institution>
, Berkeley,
<addr-line>CA</addr-line>
94720</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schaffer, David V" sort="Schaffer, David V" uniqKey="Schaffer D" first="David V." last="Schaffer">David V. Schaffer</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Chemical Engineering,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff3">California Institute for Quantitative Biosciences</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Helen Wills Neuroscience Institute,
<institution>University of California</institution>
, Berkeley,
<addr-line>CA</addr-line>
94720</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24248365</idno>
<idno type="pmc">3876251</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876251</idno>
<idno type="RBID">PMC:3876251</idno>
<idno type="doi">10.1073/pnas.1309408110</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000239</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation</title>
<author>
<name sortKey="Lei, Yuguo" sort="Lei, Yuguo" uniqKey="Lei Y" first="Yuguo" last="Lei">Yuguo Lei</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Chemical Engineering,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff3">California Institute for Quantitative Biosciences</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Helen Wills Neuroscience Institute,
<institution>University of California</institution>
, Berkeley,
<addr-line>CA</addr-line>
94720</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schaffer, David V" sort="Schaffer, David V" uniqKey="Schaffer D" first="David V." last="Schaffer">David V. Schaffer</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">Chemical Engineering,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff3">California Institute for Quantitative Biosciences</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Helen Wills Neuroscience Institute,
<institution>University of California</institution>
, Berkeley,
<addr-line>CA</addr-line>
94720</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Significance</title>
<p>Human pluripotent stem cells can be cultured in vitro and differentiated into presumably all cell types of the human body, and they therefore represent highly promising cell sources for biomedical applications such as cell therapies, tissue engineering, and drug discovery. These applications require large numbers of high-quality cells, and we report an efficient, defined, scalable, and good manufacturing practice-compatible 3D system for the production of human pluripotent stem cells and their progeny. The ease of use and flexible scalability of this system makes it suitable for numerous applications from the laboratory toward the clinic.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Natl Acad Sci U S A</journal-id>
<journal-id journal-id-type="iso-abbrev">Proc. Natl. Acad. Sci. U.S.A</journal-id>
<journal-id journal-id-type="hwp">pnas</journal-id>
<journal-id journal-id-type="pmc">pnas</journal-id>
<journal-id journal-id-type="publisher-id">PNAS</journal-id>
<journal-title-group>
<journal-title>Proceedings of the National Academy of Sciences of the United States of America</journal-title>
</journal-title-group>
<issn pub-type="ppub">0027-8424</issn>
<issn pub-type="epub">1091-6490</issn>
<publisher>
<publisher-name>National Academy of Sciences</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24248365</article-id>
<article-id pub-id-type="pmc">3876251</article-id>
<article-id pub-id-type="publisher-id">201309408</article-id>
<article-id pub-id-type="doi">10.1073/pnas.1309408110</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>PNAS Plus</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Physical Sciences</subject>
<subj-group>
<subject>Engineering</subject>
</subj-group>
</subj-group>
<series-title>PNAS Plus</series-title>
</article-categories>
<title-group>
<article-title>A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation</article-title>
<alt-title alt-title-type="short">3D culture system for human pluripotent stem cells</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lei</surname>
<given-names>Yuguo</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schaffer</surname>
<given-names>David V.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>a</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>b</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>c</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>d</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>1</sup>
</xref>
</contrib>
<aff id="aff1">Departments of
<sup>a</sup>
Bioengineering and</aff>
<aff id="aff2">
<sup>b</sup>
Chemical Engineering,</aff>
<aff id="aff3">
<sup>c</sup>
California Institute for Quantitative Biosciences, and</aff>
<aff id="aff4">
<sup>d</sup>
Helen Wills Neuroscience Institute,
<institution>University of California</institution>
, Berkeley,
<addr-line>CA</addr-line>
94720</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<sup>1</sup>
To whom correspondence should be addressed. E-mail:
<email>schaffer@berkeley.edu</email>
.</corresp>
<fn fn-type="edited-by">
<p>Edited by Linda G. Griffith, Massachusetts Institute of Technology, Cambridge, MA, and accepted by the Editorial Board October 25, 2013 (received for review May 17, 2013)</p>
</fn>
<fn fn-type="con">
<p>Author contributions: Y.L. and D.V.S. designed research; Y.L. performed research; and Y.L. and D.V.S. wrote the paper.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>24</day>
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>18</day>
<month>11</month>
<year>2013</year>
</pub-date>
<volume>110</volume>
<issue>52</issue>
<fpage>E5039</fpage>
<lpage>E5048</lpage>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="pnas.201309408.pdf"></self-uri>
<abstract abstract-type="executive-summary">
<title>Significance</title>
<p>Human pluripotent stem cells can be cultured in vitro and differentiated into presumably all cell types of the human body, and they therefore represent highly promising cell sources for biomedical applications such as cell therapies, tissue engineering, and drug discovery. These applications require large numbers of high-quality cells, and we report an efficient, defined, scalable, and good manufacturing practice-compatible 3D system for the production of human pluripotent stem cells and their progeny. The ease of use and flexible scalability of this system makes it suitable for numerous applications from the laboratory toward the clinic.</p>
</abstract>
<abstract>
<p>Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 10
<sup>72</sup>
-fold expansion over 280 d), yield (∼2.0 × 10
<sup>7</sup>
cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 10
<sup>7</sup>
dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.</p>
</abstract>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Psychologie/explor/DanceTherParkinsonV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000239  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000239  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Psychologie
   |area=    DanceTherParkinsonV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Sun Aug 9 17:42:30 2020. Site generation: Mon Feb 12 22:53:51 2024