Serveur d'exploration Hippolyte Bernheim

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Living Nanomachines

Identifieur interne : 000A19 ( Istex/Corpus ); précédent : 000A18; suivant : 000A20

Living Nanomachines

Auteurs : M.-F. Carlier ; E. Helfer ; R. Wade ; F. Haraux

Source :

RBID : ISTEX:97E869A1589577109691F771C61FE63BAF45847D

Abstract

Abstract: The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.

Url:
DOI: 10.1007/978-3-540-88633-4_5

Links to Exploration step

ISTEX:97E869A1589577109691F771C61FE63BAF45847D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Living Nanomachines</title>
<author>
<name sortKey="Carlier, M F" sort="Carlier, M F" uniqKey="Carlier M" first="M.-F." last="Carlier">M.-F. Carlier</name>
<affiliation>
<mods:affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: carlier@lebs.cnrs-gif.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Helfer, E" sort="Helfer, E" uniqKey="Helfer E" first="E." last="Helfer">E. Helfer</name>
<affiliation>
<mods:affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: emmanuele.helfer@lebs.cnrs-gif.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wade, R" sort="Wade, R" uniqKey="Wade R" first="R." last="Wade">R. Wade</name>
<affiliation>
<mods:affiliation>Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027, Grenoble Cedex 1, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: richard.wade@ibs.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haraux, F" sort="Haraux, F" uniqKey="Haraux F" first="F." last="Haraux">F. Haraux</name>
<affiliation>
<mods:affiliation>Laboratoire des protéines membranaires, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francis.haraux@cea.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:97E869A1589577109691F771C61FE63BAF45847D</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1007/978-3-540-88633-4_5</idno>
<idno type="url">https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A19</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Living Nanomachines</title>
<author>
<name sortKey="Carlier, M F" sort="Carlier, M F" uniqKey="Carlier M" first="M.-F." last="Carlier">M.-F. Carlier</name>
<affiliation>
<mods:affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: carlier@lebs.cnrs-gif.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Helfer, E" sort="Helfer, E" uniqKey="Helfer E" first="E." last="Helfer">E. Helfer</name>
<affiliation>
<mods:affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: emmanuele.helfer@lebs.cnrs-gif.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wade, R" sort="Wade, R" uniqKey="Wade R" first="R." last="Wade">R. Wade</name>
<affiliation>
<mods:affiliation>Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027, Grenoble Cedex 1, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: richard.wade@ibs.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haraux, F" sort="Haraux, F" uniqKey="Haraux F" first="F." last="Haraux">F. Haraux</name>
<affiliation>
<mods:affiliation>Laboratoire des protéines membranaires, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francis.haraux@cea.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<editor>
<json:item>
<name>Patrick Boisseau</name>
<affiliations>
<json:string>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Houdy</name>
<affiliations>
<json:string>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</json:string>
<json:string>E-mail: philippe.houdy@univ-evry.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcel Lahmani</name>
<affiliations>
<json:string>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</json:string>
</affiliations>
</json:item>
</editor>
<author>
<json:item>
<name>M.-F. Carlier</name>
<affiliations>
<json:string>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</json:string>
<json:string>E-mail: carlier@lebs.cnrs-gif.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. Helfer</name>
<affiliations>
<json:string>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</json:string>
<json:string>E-mail: emmanuele.helfer@lebs.cnrs-gif.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Wade</name>
<affiliations>
<json:string>Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027, Grenoble Cedex 1, France</json:string>
<json:string>E-mail: richard.wade@ibs.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Haraux</name>
<affiliations>
<json:string>Laboratoire des protéines membranaires, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France</json:string>
<json:string>E-mail: francis.haraux@cea.fr</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-T9NLTSFT-V</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>chapter</json:string>
</originalGenre>
<abstract>Abstract: The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>18278</pdfWordCount>
<pdfCharCount>108012</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>52</pdfPageCount>
<pdfPageSize>439.37 x 666.142 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>421</abstractWordCount>
<abstractCharCount>2969</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Living Nanomachines</title>
<chapterId>
<json:string>5</json:string>
<json:string>b978-3-540-88633-4_5</json:string>
</chapterId>
<genre>
<json:string>chapter</json:string>
</genre>
<host>
<title>Nanoscience</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1007/978-3-540-88633-4</json:string>
</doi>
<eisbn>
<json:string>978-3-540-88633-4</json:string>
</eisbn>
<bookId>
<json:string>978-3-540-88633-4</json:string>
</bookId>
<isbn>
<json:string>978-3-540-88632-7</json:string>
</isbn>
<pages>
<first>171</first>
<last>222</last>
</pages>
<genre>
<json:string>book</json:string>
</genre>
<editor>
<json:item>
<name>Patrick Boisseau</name>
<affiliations>
<json:string>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Houdy</name>
<affiliations>
<json:string>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</json:string>
<json:string>E-mail: philippe.houdy@univ-evry.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcel Lahmani</name>
<affiliations>
<json:string>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</json:string>
</affiliations>
</json:item>
</editor>
<subject>
<json:item>
<value>Chemistry and Materials Science</value>
</json:item>
<json:item>
<value>Materials Science</value>
</json:item>
<json:item>
<value>Nanotechnology</value>
</json:item>
<json:item>
<value>Biophysics and Biological Physics</value>
</json:item>
<json:item>
<value>Biological Microscopy</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-T9NLTSFT-V</json:string>
</ark>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1007/978-3-540-88633-4_5</json:string>
</doi>
<id>97E869A1589577109691F771C61FE63BAF45847D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Living Nanomachines</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Springer Berlin Heidelberg</publisher>
<pubPlace>Berlin, Heidelberg</pubPlace>
<availability>
<licence>
<p>Springer-Verlag Berlin Heidelberg, 2009</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>2009</date>
</publicationStmt>
<notesStmt>
<note type="chapter" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6">chapter</note>
<note type="book" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Living Nanomachines</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">M.-F.</forename>
<surname>Carlier</surname>
</persName>
<email>carlier@lebs.cnrs-gif.fr</email>
<affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E.</forename>
<surname>Helfer</surname>
</persName>
<email>emmanuele.helfer@lebs.cnrs-gif.fr</email>
<affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">R.</forename>
<surname>Wade</surname>
</persName>
<email>richard.wade@ibs.fr</email>
<affiliation>Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027, Grenoble Cedex 1, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">F.</forename>
<surname>Haraux</surname>
</persName>
<email>francis.haraux@cea.fr</email>
<affiliation>Laboratoire des protéines membranaires, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France</affiliation>
</author>
<editor xml:id="author-0004">
<persName>
<forename type="first">Patrick</forename>
<surname>Boisseau</surname>
</persName>
<affiliation>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</affiliation>
</editor>
<editor xml:id="author-0005">
<persName>
<forename type="first">Philippe</forename>
<surname>Houdy</surname>
</persName>
<email>philippe.houdy@univ-evry.fr</email>
<affiliation>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</affiliation>
</editor>
<editor xml:id="author-0006">
<persName>
<forename type="first">Marcel</forename>
<surname>Lahmani</surname>
</persName>
<affiliation>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</affiliation>
</editor>
<idno type="istex">97E869A1589577109691F771C61FE63BAF45847D</idno>
<idno type="ark">ark:/67375/HCB-T9NLTSFT-V</idno>
<idno type="DOI">10.1007/978-3-540-88633-4_5</idno>
<idno type="ChapterID">5</idno>
<idno type="ChapterID">b978-3-540-88633-4_5</idno>
</analytic>
<monogr>
<title level="m">Nanoscience</title>
<title level="m" type="sub">Nanobiotechnology and Nanobiology</title>
<idno type="DOI">10.1007/978-3-540-88633-4</idno>
<idno type="pISBN">978-3-540-88632-7</idno>
<idno type="eISBN">978-3-540-88633-4</idno>
<idno type="book-title-id">150660</idno>
<idno type="book-id">978-3-540-88633-4</idno>
<idno type="book-chapter-count">26</idno>
<idno type="PartChapterCount">6</idno>
<editor xml:id="book-author-0000">
<persName>
<forename type="first">Patrick</forename>
<surname>Boisseau</surname>
</persName>
<affiliation>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</affiliation>
</editor>
<editor xml:id="book-author-0001">
<persName>
<forename type="first">Philippe</forename>
<surname>Houdy</surname>
</persName>
<email>philippe.houdy@univ-evry.fr</email>
<affiliation>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</affiliation>
</editor>
<editor xml:id="book-author-0002">
<persName>
<forename type="first">Marcel</forename>
<surname>Lahmani</surname>
</persName>
<affiliation>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</affiliation>
</editor>
<imprint>
<publisher>Springer Berlin Heidelberg</publisher>
<pubPlace>Berlin, Heidelberg</pubPlace>
<date type="published" when="2009-07-19"></date>
<biblScope unit="chap">5</biblScope>
<biblScope unit="page" from="171">171</biblScope>
<biblScope unit="page" to="222">222</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.</p>
</abstract>
<textClass>
<keywords scheme="Book-Subject-Collection">
<list>
<label>SUCO11644</label>
<item>
<term>Chemistry and Materials Science</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Book-Subject-Group">
<list>
<label>SCZ</label>
<label>SCZ14000</label>
<label>SCP27008</label>
<label>SCL26000</label>
<item>
<term>Materials Science</term>
</item>
<item>
<term>Nanotechnology</term>
</item>
<item>
<term>Biophysics and Biological Physics</term>
</item>
<item>
<term>Biological Microscopy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-07-19">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-11-28">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer Berlin Heidelberg</PublisherName>
<PublisherLocation>Berlin, Heidelberg</PublisherLocation>
</PublisherInfo>
<Book Language="En" OutputMedium="All">
<BookInfo BookProductType="Monograph" ContainsESM="No" Language="En" MediaType="eBook" NumberingStyle="ChapterContent" OutputMedium="All" TocLevels="0">
<BookID>978-3-540-88633-4</BookID>
<BookTitle>Nanoscience</BookTitle>
<BookSubTitle>Nanobiotechnology and Nanobiology</BookSubTitle>
<BookDOI>10.1007/978-3-540-88633-4</BookDOI>
<BookTitleID>150660</BookTitleID>
<BookPrintISBN>978-3-540-88632-7</BookPrintISBN>
<BookElectronicISBN>978-3-540-88633-4</BookElectronicISBN>
<BookChapterCount>26</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>2009</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="SCZ" Type="Primary">Materials Science</BookSubject>
<BookSubject Code="SCZ14000" Priority="1" Type="Secondary">Nanotechnology</BookSubject>
<BookSubject Code="SCP27008" Priority="2" Type="Secondary">Biophysics and Biological Physics</BookSubject>
<BookSubject Code="SCL26000" Priority="3" Type="Secondary">Biological Microscopy</BookSubject>
<SubjectCollection Code="SUCO11644">Chemistry and Materials Science</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor AffiliationIDS="AffID1">
<EditorName DisplayOrder="Western">
<GivenName>Patrick</GivenName>
<FamilyName>Boisseau</FamilyName>
</EditorName>
<Contact></Contact>
</Editor>
<Editor AffiliationIDS="AffID2">
<EditorName DisplayOrder="Western">
<GivenName>Philippe</GivenName>
<FamilyName>Houdy</FamilyName>
</EditorName>
<Contact>
<Email>philippe.houdy@univ-evry.fr</Email>
</Contact>
</Editor>
<Editor AffiliationIDS="AffID3">
<EditorName DisplayOrder="Western">
<GivenName>Marcel</GivenName>
<FamilyName>Lahmani</FamilyName>
</EditorName>
<Contact></Contact>
</Editor>
<Affiliation ID="AffID1">
<OrgDivision>LETI-MINATEC</OrgDivision>
<OrgName>CEA</OrgName>
<OrgAddress>
<Street>rue des martyrs 17</Street>
<City>Grenoble CX 9</City>
<Postcode>38054</Postcode>
<Country>France</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="AffID2">
<OrgName>Université d'Evry</OrgName>
<OrgAddress>
<Street>bd. F. Mitterrand</Street>
<City>Evry CX</City>
<Postcode>91025</Postcode>
<Country>France</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="AffID3">
<OrgDivision>Dépt. Sciences des Matériaux</OrgDivision>
<OrgName>Université d'Evry</OrgName>
<OrgAddress>
<Street>rue du père Jarlan</Street>
<City>Evry CX</City>
<Postcode>91025</Postcode>
<Country>France</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Part ID="Part1" OutputMedium="All">
<PartInfo OutputMedium="All" TocLevels="0">
<PartID>1</PartID>
<PartSequenceNumber>1</PartSequenceNumber>
<PartTitle>Biological Nano-Objects</PartTitle>
<PartChapterCount>6</PartChapterCount>
<PartContext>
<BookID>978-3-540-88633-4</BookID>
<BookTitle>Nanoscience</BookTitle>
</PartContext>
</PartInfo>
<Chapter ID="b978-3-540-88633-4_5" Language="En">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="ChapterContent" OutputMedium="All" TocLevels="0">
<ChapterID>5</ChapterID>
<ChapterNumber>5</ChapterNumber>
<ChapterDOI>10.1007/978-3-540-88633-4_5</ChapterDOI>
<ChapterSequenceNumber>5</ChapterSequenceNumber>
<ChapterTitle Language="En">Living Nanomachines</ChapterTitle>
<ChapterFirstPage>171</ChapterFirstPage>
<ChapterLastPage>222</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>2009</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2009</Year>
<Month>6</Month>
<Day>2</Day>
</RegistrationDate>
<OnlineDate>
<Year>2009</Year>
<Month>7</Month>
<Day>19</Day>
</OnlineDate>
</ChapterHistory>
<ChapterContext>
<PartID>1</PartID>
<BookID>978-3-540-88633-4</BookID>
<BookTitle>Nanoscience</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1_5" CorrespondingAffiliationID="Aff1_5">
<AuthorName DisplayOrder="Western">
<GivenName>M.-F.</GivenName>
<FamilyName>Carlier</FamilyName>
</AuthorName>
<Contact>
<Email>carlier@lebs.cnrs-gif.fr</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff1_5">
<AuthorName DisplayOrder="Western">
<GivenName>E.</GivenName>
<FamilyName>Helfer</FamilyName>
</AuthorName>
<Contact>
<Email>emmanuele.helfer@lebs.cnrs-gif.fr</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff2_5">
<AuthorName DisplayOrder="Western">
<GivenName>R.</GivenName>
<FamilyName>Wade</FamilyName>
</AuthorName>
<Contact>
<Email>richard.wade@ibs.fr</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff3_5">
<AuthorName DisplayOrder="Western">
<GivenName>F.</GivenName>
<FamilyName>Haraux</FamilyName>
</AuthorName>
<Contact>
<Email>francis.haraux@cea.fr</Email>
</Contact>
</Author>
<Affiliation ID="Aff1_5">
<OrgName>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082</OrgName>
<OrgAddress>
<Street>Bâtiment 34 Avenue de la Terrasse</Street>
<Postcode>91198</Postcode>
<City>Gif-sur-Yvette Cedex</City>
<Country>France</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2_5">
<OrgName>Institut de Biologie Structurale</OrgName>
<OrgAddress>
<Street>41 rue Jules Horowitz</Street>
<Postcode>38027</Postcode>
<City>Grenoble Cedex 1</City>
<Country>France</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3_5">
<OrgName>Laboratoire des protéines membranaires, CEA Saclay</OrgName>
<OrgAddress>
<Postcode>91191</Postcode>
<City>Gif-sur-Yvette Cedex</City>
<Country>France</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1_5" Language="En" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para TextBreak="No">The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Part>
</Book>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Living Nanomachines</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Living Nanomachines</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">M.-F.</namePart>
<namePart type="family">Carlier</namePart>
<affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</affiliation>
<affiliation>E-mail: carlier@lebs.cnrs-gif.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Helfer</namePart>
<affiliation>Laboratoire d’Enzymologie et Biochimie Structurales CNRS UPR 3082, Bâtiment 34 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France</affiliation>
<affiliation>E-mail: emmanuele.helfer@lebs.cnrs-gif.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Wade</namePart>
<affiliation>Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027, Grenoble Cedex 1, France</affiliation>
<affiliation>E-mail: richard.wade@ibs.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Haraux</namePart>
<affiliation>Laboratoire des protéines membranaires, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France</affiliation>
<affiliation>E-mail: francis.haraux@cea.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Boisseau</namePart>
<affiliation>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Houdy</namePart>
<affiliation>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</affiliation>
<affiliation>E-mail: philippe.houdy@univ-evry.fr</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcel</namePart>
<namePart type="family">Lahmani</namePart>
<affiliation>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="chapter" displayLabel="chapter" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6"></genre>
<originInfo>
<publisher>Springer Berlin Heidelberg</publisher>
<place>
<placeTerm type="text">Berlin, Heidelberg</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-07-19</dateIssued>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: The living cell is a kind of factory on the microscopic scale, in which an assembly of modular machines carries out, in a spatially and temporally coordinated way, a whole range of activities internal to the cell, including the synthesis of substances essential to its survival, intracellular traffic, waste disposal, and cell division, but also activities related to intercellular communication and exchanges with the outside world, i.e., the ability of the cell to change shape, to move within a tissue, or to organise its own defence against attack by pathogens, injury, and so on. These nanomachines are made up of macromolecular assemblies with varying degrees of complexity, forged by evolution, within which work is done as a result of changes in interactions between proteins, or between proteins and nucleic acids, or between proteins and membrane components. All these cell components measure a few nanometers across, so the mechanical activity of these nanomachines all happens on the nanometric scale. The directional nature of the work carried out by biological nanomachines is associated with a dissipation of energy. As examples of protein assemblies, one could mention the proteasome, which is responsible for the degradation of proteins, and linear molecular motors such as actomyosin, responsible for muscle contraction, the dynein–microtubule system, responsible for flagellar motility, and the kinesin–microtubule system, responsible for transport of vesicles, which transform chemical energy into motion. Nucleic acid–protein assemblies include the ribosome, responsible for synthesising proteins, polymerases, helicases, elongation factors, and the machinery of DNA replication and repair; the mitotic spindle is an integrated system involving several of these activities which drive chromosome segregation. The machinery coupling membranes and proteins includes systems involved in the energy metabolism, such as the ATP synthase rotary motor, signalling cascades, endocytosis and phagocytosis complexes, and also dynamic membrane–cytoskeleton complexes which generate protrusion forces involved in cell adhesion and migration. The ideas of molecular recognition and controlled interfaces between biological components provide the underlying mechanisms for biological machinery and networks [1]. Many proteins illustrate this principle by their modular organisation into domains. The juxtaposition of catalytic domains of known function and domains of interaction with different partners leads to the emergence of new biological functions. It can also create threshold mechanisms, or biological switches, by triggering the activity of a given domain only when several partners interact with the regulatory domains. Many of these interaction domains are well understood. They exist inside different proteins, in particular, in cell signaling networks, and could potentially be used as building blocks in the construction of new proteins.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nanoscience</title>
<subTitle>Nanobiotechnology and Nanobiology</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Boisseau</namePart>
<affiliation>LETI-MINATEC, CEA, rue des martyrs 17, 38054, Grenoble CX 9, France</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Houdy</namePart>
<affiliation>Université d'Evry, bd. F. Mitterrand, 91025, Evry CX, France</affiliation>
<affiliation>E-mail: philippe.houdy@univ-evry.fr</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcel</namePart>
<namePart type="family">Lahmani</namePart>
<affiliation>Dépt. Sciences des Matériaux, Université d'Evry, rue du père Jarlan, 91025, Evry CX, France</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book" displayLabel="Monograph" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11644">Chemistry and Materials Science</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SCZ">Materials Science</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCZ14000">Nanotechnology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCP27008">Biophysics and Biological Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCL26000">Biological Microscopy</topic>
</subject>
<identifier type="DOI">10.1007/978-3-540-88633-4</identifier>
<identifier type="ISBN">978-3-540-88632-7</identifier>
<identifier type="eISBN">978-3-540-88633-4</identifier>
<identifier type="BookTitleID">150660</identifier>
<identifier type="BookID">978-3-540-88633-4</identifier>
<identifier type="BookChapterCount">26</identifier>
<identifier type="PartChapterCount">6</identifier>
<part>
<date>2009</date>
<detail type="part">
<title>Biological Nano-Objects</title>
</detail>
<detail type="chapter">
<number>5</number>
</detail>
<extent unit="pages">
<start>171</start>
<end>222</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 2009</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">97E869A1589577109691F771C61FE63BAF45847D</identifier>
<identifier type="ark">ark:/67375/HCB-T9NLTSFT-V</identifier>
<identifier type="DOI">10.1007/978-3-540-88633-4_5</identifier>
<identifier type="ChapterID">5</identifier>
<identifier type="ChapterID">b978-3-540-88633-4_5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag Berlin Heidelberg, 2009</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 2009</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/metadata/json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>txt</extension>
<original>true</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/97E869A1589577109691F771C61FE63BAF45847D/annexes/txt</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Psychologie/explor/BernheimV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Psychologie
   |area=    BernheimV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:97E869A1589577109691F771C61FE63BAF45847D
   |texte=   Living Nanomachines
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Mar 5 17:33:33 2018. Site generation: Thu Apr 29 15:49:51 2021