Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors

Identifieur interne : 000C73 ( Main/Corpus ); précédent : 000C72; suivant : 000C74

Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors

Auteurs : L. Galetto ; D. Bosco ; C. Marzachì

Source :

RBID : ISTEX:6B01C478C55610205AEA72CA5FB8349BFAFBD7FD

English descriptors

Abstract

Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.

Url:
DOI: 10.1111/j.1744-7348.2005.00030.x

Links to Exploration step

ISTEX:6B01C478C55610205AEA72CA5FB8349BFAFBD7FD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
<author>
<name sortKey="Galetto, L" sort="Galetto, L" uniqKey="Galetto L" first="L." last="Galetto">L. Galetto</name>
<affiliation>
<mods:affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosco, D" sort="Bosco, D" uniqKey="Bosco D" first="D." last="Bosco">D. Bosco</name>
<affiliation>
<mods:affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marzachi, C" sort="Marzachi, C" uniqKey="Marzachi C" first="C." last="Marzachì">C. Marzachì</name>
<affiliation>
<mods:affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6B01C478C55610205AEA72CA5FB8349BFAFBD7FD</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1744-7348.2005.00030.x</idno>
<idno type="url">https://api.istex.fr/document/6B01C478C55610205AEA72CA5FB8349BFAFBD7FD/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000C73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
<author>
<name sortKey="Galetto, L" sort="Galetto, L" uniqKey="Galetto L" first="L." last="Galetto">L. Galetto</name>
<affiliation>
<mods:affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosco, D" sort="Bosco, D" uniqKey="Bosco D" first="D." last="Bosco">D. Bosco</name>
<affiliation>
<mods:affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marzachi, C" sort="Marzachi, C" uniqKey="Marzachi C" first="C." last="Marzachì">C. Marzachì</name>
<affiliation>
<mods:affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Annals of Applied Biology</title>
<idno type="ISSN">0003-4746</idno>
<idno type="eISSN">1744-7348</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-10">2005-10</date>
<biblScope unit="volume">147</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="191">191</biblScope>
<biblScope unit="page" to="201">201</biblScope>
</imprint>
<idno type="ISSN">0003-4746</idno>
</series>
<idno type="istex">6B01C478C55610205AEA72CA5FB8349BFAFBD7FD</idno>
<idno type="DOI">10.1111/j.1744-7348.2005.00030.x</idno>
<idno type="ArticleID">AAB30</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0003-4746</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apple</term>
<term>Cacopsylla melanoneura</term>
<term>Hyalesthes obsoletus</term>
<term>Scaphoideus titanus</term>
<term>grapevine</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>L. Galetto</name>
<affiliations>
<json:string>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</json:string>
<json:string>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Bosco</name>
<affiliations>
<json:string>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Marzachì</name>
<affiliations>
<json:string>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Apple</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cacopsylla melanoneura</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>grapevine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hyalesthes obsoletus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Scaphoideus titanus</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>2120</abstractCharCount>
<pdfWordCount>5818</pdfWordCount>
<pdfCharCount>37475</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>293</abstractWordCount>
</qualityIndicators>
<title>Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>147</volume>
<pages>
<last>201</last>
<first>191</first>
</pages>
<issn>
<json:string>0003-4746</json:string>
</issn>
<issue>2</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1744-7348</json:string>
</eissn>
<title>Annals of Applied Biology</title>
<doi>
<json:string>10.1111/(ISSN)1744-7348</json:string>
</doi>
</host>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1111/j.1744-7348.2005.00030.x</json:string>
</doi>
<id>6B01C478C55610205AEA72CA5FB8349BFAFBD7FD</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/6B01C478C55610205AEA72CA5FB8349BFAFBD7FD/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/6B01C478C55610205AEA72CA5FB8349BFAFBD7FD/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6B01C478C55610205AEA72CA5FB8349BFAFBD7FD/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2005</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
<author>
<persName>
<forename type="first">L.</forename>
<surname>Galetto</surname>
</persName>
<affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</affiliation>
<affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">D.</forename>
<surname>Bosco</surname>
</persName>
<note type="correspondence">
<p>Correspondence: D. Bosco, Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, 44, 10095 Grugliasco (TO), Italy. Email:</p>
</note>
<affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">C.</forename>
<surname>Marzachì</surname>
</persName>
<affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Annals of Applied Biology</title>
<idno type="pISSN">0003-4746</idno>
<idno type="eISSN">1744-7348</idno>
<idno type="DOI">10.1111/(ISSN)1744-7348</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2005-10"></date>
<biblScope unit="volume">147</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="191">191</biblScope>
<biblScope unit="page" to="201">201</biblScope>
</imprint>
</monogr>
<idno type="istex">6B01C478C55610205AEA72CA5FB8349BFAFBD7FD</idno>
<idno type="DOI">10.1111/j.1744-7348.2005.00030.x</idno>
<idno type="ArticleID">AAB30</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Apple</term>
</item>
<item>
<term>Cacopsylla melanoneura</term>
</item>
<item>
<term>grapevine</term>
</item>
<item>
<term>Hyalesthes obsoletus</term>
</item>
<item>
<term>Scaphoideus titanus</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2005-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/6B01C478C55610205AEA72CA5FB8349BFAFBD7FD/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1744-7348</doi>
<issn type="print">0003-4746</issn>
<issn type="electronic">1744-7348</issn>
<idGroup>
<id type="product" value="AAB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ANNALS OF APPLIED BIOLOGY">Annals of Applied Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10002">
<doi origin="wiley">10.1111/aab.2005.147.issue-2</doi>
<numberingGroup>
<numbering type="journalVolume" number="147">147</numbering>
<numbering type="journalIssue" number="2">2</numbering>
</numberingGroup>
<coverDate startDate="2005-10">October 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="8" status="forIssue">
<doi origin="wiley">10.1111/j.1744-7348.2005.00030.x</doi>
<idGroup>
<id type="unit" value="AAB30"></id>
</idGroup>
<titleGroup>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright>2005 Association of Applied Biologists</copyright>
<eventGroup>
<event type="firstOnline" date="2005-11-28"></event>
<event type="publishedOnlineFinalForm" date="2005-11-28"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:Header result:Header" date="2010-03-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-14"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="191">191</numbering>
<numbering type="pageLast" number="201">201</numbering>
</numberingGroup>
<correspondenceTo>D. Bosco, Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, 44, 10095 Grugliasco (TO), Italy. Email:
<email>domenico.bosco@unito.it</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:AAB.AAB30.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received: 28 June 2005; revised version accepted: 17 October 2005.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="38"></count>
<count type="wordTotal" number="0"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
<title type="shortAuthors">L. Galetto
<i>et al.</i>
</title>
<title type="short">Real‐time PCR of FD, BN and AP</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2">
<personName>
<givenNames>L.</givenNames>
<familyName>Galetto</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2" corresponding="yes">
<personName>
<givenNames>D.</givenNames>
<familyName>Bosco</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>C.</givenNames>
<familyName>Marzachì</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="IT">
<unparsedAffiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="IT">
<unparsedAffiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Apple</keyword>
<keyword xml:id="k2">
<i>Cacopsylla melanoneura</i>
</keyword>
<keyword xml:id="k3">grapevine</keyword>
<keyword xml:id="k4">
<i>Hyalesthes obsoletus</i>
</keyword>
<keyword xml:id="k5">
<i>Scaphoideus titanus</i>
</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR
<sup>®</sup>
Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with
<i>Scaphoideus titanus</i>
,
<i>Hyalesthes obsoletus</i>
and
<i>Cacopsylla melanoneura</i>
adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Real‐time PCR of FD, BN and AP</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors</title>
</titleInfo>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Galetto</namePart>
<affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</affiliation>
<affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Bosco</namePart>
<affiliation>Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, Grugliasco (TO), Italy</affiliation>
<description>Correspondence: D. Bosco, Università degli Studi di Torino, Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente, ‘Carlo Vidano’, Via L. da Vinci, 44, 10095 Grugliasco (TO), Italy. Email: </description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Marzachì</namePart>
<affiliation>Istituto di Virologia Vegetale, CNR, Strada delle Cacce, Torino, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-10</dateIssued>
<edition>Received: 28 June 2005; revised version accepted: 17 October 2005.</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">3</extent>
<extent unit="references">38</extent>
</physicalDescription>
<abstract lang="en">Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>Apple</topic>
<topic>Cacopsylla melanoneura</topic>
<topic>grapevine</topic>
<topic>Hyalesthes obsoletus</topic>
<topic>Scaphoideus titanus</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Annals of Applied Biology</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0003-4746</identifier>
<identifier type="eISSN">1744-7348</identifier>
<identifier type="DOI">10.1111/(ISSN)1744-7348</identifier>
<identifier type="PublisherID">AAB</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>147</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>191</start>
<end>201</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">6B01C478C55610205AEA72CA5FB8349BFAFBD7FD</identifier>
<identifier type="DOI">10.1111/j.1744-7348.2005.00030.x</identifier>
<identifier type="ArticleID">AAB30</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2005 Association of Applied Biologists</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6B01C478C55610205AEA72CA5FB8349BFAFBD7FD
   |texte=   Universal and group‐specific real‐time PCR diagnosis of flavescence dorée (16Sr‐V), bois noir (16Sr‐XII) and apple proliferation (16Sr‐X) phytoplasmas from field‐collected plant hosts and insect vectors
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021