Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies

Identifieur interne : 000E56 ( Main/Corpus ); précédent : 000E55; suivant : 000E57

Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies

Auteurs : G. Bisio ; G. Rubatto

Source :

RBID : ISTEX:095EE539E8E912243B50C7F64FA0D360E5B3B33F

Abstract

The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.

Url:
DOI: 10.1016/S0360-5442(98)00090-5

Links to Exploration step

ISTEX:095EE539E8E912243B50C7F64FA0D360E5B3B33F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
<author>
<name sortKey="Bisio, G" sort="Bisio, G" uniqKey="Bisio G" first="G" last="Bisio">G. Bisio</name>
<affiliation>
<mods:affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubatto, G" sort="Rubatto, G" uniqKey="Rubatto G" first="G" last="Rubatto">G. Rubatto</name>
<affiliation>
<mods:affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:095EE539E8E912243B50C7F64FA0D360E5B3B33F</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0360-5442(98)00090-5</idno>
<idno type="url">https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000E56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
<author>
<name sortKey="Bisio, G" sort="Bisio, G" uniqKey="Bisio G" first="G" last="Bisio">G. Bisio</name>
<affiliation>
<mods:affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubatto, G" sort="Rubatto, G" uniqKey="Rubatto G" first="G" last="Rubatto">G. Rubatto</name>
<affiliation>
<mods:affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Energy</title>
<title level="j" type="abbrev">EGY</title>
<idno type="ISSN">0360-5442</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="117">117</biblScope>
<biblScope unit="page" to="131">131</biblScope>
</imprint>
<idno type="ISSN">0360-5442</idno>
</series>
<idno type="istex">095EE539E8E912243B50C7F64FA0D360E5B3B33F</idno>
<idno type="DOI">10.1016/S0360-5442(98)00090-5</idno>
<idno type="PII">S0360-5442(98)00090-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0360-5442</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>G Bisio</name>
<affiliations>
<json:string>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>G Rubatto</name>
<affiliations>
<json:string>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.</abstract>
<qualityIndicators>
<score>5.9</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>547 x 746 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>486</abstractCharCount>
<pdfWordCount>5786</pdfWordCount>
<pdfCharCount>33992</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>75</abstractWordCount>
</qualityIndicators>
<title>Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
<pii>
<json:string>S0360-5442(98)00090-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>24</volume>
<pii>
<json:string>S0360-5442(00)X0047-3</json:string>
</pii>
<pages>
<last>131</last>
<first>117</first>
</pages>
<issn>
<json:string>0360-5442</json:string>
</issn>
<issue>2</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Energy</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>ENERGY & FUELS</json:string>
<json:string>ENGINEERING, CHEMICAL</json:string>
<json:string>THERMODYNAMICS</json:string>
</wos>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0360-5442(98)00090-5</json:string>
</doi>
<id>095EE539E8E912243B50C7F64FA0D360E5B3B33F</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: A simple bulb-end Sondhauss pipe with external flame heating (Sondhauss, 1850; Rayleigh, 1878). A=heat addition; B=sound output.</note>
<note type="content">Fig. 2: A Rijke tube with open-ends (Rijke 1850). A=heater grid; B=convection flow; C=sound generated.</note>
<note type="content">Fig. 3: The Sondhauss pipe studied by Knipp. A=open end, which can be closed by a plug; B=closed end; C=junction end of the internal pipe; D=intermediate opening, which can be closed by a plug.</note>
<note type="content">Fig. 4: The bulb-end Sondhauss pipe with concentric tube insert studied by Carter in 1962. A=concentric tube; B=heat addition; C=sound emission.</note>
<note type="content">Fig. 5: A generalized Rijke oscillator. A=heater grid; B=convection flow; C=sound generated.</note>
<note type="content">Fig. 6: Schema of a Rijke tube with a feedback system A=heat source; B=microphone; C=phase-shifter; D=amplifier; E=loudspeaker.</note>
<note type="content">Fig. 7: Numerical results of overall pressure gain (from inlet plenum to exit plenum) vs operating frequency for a combustor with a resonant frequency of 180 Hz.</note>
<note type="content">Fig. 8: Neutral stability curve of a Bénard cell in the Ra (Rayleigh number) vs a (dimensionless wave number) plane. A=convection region; B=conduction region.</note>
<note type="content">Fig. 9: Neutral stability curve of a Sondhauss pipe with smooth but rapidly changing temperature profile in the central zone in the α (extreme temperature ratio) vs ω (wave number) plane. A=region with oscillations; B=region without oscillations.</note>
<note type="content">Fig. 10: Neutral stability curve of a Rijke pipe with experimental points (small rings ○) in the q (thermal power) vs GV (volumetric flow rate) plane. A=region with oscillations; B=region without oscillations.</note>
<note type="content">Table 1: Analogies and differences among some systems</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
<author>
<persName>
<forename type="first">G</forename>
<surname>Bisio</surname>
</persName>
<affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">G</forename>
<surname>Rubatto</surname>
</persName>
<affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Energy</title>
<title level="j" type="abbrev">EGY</title>
<idno type="pISSN">0360-5442</idno>
<idno type="PII">S0360-5442(00)X0047-3</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="117">117</biblScope>
<biblScope unit="page" to="131">131</biblScope>
</imprint>
</monogr>
<idno type="istex">095EE539E8E912243B50C7F64FA0D360E5B3B33F</idno>
<idno type="DOI">10.1016/S0360-5442(98)00090-5</idno>
<idno type="PII">S0360-5442(98)00090-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1998-04-13">Received</change>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>EGY</jid>
<aid>666</aid>
<ce:pii>S0360-5442(98)00090-5</ce:pii>
<ce:doi>10.1016/S0360-5442(98)00090-5</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>G</ce:given-name>
<ce:surname>Bisio</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G</ce:given-name>
<ce:surname>Rubatto</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +39-10-353-2861; Fax: +39-10-311-870; E-mail: bisio@ditec.unige.it</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="13" month="4" year="1998"></ce:date-received>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Bisio</namePart>
<affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</affiliation>
<description>Corresponding author. Tel.: +39-10-353-2861; Fax: +39-10-311-870; E-mail: bisio@ditec.unige.it</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Rubatto</namePart>
<affiliation>Energy and Conditioning Department, University of Genoa, Via all'Opera Pia 15 A, 16145 Genoa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<dateCaptured encoding="w3cdtf">1998-04-13</dateCaptured>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The phenomena of acoustical pressure oscillations generated in a gas by a steady heat source may be separated into two distinct types: (i) Sondhauss oscillations which occur in a pipe having one end closed and one open; (ii) Rijke oscillations which occur in a pipe with both ends open. After reviewing representative literature, actual and possible applications are described. Analogies and differences among these and similar systems are considered from a thermodynamic point of view.</abstract>
<note type="content">Fig. 1: A simple bulb-end Sondhauss pipe with external flame heating (Sondhauss, 1850; Rayleigh, 1878). A=heat addition; B=sound output.</note>
<note type="content">Fig. 2: A Rijke tube with open-ends (Rijke 1850). A=heater grid; B=convection flow; C=sound generated.</note>
<note type="content">Fig. 3: The Sondhauss pipe studied by Knipp. A=open end, which can be closed by a plug; B=closed end; C=junction end of the internal pipe; D=intermediate opening, which can be closed by a plug.</note>
<note type="content">Fig. 4: The bulb-end Sondhauss pipe with concentric tube insert studied by Carter in 1962. A=concentric tube; B=heat addition; C=sound emission.</note>
<note type="content">Fig. 5: A generalized Rijke oscillator. A=heater grid; B=convection flow; C=sound generated.</note>
<note type="content">Fig. 6: Schema of a Rijke tube with a feedback system A=heat source; B=microphone; C=phase-shifter; D=amplifier; E=loudspeaker.</note>
<note type="content">Fig. 7: Numerical results of overall pressure gain (from inlet plenum to exit plenum) vs operating frequency for a combustor with a resonant frequency of 180 Hz.</note>
<note type="content">Fig. 8: Neutral stability curve of a Bénard cell in the Ra (Rayleigh number) vs a (dimensionless wave number) plane. A=convection region; B=conduction region.</note>
<note type="content">Fig. 9: Neutral stability curve of a Sondhauss pipe with smooth but rapidly changing temperature profile in the central zone in the α (extreme temperature ratio) vs ω (wave number) plane. A=region with oscillations; B=region without oscillations.</note>
<note type="content">Fig. 10: Neutral stability curve of a Rijke pipe with experimental points (small rings ○) in the q (thermal power) vs GV (volumetric flow rate) plane. A=region with oscillations; B=region without oscillations.</note>
<note type="content">Table 1: Analogies and differences among some systems</note>
<relatedItem type="host">
<titleInfo>
<title>Energy</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>EGY</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199902</dateIssued>
</originInfo>
<identifier type="ISSN">0360-5442</identifier>
<identifier type="PII">S0360-5442(00)X0047-3</identifier>
<part>
<date>199902</date>
<detail type="volume">
<number>24</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>85</start>
<end>182</end>
</extent>
<extent unit="pages">
<start>117</start>
<end>131</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">095EE539E8E912243B50C7F64FA0D360E5B3B33F</identifier>
<identifier type="DOI">10.1016/S0360-5442(98)00090-5</identifier>
<identifier type="PII">S0360-5442(98)00090-5</identifier>
<accessCondition type="use and reproduction" contentType="">© 1999Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/095EE539E8E912243B50C7F64FA0D360E5B3B33F/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">ENERGY & FUELS</classCode>
<classCode scheme="WOS">ENGINEERING, CHEMICAL</classCode>
<classCode scheme="WOS">THERMODYNAMICS</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000E56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:095EE539E8E912243B50C7F64FA0D360E5B3B33F
   |texte=   Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021