Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative systems biology: from bacteria to man

Identifieur interne : 001115 ( Main/Corpus ); précédent : 001114; suivant : 001116

Comparative systems biology: from bacteria to man

Auteurs : Bas Teusink ; Hans V. Westerhoff ; Frank J. Bruggeman

Source :

RBID : ISTEX:D4D22179DCBD8D7B42D198508870857ED5C1AE2A

Abstract

Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.

Url:
DOI: 10.1002/wsbm.74

Links to Exploration step

ISTEX:D4D22179DCBD8D7B42D198508870857ED5C1AE2A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative systems biology: from bacteria to man</title>
<author>
<name sortKey="Teusink, Bas" sort="Teusink, Bas" uniqKey="Teusink B" first="Bas" last="Teusink">Bas Teusink</name>
<affiliation>
<mods:affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Westerhoff, Hans V" sort="Westerhoff, Hans V" uniqKey="Westerhoff H" first="Hans V." last="Westerhoff">Hans V. Westerhoff</name>
<affiliation>
<mods:affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bruggeman, Frank J" sort="Bruggeman, Frank J" uniqKey="Bruggeman F" first="Frank J." last="Bruggeman">Frank J. Bruggeman</name>
<affiliation>
<mods:affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Regulatory Networks Group, NISB, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D4D22179DCBD8D7B42D198508870857ED5C1AE2A</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/wsbm.74</idno>
<idno type="url">https://api.istex.fr/document/D4D22179DCBD8D7B42D198508870857ED5C1AE2A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Comparative systems biology: from bacteria to man</title>
<author>
<name sortKey="Teusink, Bas" sort="Teusink, Bas" uniqKey="Teusink B" first="Bas" last="Teusink">Bas Teusink</name>
<affiliation>
<mods:affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Westerhoff, Hans V" sort="Westerhoff, Hans V" uniqKey="Westerhoff H" first="Hans V." last="Westerhoff">Hans V. Westerhoff</name>
<affiliation>
<mods:affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bruggeman, Frank J" sort="Bruggeman, Frank J" uniqKey="Bruggeman F" first="Frank J." last="Bruggeman">Frank J. Bruggeman</name>
<affiliation>
<mods:affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Regulatory Networks Group, NISB, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Wiley Interdisciplinary Reviews: Systems Biology and Medicine</title>
<title level="j" type="abbrev">WIREs Syst Biol Med</title>
<idno type="ISSN">1939-5094</idno>
<idno type="eISSN">1939-005X</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<date type="published" when="2010-09">2010-09</date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="518">518</biblScope>
<biblScope unit="page" to="532">532</biblScope>
</imprint>
<idno type="ISSN">1939-5094</idno>
</series>
<idno type="istex">D4D22179DCBD8D7B42D198508870857ED5C1AE2A</idno>
<idno type="DOI">10.1002/wsbm.74</idno>
<idno type="ArticleID">WSBM74</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1939-5094</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Bas Teusink</name>
<affiliations>
<json:string>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</json:string>
<json:string>Netherlands Institute Systems Biology (NISB), The Netherlands</json:string>
<json:string>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hans V. Westerhoff</name>
<affiliations>
<json:string>Netherlands Institute Systems Biology (NISB), The Netherlands</json:string>
<json:string>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</json:string>
<json:string>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frank J. Bruggeman</name>
<affiliations>
<json:string>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</json:string>
<json:string>Regulatory Networks Group, NISB, The Netherlands</json:string>
<json:string>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.</abstract>
<qualityIndicators>
<score>7.4</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 783 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1401</abstractCharCount>
<pdfWordCount>7937</pdfWordCount>
<pdfCharCount>53236</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>200</abstractWordCount>
</qualityIndicators>
<title>Comparative systems biology: from bacteria to man</title>
<genre>
<json:string>other</json:string>
</genre>
<host>
<volume>2</volume>
<pages>
<total>20</total>
<last>532</last>
<first>518</first>
</pages>
<issn>
<json:string>1939-5094</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Computational Methods</value>
</json:item>
<json:item>
<value>Overview</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1939-005X</json:string>
</eissn>
<title>Wiley Interdisciplinary Reviews: Systems Biology and Medicine</title>
<doi>
<json:string>10.1002/(ISSN)1939-005X</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/wsbm.74</json:string>
</doi>
<id>D4D22179DCBD8D7B42D198508870857ED5C1AE2A</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/D4D22179DCBD8D7B42D198508870857ED5C1AE2A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/D4D22179DCBD8D7B42D198508870857ED5C1AE2A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D4D22179DCBD8D7B42D198508870857ED5C1AE2A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Comparative systems biology: from bacteria to man</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Comparative systems biology: from bacteria to man</title>
<author>
<persName>
<forename type="first">Bas</forename>
<surname>Teusink</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</p>
</note>
<affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</affiliation>
<affiliation>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</affiliation>
</author>
<author>
<persName>
<forename type="first">Hans V.</forename>
<surname>Westerhoff</surname>
</persName>
<affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</affiliation>
<affiliation>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</affiliation>
</author>
<author>
<persName>
<forename type="first">Frank J.</forename>
<surname>Bruggeman</surname>
</persName>
<affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Regulatory Networks Group, NISB, The Netherlands</affiliation>
<affiliation>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Wiley Interdisciplinary Reviews: Systems Biology and Medicine</title>
<title level="j" type="abbrev">WIREs Syst Biol Med</title>
<idno type="pISSN">1939-5094</idno>
<idno type="eISSN">1939-005X</idno>
<idno type="DOI">10.1002/(ISSN)1939-005X</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>Hoboken, USA</pubPlace>
<date type="published" when="2010-09"></date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="518">518</biblScope>
<biblScope unit="page" to="532">532</biblScope>
</imprint>
</monogr>
<idno type="istex">D4D22179DCBD8D7B42D198508870857ED5C1AE2A</idno>
<idno type="DOI">10.1002/wsbm.74</idno>
<idno type="ArticleID">WSBM74</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Computational Methods</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Overview</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/D4D22179DCBD8D7B42D198508870857ED5C1AE2A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>Hoboken, USA</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1939-005X</doi>
<issn type="print">1939-5094</issn>
<issn type="electronic">1939-005X</issn>
<idGroup>
<id type="product" value="WSBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="WILEY INTERDISCIPLINARY REVIEWS: SYSTEMS BIOLOGY AND MEDICINE">Wiley Interdisciplinary Reviews: Systems Biology and Medicine</title>
<title type="short">WIREs Syst Biol Med</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/wsbm.v2:5</doi>
<numberingGroup>
<numbering type="journalVolume" number="2">2</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2010-09">September/October 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="miscellaneous" position="20" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/wsbm.74</doi>
<idGroup>
<id type="unit" value="WSBM74"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Overview</title>
<title type="tocHeading1">Overviews</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="firstOnline" date="2010-02-04"></event>
<event type="publishedOnlineFinalForm" date="2010-08-04"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-02-04"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.5 mode:FullText" date="2012-06-20"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">518</numbering>
<numbering type="pageLast">532</numbering>
</numberingGroup>
<correspondenceTo>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</correspondenceTo>
<subjectInfo>
<subject href="psi.wiley.com/subject/19395094/2COM">Computational Methods</subject>
</subjectInfo>
<linkGroup>
<link type="toTypesetVersion" href="file:WSBM.WSBM74.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="95"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Comparative systems biology: from bacteria to man</title>
<title type="short" xml:lang="en">Comparative systems biology</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2 #af3" corresponding="yes">
<personName>
<givenNames>Bas</givenNames>
<familyName>Teusink</familyName>
</personName>
<contactDetails>
<email>bas.teusink@falw.vu.nl</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2 #af4 #af5">
<personName>
<givenNames>Hans V.</givenNames>
<familyName>Westerhoff</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1 #af6 #af7">
<personName>
<givenNames>Frank J.</givenNames>
<familyName>Bruggeman</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="NL" type="organization">
<unparsedAffiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="NL" type="organization">
<unparsedAffiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="NL" type="organization">
<unparsedAffiliation>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="NL" type="organization">
<unparsedAffiliation>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af5" countryCode="GB" type="organization">
<unparsedAffiliation>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af6" countryCode="NL" type="organization">
<unparsedAffiliation>Regulatory Networks Group, NISB, The Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af7" countryCode="NL" type="organization">
<unparsedAffiliation>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc.</p>
<p>For further resources related to this article, please visit the
<url href="http://wires.wiley.com/remdoi.cgi?doi=10.1002/wsbm.74">WIREs website</url>
.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Comparative systems biology: from bacteria to man</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Comparative systems biology</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Comparative systems biology: from bacteria to man</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bas</namePart>
<namePart type="family">Teusink</namePart>
<affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</affiliation>
<affiliation>Kluyver Center for Genomics of Industrial Fermentation, The Netherlands</affiliation>
<description>Correspondence: Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hans V.</namePart>
<namePart type="family">Westerhoff</namePart>
<affiliation>Netherlands Institute Systems Biology (NISB), The Netherlands</affiliation>
<affiliation>Molecular Cell Physiology, VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Manchester Centre for Integrative Systems Biology, University of Manchester, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank J.</namePart>
<namePart type="family">Bruggeman</namePart>
<affiliation>Systems BioInformatics, Center for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands</affiliation>
<affiliation>Regulatory Networks Group, NISB, The Netherlands</affiliation>
<affiliation>Life Sciences, Centre for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="other" displayLabel="miscellaneous"></genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">Hoboken, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-09</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="references">95</extent>
</physicalDescription>
<abstract lang="en">Comparative analyses, as carried out by comparative genomics and bioinformatics, have proven extremely powerful to obtain insight into the identity of specific genes that underlie differences and similarities across species. The central concept developed in this chapter is that important aspects of the functional differences between organisms derive not only from the differences in genetic components (which underlies comparative genomics) but also from dynamic, molecular (physical) interactions. Approaches that aim at identifying such network‐based rather than component‐based homologies between species we shall call Comparative Systems Biology. It will be illustrated by a number of examples from metabolic networks from prokaryotes, via yeast, to man. The potential for species comparisons, at the genome‐scale using classical approaches and at the more detailed level of dynamic molecular networks will be illustrated. In our opinion, comparative systems biology, as a marriage between bioinformatics and systems biology, will offer new insights into the nature of organisms for the benefit of medicine, biotechnology, and drug design. As dynamic modeling is becoming more mainstream in cell biology, the potential of comparative systems biology will become more evident. Copyright © 2010 John Wiley & Sons, Inc. For further resources related to this article, please visit the WIREs website.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Wiley Interdisciplinary Reviews: Systems Biology and Medicine</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>WIREs Syst Biol Med</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="psi.wiley.com/subject/19395094/2COM">Computational Methods</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Overview</topic>
</subject>
<identifier type="ISSN">1939-5094</identifier>
<identifier type="eISSN">1939-005X</identifier>
<identifier type="DOI">10.1002/(ISSN)1939-005X</identifier>
<identifier type="PublisherID">WSBM</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>518</start>
<end>532</end>
<total>20</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D4D22179DCBD8D7B42D198508870857ED5C1AE2A</identifier>
<identifier type="DOI">10.1002/wsbm.74</identifier>
<identifier type="ArticleID">WSBM74</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Inc.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D4D22179DCBD8D7B42D198508870857ED5C1AE2A
   |texte=   Comparative systems biology: from bacteria to man
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021