Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of empirical and semi-empirical calculation methods for venting of gas explosions

Identifieur interne : 000694 ( Main/Corpus ); précédent : 000693; suivant : 000695

Comparison of empirical and semi-empirical calculation methods for venting of gas explosions

Auteurs : D. M. Razus ; U. Krause

Source :

RBID : ISTEX:997B447C072F8249D91553D6B0CBC45879496710

Abstract

Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.

Url:
DOI: 10.1016/S0379-7112(00)00049-7

Links to Exploration step

ISTEX:997B447C072F8249D91553D6B0CBC45879496710

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
<author>
<name sortKey="Razus, D M" sort="Razus, D M" uniqKey="Razus D" first="D. M." last="Razus">D. M. Razus</name>
<affiliation>
<mods:affiliation>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krause, U" sort="Krause, U" uniqKey="Krause U" first="U." last="Krause">U. Krause</name>
<affiliation>
<mods:affiliation>E-mail: Ulrich.krause@bam.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:997B447C072F8249D91553D6B0CBC45879496710</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0379-7112(00)00049-7</idno>
<idno type="url">https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000694</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
<author>
<name sortKey="Razus, D M" sort="Razus, D M" uniqKey="Razus D" first="D. M." last="Razus">D. M. Razus</name>
<affiliation>
<mods:affiliation>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krause, U" sort="Krause, U" uniqKey="Krause U" first="U." last="Krause">U. Krause</name>
<affiliation>
<mods:affiliation>E-mail: Ulrich.krause@bam.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Fire Safety Journal</title>
<title level="j" type="abbrev">FISJ</title>
<idno type="ISSN">0379-7112</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="23">23</biblScope>
</imprint>
<idno type="ISSN">0379-7112</idno>
</series>
<idno type="istex">997B447C072F8249D91553D6B0CBC45879496710</idno>
<idno type="DOI">10.1016/S0379-7112(00)00049-7</idno>
<idno type="PII">S0379-7112(00)00049-7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0379-7112</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>D.M. Razus</name>
<affiliations>
<json:string>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</json:string>
</affiliations>
</json:item>
<json:item>
<name>U. Krause</name>
<affiliations>
<json:string>E-mail: Ulrich.krause@bam.de</json:string>
<json:string>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gas explosions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Venting</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Vent area</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Calculation</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.</abstract>
<qualityIndicators>
<score>6.5</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>466 x 680 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>861</abstractCharCount>
<pdfWordCount>6299</pdfWordCount>
<pdfCharCount>41494</pdfCharCount>
<pdfPageCount>23</pdfPageCount>
<abstractWordCount>125</abstractWordCount>
</qualityIndicators>
<title>Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
<pii>
<json:string>S0379-7112(00)00049-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>36</volume>
<pii>
<json:string>S0379-7112(00)X0047-1</json:string>
</pii>
<pages>
<last>23</last>
<first>1</first>
</pages>
<issn>
<json:string>0379-7112</json:string>
</issn>
<issue>1</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Fire Safety Journal</title>
<publicationDate>2001</publicationDate>
</host>
<categories>
<wos>
<json:string>ENGINEERING, CIVIL</json:string>
<json:string>MATERIALS SCIENCE</json:string>
<json:string>MATERIALS SCIENCE, MULTIDISCIPLINARY</json:string>
</wos>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0379-7112(00)00049-7</json:string>
</doi>
<id>997B447C072F8249D91553D6B0CBC45879496710</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: The average values of relative deviations between the calculated and the experimental reduced pressures, for the examined equations for methane–air, natural gas–air, propane–air, hydrogen–air.</note>
<note type="content">Fig. 2: (a) and (b) Calculated reduced pressures for the vented explosion of a 9.5% CH4-air mixture, in cylinder I. For all vents, pstat=1.1 bar.</note>
<note type="content">Fig. 3: (a) and (b) Calculated reduced pressures for the vented explosion of a 9.5% CH4-air mixture, in cylinder II. For all vents, pstat=1.5bar.</note>
<note type="content">Table 1: Relationships used for reduced pressure calculation</note>
<note type="content">Table 2: Constants used for reduced pressure calculation</note>
<note type="content">Table 3: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric methane–air mixtures (pressures in bar a)</note>
<note type="content">Table 4: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for natural gas (93% CH4)–air mixtures (pressures in bar a)</note>
<note type="content">Table 5: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric propane-air mixtures (pressures in bar a)</note>
<note type="content">Table 6: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric hydrogen-air mixtures (pressures in bar a)</note>
<note type="content">Table 7: Conditions of various experiments on vented deflagrations</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
<author>
<persName>
<forename type="first">D.M.</forename>
<surname>Razus</surname>
</persName>
<affiliation>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</affiliation>
</author>
<author>
<persName>
<forename type="first">U.</forename>
<surname>Krause</surname>
</persName>
<email>Ulrich.krause@bam.de</email>
<note type="correspondence">
<p>Corresponding author. Tel.: 49-30-8104-3412; fax: 49-30-8104-1217</p>
</note>
<affiliation>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Fire Safety Journal</title>
<title level="j" type="abbrev">FISJ</title>
<idno type="pISSN">0379-7112</idno>
<idno type="PII">S0379-7112(00)X0047-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="23">23</biblScope>
</imprint>
</monogr>
<idno type="istex">997B447C072F8249D91553D6B0CBC45879496710</idno>
<idno type="DOI">10.1016/S0379-7112(00)00049-7</idno>
<idno type="PII">S0379-7112(00)00049-7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Gas explosions</term>
</item>
<item>
<term>Venting</term>
</item>
<item>
<term>Vent area</term>
</item>
<item>
<term>Calculation</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-09-04">Registration</change>
<change when="2000-07-03">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>FISJ</jid>
<aid>1221</aid>
<ce:pii>S0379-7112(00)00049-7</ce:pii>
<ce:doi>10.1016/S0379-7112(00)00049-7</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>D.M.</ce:given-name>
<ce:surname>Razus</ce:surname>
<ce:cross-ref refid="AFFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>U.</ce:given-name>
<ce:surname>Krause</ce:surname>
<ce:cross-ref refid="AFFB">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>Ulrich.krause@bam.de</ce:e-address>
</ce:author>
<ce:affiliation id="AFFA">
<ce:label>a</ce:label>
<ce:textfn>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFFB">
<ce:label>b</ce:label>
<ce:textfn>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: 49-30-8104-3412; fax: 49-30-8104-1217</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="24" month="2" year="2000"></ce:date-received>
<ce:date-revised day="3" month="7" year="2000"></ce:date-revised>
<ce:date-accepted day="4" month="9" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Gas explosions</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Venting</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Vent area</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Calculation</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Comparison of empirical and semi-empirical calculation methods for venting of gas explosions</title>
</titleInfo>
<name type="personal">
<namePart type="given">D.M.</namePart>
<namePart type="family">Razus</namePart>
<affiliation>Institute of Physical Chemistry, The Romanian Academy, Bucharest, Romania</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U.</namePart>
<namePart type="family">Krause</namePart>
<affiliation>E-mail: Ulrich.krause@bam.de</affiliation>
<affiliation>Laboratory “Dust Fires and Dust Explosions”, Federal Institute for Materials Research and Testing (BAM), D-12205, Berlin, Germany</affiliation>
<description>Corresponding author. Tel.: 49-30-8104-3412; fax: 49-30-8104-1217</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateValid encoding="w3cdtf">2000-09-04</dateValid>
<dateModified encoding="w3cdtf">2000-07-03</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Venting is a widely applied method to protect process equipment from being destroyed by internal explosions. The key problem in venting is the appropriate design of the vent area necessary for an effective release of the material. For gas explosions different calculation methods exist, but there are no clear recommendations which one should be preferred for the practical cases under consideration. The present paper gives a review of different calculation methods, their ranges of validity, their physical background and applicability. The presented examples include a comparison of computed reduced explosion pressures for methane–air, propane–air and hydrogen–air mixtures with experimental data and two fictitious test cases. The results of different methods show a wide range of scatter, however some recommendations for their applicability can be given.</abstract>
<note type="content">Fig. 1: The average values of relative deviations between the calculated and the experimental reduced pressures, for the examined equations for methane–air, natural gas–air, propane–air, hydrogen–air.</note>
<note type="content">Fig. 2: (a) and (b) Calculated reduced pressures for the vented explosion of a 9.5% CH4-air mixture, in cylinder I. For all vents, pstat=1.1 bar.</note>
<note type="content">Fig. 3: (a) and (b) Calculated reduced pressures for the vented explosion of a 9.5% CH4-air mixture, in cylinder II. For all vents, pstat=1.5bar.</note>
<note type="content">Table 1: Relationships used for reduced pressure calculation</note>
<note type="content">Table 2: Constants used for reduced pressure calculation</note>
<note type="content">Table 3: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric methane–air mixtures (pressures in bar a)</note>
<note type="content">Table 4: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for natural gas (93% CH4)–air mixtures (pressures in bar a)</note>
<note type="content">Table 5: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric propane-air mixtures (pressures in bar a)</note>
<note type="content">Table 6: Comparison of calculated reduced explosion pressures with experimental data from different literature sources for stoichiometric hydrogen-air mixtures (pressures in bar a)</note>
<note type="content">Table 7: Conditions of various experiments on vented deflagrations</note>
<subject>
<genre>Keywords</genre>
<topic>Gas explosions</topic>
<topic>Venting</topic>
<topic>Vent area</topic>
<topic>Calculation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Fire Safety Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>FISJ</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200102</dateIssued>
</originInfo>
<identifier type="ISSN">0379-7112</identifier>
<identifier type="PII">S0379-7112(00)X0047-1</identifier>
<part>
<date>200102</date>
<detail type="volume">
<number>36</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>98</end>
</extent>
<extent unit="pages">
<start>1</start>
<end>23</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">997B447C072F8249D91553D6B0CBC45879496710</identifier>
<identifier type="DOI">10.1016/S0379-7112(00)00049-7</identifier>
<identifier type="PII">S0379-7112(00)00049-7</identifier>
<accessCondition type="use and reproduction" contentType="">© 2001Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/997B447C072F8249D91553D6B0CBC45879496710/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">ENGINEERING, CIVIL</classCode>
<classCode scheme="WOS">MATERIALS SCIENCE</classCode>
<classCode scheme="WOS">MATERIALS SCIENCE, MULTIDISCIPLINARY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000694 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000694 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:997B447C072F8249D91553D6B0CBC45879496710
   |texte=   Comparison of empirical and semi-empirical calculation methods for venting of gas explosions
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021