Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain

Identifieur interne : 000C58 ( Main/Corpus ); précédent : 000C57; suivant : 000C59

Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain

Auteurs : Heinrich Wolf ; Horst Gieser ; Wolfgang Stadler

Source :

RBID : ISTEX:37DBA566093327825538A3415119203C1D7BC3A3

Abstract

The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain β and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.

Url:
DOI: 10.1016/S0026-2714(99)00074-8

Links to Exploration step

ISTEX:37DBA566093327825538A3415119203C1D7BC3A3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
<author>
<name sortKey="Wolf, Heinrich" sort="Wolf, Heinrich" uniqKey="Wolf H" first="Heinrich" last="Wolf">Heinrich Wolf</name>
<affiliation>
<mods:affiliation>E-mail: wolf@ift.fhg.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gieser, Horst" sort="Gieser, Horst" uniqKey="Gieser H" first="Horst" last="Gieser">Horst Gieser</name>
<affiliation>
<mods:affiliation>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stadler, Wolfgang" sort="Stadler, Wolfgang" uniqKey="Stadler W" first="Wolfgang" last="Stadler">Wolfgang Stadler</name>
<affiliation>
<mods:affiliation>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:37DBA566093327825538A3415119203C1D7BC3A3</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0026-2714(99)00074-8</idno>
<idno type="url">https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000C58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
<author>
<name sortKey="Wolf, Heinrich" sort="Wolf, Heinrich" uniqKey="Wolf H" first="Heinrich" last="Wolf">Heinrich Wolf</name>
<affiliation>
<mods:affiliation>E-mail: wolf@ift.fhg.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gieser, Horst" sort="Gieser, Horst" uniqKey="Gieser H" first="Horst" last="Gieser">Horst Gieser</name>
<affiliation>
<mods:affiliation>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stadler, Wolfgang" sort="Stadler, Wolfgang" uniqKey="Stadler W" first="Wolfgang" last="Stadler">Wolfgang Stadler</name>
<affiliation>
<mods:affiliation>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Microelectronics Reliability</title>
<title level="j" type="abbrev">MR</title>
<idno type="ISSN">0026-2714</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1541">1541</biblScope>
<biblScope unit="page" to="1549">1549</biblScope>
</imprint>
<idno type="ISSN">0026-2714</idno>
</series>
<idno type="istex">37DBA566093327825538A3415119203C1D7BC3A3</idno>
<idno type="DOI">10.1016/S0026-2714(99)00074-8</idno>
<idno type="PII">S0026-2714(99)00074-8</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0026-2714</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain β and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Heinrich Wolf</name>
<affiliations>
<json:string>E-mail: wolf@ift.fhg.de</json:string>
<json:string>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Horst Gieser</name>
<affiliations>
<json:string>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wolfgang Stadler</name>
<affiliations>
<json:string>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ESD</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HBM</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Compact simulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Protection structure</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gate coupling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Bipolar transistor model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>High current characteristic</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain β and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.</abstract>
<qualityIndicators>
<score>5.133</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>503</abstractCharCount>
<pdfWordCount>4257</pdfWordCount>
<pdfCharCount>25156</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>73</abstractWordCount>
</qualityIndicators>
<title>Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
<pii>
<json:string>S0026-2714(99)00074-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>39</volume>
<pii>
<json:string>S0026-2714(00)X0052-2</json:string>
</pii>
<pages>
<last>1549</last>
<first>1541</first>
</pages>
<issn>
<json:string>0026-2714</json:string>
</issn>
<issue>11</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Microelectronics Reliability</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>ENGINEERING, ELECTRICAL & ELECTRONIC</json:string>
<json:string>PHYSICS, APPLIED</json:string>
<json:string>NANOSCIENCE & NANOTECHNOLOGY</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0026-2714(99)00074-8</json:string>
</doi>
<id>37DBA566093327825538A3415119203C1D7BC3A3</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: The compact bipolar model is attached to a standard MOS model. The gate node influences the trigger behavior of the transistor. The whole structure forms a subcircuit ESD NMOS.</note>
<note type="content">Fig. 2: Equivalent circuit of the used compact model. The virtual gate node potential influences the avalanche current source Iava.</note>
<note type="content">Fig. 3: Schematic cross-section of the investigated NMOS protection transistor together with the parasitic bipolar transistor. We investigated several layout variations and compared them to the simulated data.</note>
<note type="content">Fig. 4: Comparison of the measured high current characteristic of the reference transistor with the simulated data computed with a constant current gain. The differential high current resistance is influenced in the model only by the collector resistor rc. This leads to a deviation of the simulation from the measurement at higher currents.</note>
<note type="content">Fig. 5: Comparison of the measured multiplication factor with the Miller-formula and a modified Miller function, which is implemented into the transistor model in order to improve the correlation with the measurement at lower device voltages.</note>
<note type="content">Fig. 6: Measured current gain of the investigated transistor as function of the drain current. For currents higher than 0.2 A, the gain decreases stronger.</note>
<note type="content">Fig. 7: Simulation of the current dependent gain for different proportionality constants cβ, influencing the decay of β and thus the differential high current resistance of the device. For the simulations we applied a cβ=1.43 A−1.</note>
<note type="content">Fig. 8: Comparison of the measured high current characteristic of the reference transistor with the simulated data computed with a stress current dependent current gain. The accuracy is significantly increased as compared to Fig. 4.</note>
<note type="content">Fig. 9: TLP characteristics of three devices with different high currents normalized to their gate width. The decreasing current density with increasing gate width indicates a inhomogenous current distribution.</note>
<note type="content">Fig. 10: Comparison of TLP measurements with compact simulation with variation of the gate width. The simulation correlates well with the measurement if an inhomogenous current distribution is taken into account.</note>
<note type="content">Fig. 11: Comparison of TLP measurements with compact simulation with variation of the gate length. The simulation again, correlates well with the measurement.</note>
<note type="content">Fig. 12: Comparison of TLP measurements with compact simulation with variation of the drain contact/gate spacing aD.</note>
<note type="content">Fig. 13: Transfer characteristics of the investigated NMOS protection transistor for different drain voltages. The MOS current influences the avalanche current of the parasitic bipolar transistor.</note>
<note type="content">Fig. 14: IV-characteristic of the bipolar model (without attached MOS model) for several gate voltages Vgs at the virtual gate node.</note>
<note type="content">Fig. 15: Comparison of the measured DC output characteristic for a gate voltage Vgs=1.5 V in comparison with the simulation. For the simulation, we extended a Berkeley Spice level 1 MOST with the bipolar transistor.</note>
<note type="content">Fig. 16: Simulation of the drain and gate potential for different coupling capacitances. The trigger voltage does not automatically decrease if a capacitance is introduced between drain and gate. For the simulation we applied a TLP pulse with 5 ns rise time.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
<author>
<persName>
<forename type="first">Heinrich</forename>
<surname>Wolf</surname>
</persName>
<email>wolf@ift.fhg.de</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +49-89-54759-031; fax: +49-89-54759-475</p>
</note>
<affiliation>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">Horst</forename>
<surname>Gieser</surname>
</persName>
<affiliation>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">Wolfgang</forename>
<surname>Stadler</surname>
</persName>
<affiliation>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Microelectronics Reliability</title>
<title level="j" type="abbrev">MR</title>
<idno type="pISSN">0026-2714</idno>
<idno type="PII">S0026-2714(00)X0052-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1541">1541</biblScope>
<biblScope unit="page" to="1549">1549</biblScope>
</imprint>
</monogr>
<idno type="istex">37DBA566093327825538A3415119203C1D7BC3A3</idno>
<idno type="DOI">10.1016/S0026-2714(99)00074-8</idno>
<idno type="PII">S0026-2714(99)00074-8</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain β and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>ESD</term>
</item>
<item>
<term>HBM</term>
</item>
<item>
<term>Compact simulation</term>
</item>
<item>
<term>Protection structure</term>
</item>
<item>
<term>Gate coupling</term>
</item>
<item>
<term>Bipolar transistor model</term>
</item>
<item>
<term>High current characteristic</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-05-30">Received</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>MR</jid>
<aid>1377</aid>
<ce:pii>S0026-2714(99)00074-8</ce:pii>
<ce:doi>10.1016/S0026-2714(99)00074-8</ce:doi>
<ce:copyright type="full-transfer" year="1999">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Heinrich</ce:given-name>
<ce:surname>Wolf</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
<ce:e-address>wolf@ift.fhg.de</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Horst</ce:given-name>
<ce:surname>Gieser</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Wolfgang</ce:given-name>
<ce:surname>Stadler</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +49-89-54759-031; fax: +49-89-54759-475</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="30" month="5" year="1999"></ce:date-received>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain
<math altimg="si5.gif">β</math>
and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>ESD</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>HBM</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Compact simulation</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Protection structure</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Gate coupling</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Bipolar transistor model</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>High current characteristic</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heinrich</namePart>
<namePart type="family">Wolf</namePart>
<affiliation>E-mail: wolf@ift.fhg.de</affiliation>
<affiliation>Technische Universität München, Lehrstuhl für Integrierte Schaltungen (TUM/LIS/ATIS Applied Test of Integrated Systems), Arcisstr. 21, D-80290, München, Germany</affiliation>
<description>Corresponding author. Tel.: +49-89-54759-031; fax: +49-89-54759-475</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Horst</namePart>
<namePart type="family">Gieser</namePart>
<affiliation>Fraunhofer-Institut Zuverlässigkeit und Mikrointegration (IZM/PCS/ATIS Analysis and Test of Integrated Systems), Hansastr. 27d, D-80686, München, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Stadler</namePart>
<affiliation>Infineon Technologies AG, DAT LIB TI, P.O. Box 800949, D-81609, München, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateCaptured encoding="w3cdtf">1999-05-30</dateCaptured>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The presented compact model for NMOS transistors combines both the high-current bipolar mode and the MOS mode considering modulation of the current gain β and gate coupling effects. For the studied 0.35 μm-CMOS devices, measurement and simulation correlate very well with respect to layout variations, fulfilling a prerequisite for the simulation guided synthesis and optimization of ESD protection structures and schemes. The open model interface also allows the use of existing proprietary MOS-models.</abstract>
<note type="content">Fig. 1: The compact bipolar model is attached to a standard MOS model. The gate node influences the trigger behavior of the transistor. The whole structure forms a subcircuit ESD NMOS.</note>
<note type="content">Fig. 2: Equivalent circuit of the used compact model. The virtual gate node potential influences the avalanche current source Iava.</note>
<note type="content">Fig. 3: Schematic cross-section of the investigated NMOS protection transistor together with the parasitic bipolar transistor. We investigated several layout variations and compared them to the simulated data.</note>
<note type="content">Fig. 4: Comparison of the measured high current characteristic of the reference transistor with the simulated data computed with a constant current gain. The differential high current resistance is influenced in the model only by the collector resistor rc. This leads to a deviation of the simulation from the measurement at higher currents.</note>
<note type="content">Fig. 5: Comparison of the measured multiplication factor with the Miller-formula and a modified Miller function, which is implemented into the transistor model in order to improve the correlation with the measurement at lower device voltages.</note>
<note type="content">Fig. 6: Measured current gain of the investigated transistor as function of the drain current. For currents higher than 0.2 A, the gain decreases stronger.</note>
<note type="content">Fig. 7: Simulation of the current dependent gain for different proportionality constants cβ, influencing the decay of β and thus the differential high current resistance of the device. For the simulations we applied a cβ=1.43 A−1.</note>
<note type="content">Fig. 8: Comparison of the measured high current characteristic of the reference transistor with the simulated data computed with a stress current dependent current gain. The accuracy is significantly increased as compared to Fig. 4.</note>
<note type="content">Fig. 9: TLP characteristics of three devices with different high currents normalized to their gate width. The decreasing current density with increasing gate width indicates a inhomogenous current distribution.</note>
<note type="content">Fig. 10: Comparison of TLP measurements with compact simulation with variation of the gate width. The simulation correlates well with the measurement if an inhomogenous current distribution is taken into account.</note>
<note type="content">Fig. 11: Comparison of TLP measurements with compact simulation with variation of the gate length. The simulation again, correlates well with the measurement.</note>
<note type="content">Fig. 12: Comparison of TLP measurements with compact simulation with variation of the drain contact/gate spacing aD.</note>
<note type="content">Fig. 13: Transfer characteristics of the investigated NMOS protection transistor for different drain voltages. The MOS current influences the avalanche current of the parasitic bipolar transistor.</note>
<note type="content">Fig. 14: IV-characteristic of the bipolar model (without attached MOS model) for several gate voltages Vgs at the virtual gate node.</note>
<note type="content">Fig. 15: Comparison of the measured DC output characteristic for a gate voltage Vgs=1.5 V in comparison with the simulation. For the simulation, we extended a Berkeley Spice level 1 MOST with the bipolar transistor.</note>
<note type="content">Fig. 16: Simulation of the drain and gate potential for different coupling capacitances. The trigger voltage does not automatically decrease if a capacitance is introduced between drain and gate. For the simulation we applied a TLP pulse with 5 ns rise time.</note>
<subject>
<genre>Keywords</genre>
<topic>ESD</topic>
<topic>HBM</topic>
<topic>Compact simulation</topic>
<topic>Protection structure</topic>
<topic>Gate coupling</topic>
<topic>Bipolar transistor model</topic>
<topic>High current characteristic</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Microelectronics Reliability</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MR</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199911</dateIssued>
</originInfo>
<identifier type="ISSN">0026-2714</identifier>
<identifier type="PII">S0026-2714(00)X0052-2</identifier>
<part>
<date>199911</date>
<detail type="volume">
<number>39</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>11</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1519</start>
<end>1720</end>
</extent>
<extent unit="pages">
<start>1541</start>
<end>1549</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">37DBA566093327825538A3415119203C1D7BC3A3</identifier>
<identifier type="DOI">10.1016/S0026-2714(99)00074-8</identifier>
<identifier type="PII">S0026-2714(99)00074-8</identifier>
<accessCondition type="use and reproduction" contentType="">© 1999Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/37DBA566093327825538A3415119203C1D7BC3A3/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">ENGINEERING, ELECTRICAL & ELECTRONIC</classCode>
<classCode scheme="WOS">PHYSICS, APPLIED</classCode>
<classCode scheme="WOS">NANOSCIENCE & NANOTECHNOLOGY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:37DBA566093327825538A3415119203C1D7BC3A3
   |texte=   Bipolar model extension for MOS transistors considering gate coupling effects in the HBM ESD domain
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021