Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Melatonin: A Clock‐Output, A Clock‐Input

Identifieur interne : 000929 ( Main/Corpus ); précédent : 000928; suivant : 000930

Melatonin: A Clock‐Output, A Clock‐Input

Auteurs : J. H. Stehle ; C. Von Gall ; H. Korf

Source :

RBID : ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A

English descriptors

Abstract

In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.

Url:
DOI: 10.1046/j.1365-2826.2003.01001.x

Links to Exploration step

ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
<author>
<name sortKey="Stehle, J H" sort="Stehle, J H" uniqKey="Stehle J" first="J. H." last="Stehle">J. H. Stehle</name>
<affiliation>
<mods:affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Von Gall, C" sort="Von Gall, C" uniqKey="Von Gall C" first="C." last="Von Gall">C. Von Gall</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Korf, H" sort="Korf, H" uniqKey="Korf H" first="H." last="Korf">H. Korf</name>
<affiliation>
<mods:affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1046/j.1365-2826.2003.01001.x</idno>
<idno type="url">https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000929</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
<author>
<name sortKey="Stehle, J H" sort="Stehle, J H" uniqKey="Stehle J" first="J. H." last="Stehle">J. H. Stehle</name>
<affiliation>
<mods:affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Von Gall, C" sort="Von Gall, C" uniqKey="Von Gall C" first="C." last="Von Gall">C. Von Gall</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Korf, H" sort="Korf, H" uniqKey="Korf H" first="H." last="Korf">H. Korf</name>
<affiliation>
<mods:affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Neuroendocrinology</title>
<idno type="ISSN">0953-8194</idno>
<idno type="eISSN">1365-2826</idno>
<imprint>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-04">2003-04</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="389">389</biblScope>
</imprint>
<idno type="ISSN">0953-8194</idno>
</series>
<idno type="istex">404AD2392AC6B2D66D5BCC06A8805BFADB17346A</idno>
<idno type="DOI">10.1046/j.1365-2826.2003.01001.x</idno>
<idno type="ArticleID">JNE1001</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-8194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>clock genes</term>
<term>cylicAMP signalling</term>
<term>melatonin</term>
<term>pars tuberalis</term>
<term>period</term>
<term>pineal</term>
<term>suprachiasmatic nucleus</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>J. H. Stehle</name>
<affiliations>
<json:string>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Von Gall</name>
<affiliations>
<json:string>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>H.‐W. Korf</name>
<affiliations>
<json:string>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pineal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>suprachiasmatic nucleus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pars tuberalis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>melatonin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cylicAMP signalling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>clock genes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>period</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1900</abstractCharCount>
<pdfWordCount>5199</pdfWordCount>
<pdfCharCount>32531</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>281</abstractWordCount>
</qualityIndicators>
<title>Melatonin: A Clock‐Output, A Clock‐Input</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>15</volume>
<pages>
<last>389</last>
<first>383</first>
</pages>
<issn>
<json:string>0953-8194</json:string>
</issn>
<issue>4</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2826</json:string>
</eissn>
<title>Journal of Neuroendocrinology</title>
<doi>
<json:string>10.1111/(ISSN)1365-2826</json:string>
</doi>
</host>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1046/j.1365-2826.2003.01001.x</json:string>
</doi>
<id>404AD2392AC6B2D66D5BCC06A8805BFADB17346A</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Melatonin: A Clock‐Output, A Clock‐Input</title>
<author>
<persName>
<forename type="first">J. H.</forename>
<surname>Stehle</surname>
</persName>
<affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</affiliation>
</author>
<author>
<persName>
<forename type="first">C.</forename>
<surname>Von Gall</surname>
</persName>
<affiliation>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</affiliation>
</author>
<author>
<persName>
<forename type="first">H.‐W.</forename>
<surname>Korf</surname>
</persName>
<affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Neuroendocrinology</title>
<idno type="pISSN">0953-8194</idno>
<idno type="eISSN">1365-2826</idno>
<idno type="DOI">10.1111/(ISSN)1365-2826</idno>
<imprint>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-04"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="383">383</biblScope>
<biblScope unit="page" to="389">389</biblScope>
</imprint>
</monogr>
<idno type="istex">404AD2392AC6B2D66D5BCC06A8805BFADB17346A</idno>
<idno type="DOI">10.1046/j.1365-2826.2003.01001.x</idno>
<idno type="ArticleID">JNE1001</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>pineal</term>
</item>
<item>
<term>suprachiasmatic nucleus</term>
</item>
<item>
<term>pars tuberalis</term>
</item>
<item>
<term>melatonin</term>
</item>
<item>
<term>cylicAMP signalling</term>
</item>
<item>
<term>clock genes</term>
</item>
<item>
<term>period</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/404AD2392AC6B2D66D5BCC06A8805BFADB17346A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science, Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2826</doi>
<issn type="print">0953-8194</issn>
<issn type="electronic">1365-2826</issn>
<idGroup>
<id type="product" value="JNE"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF NEUROENDOCRINOLOGY">Journal of Neuroendocrinology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04004">
<doi origin="wiley">10.1111/jne.2003.15.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="15">15</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="2003-04">April 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0038300" status="forIssue">
<doi origin="wiley">10.1046/j.1365-2826.2003.01001.x</doi>
<idGroup>
<id type="unit" value="JNE1001"></id>
</idGroup>
<titleGroup>
<title type="tocHeading1">Pineal and clock genes</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2003-03-06"></event>
<event type="publishedOnlineFinalForm" date="2003-03-06"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.4 mode:FullText source:FullText result:FullText" date="2010-03-30"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="383">383</numbering>
<numbering type="pageLast" number="389">389</numbering>
</numberingGroup>
<correspondenceTo> Dr Jörg H. Stehle, Dr Senckenbergische Anatomie, Institute of Anatomy II, Johann Wolfgang Goethe‐Universität Frankfurt, Theodor‐Stern‐Kai 7, D‐60590 Frankfurt, Germany (e‐mail:
<email normalForm="stehle@em.uni-frankfurt.de">stehle@em.uni‐frankfurt.de</email>
).</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JNE.JNE1001.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="40"></count>
<count type="wordTotal" number="5686"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Melatonin: A Clock‐Output, A Clock‐Input</title>
<title type="short">Clock‐output, clock‐input</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>J. H.</givenNames>
<familyName>Stehle</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>C.</givenNames>
<familyName>Von Gall</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>H.‐W.</givenNames>
<familyName>Korf</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation> Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany. 
</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">pineal</keyword>
<keyword xml:id="k2">suprachiasmatic nucleus</keyword>
<keyword xml:id="k3">pars tuberalis</keyword>
<keyword xml:id="k4">melatonin</keyword>
<keyword xml:id="k5">cylicAMP signalling</keyword>
<keyword xml:id="k6">clock genes</keyword>
<keyword xml:id="k7">period</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Melatonin: A Clock‐Output, A Clock‐Input</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Clock‐output, clock‐input</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Melatonin: A Clock‐Output, A Clock‐Input</title>
</titleInfo>
<name type="personal">
<namePart type="given">J. H.</namePart>
<namePart type="family">Stehle</namePart>
<affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Von Gall</namePart>
<affiliation>Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.‐W.</namePart>
<namePart type="family">Korf</namePart>
<affiliation>Institute of Anatomy II, Johann Wolfgang Goethe‐University Frankfurt, Frankfurt, Germany.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science, Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-04</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="references">40</extent>
<extent unit="words">5686</extent>
</physicalDescription>
<abstract lang="en">In mammals, the circadian system is comprised of three major components: the lateral eyes, the hypothalamic suprachiasmatic nucleus (SCN) and the pineal gland. The SCN harbours the endogenous oscillator that is entrained every day to the ambient lighting conditions via retinal input. Among the many circadian rhythms in the body that are driven by SCN output, the synthesis of melatonin in the pineal gland functions as a hormonal message encoding for the duration of darkness. Dissemination of this circadian information relies on the activation of melatonin receptors, which are most prominently expressed in the SCN, and the hypophyseal pars tuberalis (PT), but also in many other tissues. A deficiency in melatonin, or a lack in melatonin receptors should therefore have effects on circadian biology. However, our investigations of mice that are melatonin‐proficient with mice that do not make melatonin, or alternatively cannot interpret the melatonin message, revealed that melatonin has only minor effects on signal transduction processes within the SCN and sets, at most, the gain for clock error signals mediated via the retino‐hypothalamic tract. Melatonin deficiency has no effect on the rhythm generation, or on the maintenance of the oscillation. By contrast, melatonin is essential for rhythmic signalling in the PT. Here, melatonin acts in concert with adenosine to elicit rhythms in clock gene expression. By sensitizing adenylyl cyclase, melatonin opens a temporally‐restricted gate and thus lowers the threshold for adenosine to induce cAMP‐sensitive genes. This interaction, which determines a temporally precise regulation of gene expression, and by endocrine–endocrine interactions possibly also pituitary output, may reflect a general mechanism by which the master clock in the brain synchronizes clock cells in peripheral tissues that require unique phasing of output signals.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>pineal</topic>
<topic>suprachiasmatic nucleus</topic>
<topic>pars tuberalis</topic>
<topic>melatonin</topic>
<topic>cylicAMP signalling</topic>
<topic>clock genes</topic>
<topic>period</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Neuroendocrinology</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0953-8194</identifier>
<identifier type="eISSN">1365-2826</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2826</identifier>
<identifier type="PublisherID">JNE</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>383</start>
<end>389</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">404AD2392AC6B2D66D5BCC06A8805BFADB17346A</identifier>
<identifier type="DOI">10.1046/j.1365-2826.2003.01001.x</identifier>
<identifier type="ArticleID">JNE1001</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science, Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000929 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000929 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:404AD2392AC6B2D66D5BCC06A8805BFADB17346A
   |texte=   Melatonin: A Clock‐Output, A Clock‐Input
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021