Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Principles of electrochemical micro- and nano-system technologies

Identifieur interne : 000D10 ( Main/Corpus ); précédent : 000D09; suivant : 000D11

Principles of electrochemical micro- and nano-system technologies

Auteurs : Joachim Walter Schultze ; Arnd Bressel

Source :

RBID : ISTEX:8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6

English descriptors

Abstract

The paper gives an introduction to this Special Issue and corresponding book ‘Electrochemical Micro- and Nano-System Technologies’ (Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.

Url:
DOI: 10.1016/S0013-4686(01)00584-9

Links to Exploration step

ISTEX:8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Principles of electrochemical micro- and nano-system technologies</title>
<author>
<name sortKey="Schultze, Joachim Walter" sort="Schultze, Joachim Walter" uniqKey="Schultze J" first="Joachim Walter" last="Schultze">Joachim Walter Schultze</name>
<affiliation>
<mods:affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: joachimw.schultze@uni-duesseldorf.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bressel, Arnd" sort="Bressel, Arnd" uniqKey="Bressel A" first="Arnd" last="Bressel">Arnd Bressel</name>
<affiliation>
<mods:affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0013-4686(01)00584-9</idno>
<idno type="url">https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000D10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Principles of electrochemical micro- and nano-system technologies</title>
<author>
<name sortKey="Schultze, Joachim Walter" sort="Schultze, Joachim Walter" uniqKey="Schultze J" first="Joachim Walter" last="Schultze">Joachim Walter Schultze</name>
<affiliation>
<mods:affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: joachimw.schultze@uni-duesseldorf.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bressel, Arnd" sort="Bressel, Arnd" uniqKey="Bressel A" first="Arnd" last="Bressel">Arnd Bressel</name>
<affiliation>
<mods:affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Electrochimica Acta</title>
<title level="j" type="abbrev">EA</title>
<idno type="ISSN">0013-4686</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">47</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="3">3</biblScope>
<biblScope unit="page" to="21">21</biblScope>
</imprint>
<idno type="ISSN">0013-4686</idno>
</series>
<idno type="istex">8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6</idno>
<idno type="DOI">10.1016/S0013-4686(01)00584-9</idno>
<idno type="PII">S0013-4686(01)00584-9</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0013-4686</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological applications</term>
<term>Characterisation of systems</term>
<term>Corrosion</term>
<term>EMST-definition</term>
<term>Flow diagrams</term>
<term>Fundamentals</term>
<term>Localisation of processes</term>
<term>Materials properties</term>
<term>Micro- and nano-technologies</term>
<term>Microcells</term>
<term>Microelectrodes</term>
<term>Pulse measurements</term>
<term>Reactions</term>
<term>Scaling down</term>
<term>Spectroscopic techniques</term>
<term>Substrate properties</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper gives an introduction to this Special Issue and corresponding book ‘Electrochemical Micro- and Nano-System Technologies’ (Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Joachim Walter Schultze</name>
<affiliations>
<json:string>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</json:string>
<json:string>E-mail: joachimw.schultze@uni-duesseldorf.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>Arnd Bressel</name>
<affiliations>
<json:string>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>EMST-definition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Characterisation of systems</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Microelectrodes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Microcells</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Reactions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Materials properties</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Substrate properties</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Corrosion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Localisation of processes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Spectroscopic techniques</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Scaling down</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fundamentals</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Pulse measurements</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Flow diagrams</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Micro- and nano-technologies</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Biological applications</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>The paper gives an introduction to this Special Issue and corresponding book ‘Electrochemical Micro- and Nano-System Technologies’ (Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.</abstract>
<qualityIndicators>
<score>6.644</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>552 x 752 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>16</keywordCount>
<abstractCharCount>1114</abstractCharCount>
<pdfWordCount>10302</pdfWordCount>
<pdfCharCount>65099</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>137</abstractWordCount>
</qualityIndicators>
<title>Principles of electrochemical micro- and nano-system technologies</title>
<pii>
<json:string>S0013-4686(01)00584-9</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<title>(in press)</title>
</serie>
<host>
<volume>47</volume>
<pii>
<json:string>S0013-4686(00)X0139-9</json:string>
</pii>
<pages>
<last>21</last>
<first>3</first>
</pages>
<issn>
<json:string>0013-4686</json:string>
</issn>
<issue>1–2</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Electrochimica Acta</title>
<publicationDate>2001</publicationDate>
</host>
<categories>
<wos>
<json:string>ELECTROCHEMISTRY</json:string>
</wos>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0013-4686(01)00584-9</json:string>
</doi>
<id>8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Principles of electrochemical micro- and nano-system technologies</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note>Parts of this article are taken frof ref. [9] with permission of Gordon & Breach.</note>
<note type="content">Fig. 1: EMST with connections to and applications in electrochemical materials science, microengineering, electrochemical engineering and biology and medicine. Many special subjects are located in between, because they belong to various topics. Examples are taken from Ref. [10] for surface analysis of Ti, from Ref. [11] for harddisc head, from Ref. [13] for the microcell, and from Ref. [12] for the insect antenna.</note>
<note type="content">Fig. 2: (a) Classification of microstructures by order, symmetry, aspect ratio and material combination. (b) Signal density l and intensity L dependence on the electrode radius r. L0=intensity of standard signal. For masking and focussing signals see Fig. 15 (by permission of Gordon and Breach).</note>
<note type="content">Fig. 3: Similarity of fundamental processes of inorganic and biological systems: (a) electron transfer reactions, ETR; (b) electrophoresis and localisation of bacteria by AC polarisation; (c) polarisation of thin films (oxide or cells); and (d) formation of pits in passive films or channels in membranes.</note>
<note type="content">Fig. 4: Survey of electrochemical phenomena in a double logarithmic plot. Lateral systems (x≫z) and vertical systems (z≫x) are separated by the line for aspect ratio A=1. Values of the electrolyte (Helmholtz layer, Nernst diffusion layer, and whirls) for comparison.</note>
<note type="content">Fig. 5: Cell constructions for microelectrochemical experiments: (a) water droplet on a photoresist electrode [50]; (b) water droplet in oil [32]; (c) movable mask [6]; (d) scanning droplet or capillary cell [32]; (e) optical microcell [109]; (f) biological cell [100]; (g) vapour condensation cell with two electrodes or ‘electrochemical nano cell’ [54]; and (h) SECM [17] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 6: Test of electrochemical data of quadratic electrodes dependence on electrode length a (a≈2r). (a) Charges Q and charge densities q of oxide formation on gold microelectrodes measured on various electrode arrays. (b) Double layer capacity. Deviations at a<10 μm are caused by parasitic capacities [111] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 7: Double logarithmic plot of field strength F vs. distance z for chemical and biological systems. Typical cell voltages (kV, V) and applied electrode potential differences (V, mV) as parameter. The field strength of photodesinfection (e.g. on TiO2 [135]) and field desinfection is similar, but the voltages differ. For electroporation see [103]. Localisation of bacteria [113], field potentials in brain [116] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 8: Resolution of electrochemical effects in time t and depth z in a double logarithmic plot. Effects of inorganic systems: atom vibrations, nucleation, pits etc. Effects of electronic systems: devices, electronic conduction, information. Effects in biological systems: channel formation in membranes, measurements on bacteria and neurons, application in medicine (by permission of Gordon and Breach).</note>
<note type="content">Fig. 9: [Fe(CN6)]3− reduction in a microcell (described in Ref. [109]). (a) Experimental current density in dependence on the flow rate. A flow rate of 1 μls−1 corresponds roughly to a velocity of 2.2 cms−1. (b) Limiting current dependence on the flow rate under potentiostatic (U=−0.7 V) and potentiodynamic conditions from Fig. 2.9a [52] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 10: Typical combinations of materials for microstructures: M, metal; I, insulator; S, semiconductor; O, oxide; Pol, conducting polymer; Comp, composite film. (a) Lateral metal structure 12 ∣ M ∣ 12 on top of insulator  ∣ 1; (b) composite film on metal M2 for sensors; (c) microstructure with three metals, M2 as sacrifice layer; (d) metal on insulator with an interfacial layer X for adhesion or nucleation; (e) vertical structure metal/conducting polymer/insulator, e.g. in holes of printed circuit boards with M,M′=Cu; (f) vertical MOM structure, e.g. Cu/TiO2/Ti [134]; and (g) lateral structure conducting polymer Pol/O/Pol on S, e.g. PBT/SiO2/PBT on Si [94] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 11: Delocalisation (2D) or localisation (3D) of maskless electrochemical processes dependence on resistances: Double logarithmic plot of Rpol vs. Rel. The ratio yields the EMT number. EMT≪1 allows a maskless micro- or nanostructuring. For EMT>1 geometric barriers are necessary.</note>
<note type="content">Fig. 12: Log/log-plot for materials properties: (a) metals (grains, screw dislocations, crevices, welds); (b) coatings. A=aspect ratio (by permission of Gordon and Breach).</note>
<note type="content">Fig. 13: Bimetallic (galvanic) corrosion of Ti∣TiN∣Al∣TiN∣ stack [31] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 14: Formation of microscopic local elements during phosphating in a Ni2+-containing bath by ion and electron transfer reactions ITR and ETR. Anodic corrosion of Fe (local anode) causes a cathodic deposition of Ni. Cathodic ETR are enhanced on Ni, which forms a local cathode. Local elements are connected, separated and partially covered by Zn-phosphate [125].</note>
<note type="content">Fig. 15: Principles of localisation of electrochemical reactions by geometric blocking [94], chemical modification, localised signals [94] or transport limitation by a jet or the SECM [117,17] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 16: Schematic representation of primary and secondary effects of microstructuring: primary effects by focussing of the signal, secondary effects by dissipation of heat, migration of holes, and light scattering (by permission of Gordon and Breach).</note>
<note type="content">Fig. 17: (a) Flow diagram and (b) Pourbaix diagram of phosphating and cathodic electrodeposition of paint.</note>
<note type="content">Fig. 18: Capacitive systems for MST in a double logarithmic plot of C vs. z. Active materials for batteries with C∝z (m=1), and condensors with C∝1/z (m=−1). Full line: microcapacitor with 10×10 μm2, dotted line for a macro system with 1×1 cm2. For semiconductors the space charge layer dsc=f(U,N) must be considered (by permission of Gordon and Breach).</note>
<note type="content">Table 1: Electrical and optical in situ methods for EMST</note>
<note type="content">Table 2: Typical reactions for microstructuring: ion transfer reactions ITR, electron transfer reactions ETR, photoreactions</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Principles of electrochemical micro- and nano-system technologies</title>
<author>
<persName>
<forename type="first">Joachim Walter</forename>
<surname>Schultze</surname>
</persName>
<email>joachimw.schultze@uni-duesseldorf.de</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +49-211-81-14750; fax: +49-211-81-12803</p>
</note>
<affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">Arnd</forename>
<surname>Bressel</surname>
</persName>
<affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Electrochimica Acta</title>
<title level="j" type="abbrev">EA</title>
<idno type="pISSN">0013-4686</idno>
<idno type="PII">S0013-4686(00)X0139-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">47</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="3">3</biblScope>
<biblScope unit="page" to="21">21</biblScope>
</imprint>
</monogr>
<idno type="istex">8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6</idno>
<idno type="DOI">10.1016/S0013-4686(01)00584-9</idno>
<idno type="PII">S0013-4686(01)00584-9</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The paper gives an introduction to this Special Issue and corresponding book ‘Electrochemical Micro- and Nano-System Technologies’ (Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>EMST-definition</term>
</item>
<item>
<term>Characterisation of systems</term>
</item>
<item>
<term>Microelectrodes</term>
</item>
<item>
<term>Microcells</term>
</item>
<item>
<term>Reactions</term>
</item>
<item>
<term>Materials properties</term>
</item>
<item>
<term>Substrate properties</term>
</item>
<item>
<term>Corrosion</term>
</item>
<item>
<term>Localisation of processes</term>
</item>
<item>
<term>Spectroscopic techniques</term>
</item>
<item>
<term>Scaling down</term>
</item>
<item>
<term>Fundamentals</term>
</item>
<item>
<term>Pulse measurements</term>
</item>
<item>
<term>Flow diagrams</term>
</item>
<item>
<term>Micro- and nano-technologies</term>
</item>
<item>
<term>Biological applications</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-03-01">Received</change>
<change when="2001-04-16">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
<istex:entity SYSTEM="gr17" NDATA="IMAGE" name="gr17"></istex:entity>
<istex:entity SYSTEM="gr18" NDATA="IMAGE" name="gr18"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>EA</jid>
<aid>4418</aid>
<ce:pii>S0013-4686(01)00584-9</ce:pii>
<ce:doi>10.1016/S0013-4686(01)00584-9</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>Parts of this article are taken frof ref.
<ce:cross-ref refid="BIB11">[9]</ce:cross-ref>
with permission of Gordon & Breach.</ce:note-para>
</ce:article-footnote>
<ce:title>Principles of electrochemical micro- and nano-system technologies</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Joachim Walter</ce:given-name>
<ce:surname>Schultze</ce:surname>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
<ce:e-address type="email">joachimw.schultze@uni-duesseldorf.de</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Arnd</ce:given-name>
<ce:surname>Bressel</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +49-211-81-14750; fax: +49-211-81-12803</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="1" month="3" year="2001"></ce:date-received>
<ce:date-revised day="16" month="4" year="2001"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The paper gives an introduction to this Special Issue and corresponding book ‘
<ce:italic>Electrochemical Micro- and Nano-System Technologies’</ce:italic>
(Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>EMST-definition</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Characterisation of systems</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Microelectrodes</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Microcells</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Reactions</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Materials properties</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Substrate properties</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Corrosion</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Localisation of processes</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Spectroscopic techniques</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Scaling down</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Fundamentals</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Pulse measurements</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Flow diagrams</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Micro- and nano-technologies</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Biological applications</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Principles of electrochemical micro- and nano-system technologies</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Principles of electrochemical micro- and nano-system technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joachim Walter</namePart>
<namePart type="family">Schultze</namePart>
<affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</affiliation>
<affiliation>E-mail: joachimw.schultze@uni-duesseldorf.de</affiliation>
<description>Corresponding author. Tel.: +49-211-81-14750; fax: +49-211-81-12803</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arnd</namePart>
<namePart type="family">Bressel</namePart>
<affiliation>AGEF eV-Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateCaptured encoding="w3cdtf">2001-03-01</dateCaptured>
<dateModified encoding="w3cdtf">2001-04-16</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The paper gives an introduction to this Special Issue and corresponding book ‘Electrochemical Micro- and Nano-System Technologies’ (Elsevier). Interdisciplinary aspects are demonstrated by microgalvanics, engineering, electrochemical materials science, electroanalysis and biology. Moreover, the continuous scaling down to molecular systems is described. Experimental parameters like topography, current densities, field strengths and hydrodynamics are characterised in double logarithmic plots. Types of reactions and materials properties determine the possibility of localisation and production rate. The EMT-number is introduced to differentiate maskless processes: delocalising 2D conditions (EMT>1) can be distinguished from localising 3D processes (EMT≪1). Nanoscopic localisation can be achieved using microelectrode arrays or micromechanical devices. Microscopic local elements play an important role in unwanted corrosion or intended structuring like phosphating. Examples of technical EMST applications are given and, for the case of phosphating, characterised in a flow-diagram and the Pourbaix-diagram.</abstract>
<note>Parts of this article are taken frof ref. [9] with permission of Gordon & Breach.</note>
<note type="content">Fig. 1: EMST with connections to and applications in electrochemical materials science, microengineering, electrochemical engineering and biology and medicine. Many special subjects are located in between, because they belong to various topics. Examples are taken from Ref. [10] for surface analysis of Ti, from Ref. [11] for harddisc head, from Ref. [13] for the microcell, and from Ref. [12] for the insect antenna.</note>
<note type="content">Fig. 2: (a) Classification of microstructures by order, symmetry, aspect ratio and material combination. (b) Signal density l and intensity L dependence on the electrode radius r. L0=intensity of standard signal. For masking and focussing signals see Fig. 15 (by permission of Gordon and Breach).</note>
<note type="content">Fig. 3: Similarity of fundamental processes of inorganic and biological systems: (a) electron transfer reactions, ETR; (b) electrophoresis and localisation of bacteria by AC polarisation; (c) polarisation of thin films (oxide or cells); and (d) formation of pits in passive films or channels in membranes.</note>
<note type="content">Fig. 4: Survey of electrochemical phenomena in a double logarithmic plot. Lateral systems (x≫z) and vertical systems (z≫x) are separated by the line for aspect ratio A=1. Values of the electrolyte (Helmholtz layer, Nernst diffusion layer, and whirls) for comparison.</note>
<note type="content">Fig. 5: Cell constructions for microelectrochemical experiments: (a) water droplet on a photoresist electrode [50]; (b) water droplet in oil [32]; (c) movable mask [6]; (d) scanning droplet or capillary cell [32]; (e) optical microcell [109]; (f) biological cell [100]; (g) vapour condensation cell with two electrodes or ‘electrochemical nano cell’ [54]; and (h) SECM [17] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 6: Test of electrochemical data of quadratic electrodes dependence on electrode length a (a≈2r). (a) Charges Q and charge densities q of oxide formation on gold microelectrodes measured on various electrode arrays. (b) Double layer capacity. Deviations at a<10 μm are caused by parasitic capacities [111] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 7: Double logarithmic plot of field strength F vs. distance z for chemical and biological systems. Typical cell voltages (kV, V) and applied electrode potential differences (V, mV) as parameter. The field strength of photodesinfection (e.g. on TiO2 [135]) and field desinfection is similar, but the voltages differ. For electroporation see [103]. Localisation of bacteria [113], field potentials in brain [116] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 8: Resolution of electrochemical effects in time t and depth z in a double logarithmic plot. Effects of inorganic systems: atom vibrations, nucleation, pits etc. Effects of electronic systems: devices, electronic conduction, information. Effects in biological systems: channel formation in membranes, measurements on bacteria and neurons, application in medicine (by permission of Gordon and Breach).</note>
<note type="content">Fig. 9: [Fe(CN6)]3− reduction in a microcell (described in Ref. [109]). (a) Experimental current density in dependence on the flow rate. A flow rate of 1 μls−1 corresponds roughly to a velocity of 2.2 cms−1. (b) Limiting current dependence on the flow rate under potentiostatic (U=−0.7 V) and potentiodynamic conditions from Fig. 2.9a [52] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 10: Typical combinations of materials for microstructures: M, metal; I, insulator; S, semiconductor; O, oxide; Pol, conducting polymer; Comp, composite film. (a) Lateral metal structure 12 ∣ M ∣ 12 on top of insulator  ∣ 1; (b) composite film on metal M2 for sensors; (c) microstructure with three metals, M2 as sacrifice layer; (d) metal on insulator with an interfacial layer X for adhesion or nucleation; (e) vertical structure metal/conducting polymer/insulator, e.g. in holes of printed circuit boards with M,M′=Cu; (f) vertical MOM structure, e.g. Cu/TiO2/Ti [134]; and (g) lateral structure conducting polymer Pol/O/Pol on S, e.g. PBT/SiO2/PBT on Si [94] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 11: Delocalisation (2D) or localisation (3D) of maskless electrochemical processes dependence on resistances: Double logarithmic plot of Rpol vs. Rel. The ratio yields the EMT number. EMT≪1 allows a maskless micro- or nanostructuring. For EMT>1 geometric barriers are necessary.</note>
<note type="content">Fig. 12: Log/log-plot for materials properties: (a) metals (grains, screw dislocations, crevices, welds); (b) coatings. A=aspect ratio (by permission of Gordon and Breach).</note>
<note type="content">Fig. 13: Bimetallic (galvanic) corrosion of Ti∣TiN∣Al∣TiN∣ stack [31] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 14: Formation of microscopic local elements during phosphating in a Ni2+-containing bath by ion and electron transfer reactions ITR and ETR. Anodic corrosion of Fe (local anode) causes a cathodic deposition of Ni. Cathodic ETR are enhanced on Ni, which forms a local cathode. Local elements are connected, separated and partially covered by Zn-phosphate [125].</note>
<note type="content">Fig. 15: Principles of localisation of electrochemical reactions by geometric blocking [94], chemical modification, localised signals [94] or transport limitation by a jet or the SECM [117,17] (by permission of Gordon and Breach).</note>
<note type="content">Fig. 16: Schematic representation of primary and secondary effects of microstructuring: primary effects by focussing of the signal, secondary effects by dissipation of heat, migration of holes, and light scattering (by permission of Gordon and Breach).</note>
<note type="content">Fig. 17: (a) Flow diagram and (b) Pourbaix diagram of phosphating and cathodic electrodeposition of paint.</note>
<note type="content">Fig. 18: Capacitive systems for MST in a double logarithmic plot of C vs. z. Active materials for batteries with C∝z (m=1), and condensors with C∝1/z (m=−1). Full line: microcapacitor with 10×10 μm2, dotted line for a macro system with 1×1 cm2. For semiconductors the space charge layer dsc=f(U,N) must be considered (by permission of Gordon and Breach).</note>
<note type="content">Table 1: Electrical and optical in situ methods for EMST</note>
<note type="content">Table 2: Typical reactions for microstructuring: ion transfer reactions ITR, electron transfer reactions ETR, photoreactions</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>EMST-definition</topic>
<topic>Characterisation of systems</topic>
<topic>Microelectrodes</topic>
<topic>Microcells</topic>
<topic>Reactions</topic>
<topic>Materials properties</topic>
<topic>Substrate properties</topic>
<topic>Corrosion</topic>
<topic>Localisation of processes</topic>
<topic>Spectroscopic techniques</topic>
<topic>Scaling down</topic>
<topic>Fundamentals</topic>
<topic>Pulse measurements</topic>
<topic>Flow diagrams</topic>
<topic>Micro- and nano-technologies</topic>
<topic>Biological applications</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Electrochimica Acta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>EA</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20010901</dateIssued>
</originInfo>
<identifier type="ISSN">0013-4686</identifier>
<identifier type="PII">S0013-4686(00)X0139-9</identifier>
<part>
<date>20010901</date>
<detail type="volume">
<number>47</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>392</end>
</extent>
<extent unit="pages">
<start>3</start>
<end>21</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6</identifier>
<identifier type="DOI">10.1016/S0013-4686(01)00584-9</identifier>
<identifier type="PII">S0013-4686(01)00584-9</identifier>
<accessCondition type="use and reproduction" contentType="">© 2001Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">ELECTROCHEMISTRY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8A5ABD89FD0D797946F68ACB01B6DD46CB0124C6
   |texte=   Principles of electrochemical micro- and nano-system technologies
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021