Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Trainable hardware for dynamical computing using error backpropagation through physical media.

Identifieur interne : 000098 ( PubMed/Corpus ); précédent : 000097; suivant : 000099

Trainable hardware for dynamical computing using error backpropagation through physical media.

Auteurs : Michiel Hermans ; Michaël Burm ; Thomas Van Vaerenbergh ; Joni Dambre ; Peter Bienstman

Source :

RBID : pubmed:25801303

Abstract

Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.

DOI: 10.1038/ncomms7729
PubMed: 25801303

Links to Exploration step

pubmed:25801303

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Trainable hardware for dynamical computing using error backpropagation through physical media.</title>
<author>
<name sortKey="Hermans, Michiel" sort="Hermans, Michiel" uniqKey="Hermans M" first="Michiel" last="Hermans">Michiel Hermans</name>
<affiliation>
<nlm:affiliation>OPERA photonique, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burm, Michael" sort="Burm, Michael" uniqKey="Burm M" first="Michaël" last="Burm">Michaël Burm</name>
<affiliation>
<nlm:affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Vaerenbergh, Thomas" sort="Van Vaerenbergh, Thomas" uniqKey="Van Vaerenbergh T" first="Thomas" last="Van Vaerenbergh">Thomas Van Vaerenbergh</name>
<affiliation>
<nlm:affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dambre, Joni" sort="Dambre, Joni" uniqKey="Dambre J" first="Joni" last="Dambre">Joni Dambre</name>
<affiliation>
<nlm:affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bienstman, Peter" sort="Bienstman, Peter" uniqKey="Bienstman P" first="Peter" last="Bienstman">Peter Bienstman</name>
<affiliation>
<nlm:affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1038/ncomms7729</idno>
<idno type="RBID">pubmed:25801303</idno>
<idno type="pmid">25801303</idno>
<idno type="wicri:Area/PubMed/Corpus">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Trainable hardware for dynamical computing using error backpropagation through physical media.</title>
<author>
<name sortKey="Hermans, Michiel" sort="Hermans, Michiel" uniqKey="Hermans M" first="Michiel" last="Hermans">Michiel Hermans</name>
<affiliation>
<nlm:affiliation>OPERA photonique, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burm, Michael" sort="Burm, Michael" uniqKey="Burm M" first="Michaël" last="Burm">Michaël Burm</name>
<affiliation>
<nlm:affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Vaerenbergh, Thomas" sort="Van Vaerenbergh, Thomas" uniqKey="Van Vaerenbergh T" first="Thomas" last="Van Vaerenbergh">Thomas Van Vaerenbergh</name>
<affiliation>
<nlm:affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dambre, Joni" sort="Dambre, Joni" uniqKey="Dambre J" first="Joni" last="Dambre">Joni Dambre</name>
<affiliation>
<nlm:affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bienstman, Peter" sort="Bienstman, Peter" uniqKey="Bienstman P" first="Peter" last="Bienstman">Peter Bienstman</name>
<affiliation>
<nlm:affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature communications</title>
<idno type="e-ISSN">2041-1723</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">25801303</PMID>
<DateCreated>
<Year>2015</Year>
<Month>03</Month>
<Day>24</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2041-1723</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Nature communications</Title>
<ISOAbbreviation>Nat Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Trainable hardware for dynamical computing using error backpropagation through physical media.</ArticleTitle>
<Pagination>
<MedlinePgn>6729</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/ncomms7729</ELocationID>
<Abstract>
<AbstractText>Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hermans</LastName>
<ForeName>Michiel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>OPERA photonique, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burm</LastName>
<ForeName>Michaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Vaerenbergh</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dambre</LastName>
<ForeName>Joni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>ELIS Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bienstman</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>INTEC Department, Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Commun</MedlineTA>
<NlmUniqueID>101528555</NlmUniqueID>
<ISSNLinking>2041-1723</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Artif Life. 2013 Winter;19(1):35-66</RefSource>
<PMID Version="1">23186351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Netw Learn Syst. 2015 Jul;26(7):1545-50</RefSource>
<PMID Version="1">25137733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Comput. 2002 Nov;14(11):2531-60</RefSource>
<PMID Version="1">12433288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2008 Jul 21;16(15):11182-92</RefSource>
<PMID Version="1">18648434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2009 Dec 21;17(26):24020-9</RefSource>
<PMID Version="1">20052114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2012 Jan 30;20(3):3241-9</RefSource>
<PMID Version="1">22330562</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(1):e86696</RefSource>
<PMID Version="1">24497969</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4382991</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>2</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">ncomms7729</ArticleId>
<ArticleId IdType="doi">10.1038/ncomms7729</ArticleId>
<ArticleId IdType="pubmed">25801303</ArticleId>
<ArticleId IdType="pmc">PMC4382991</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25801303
   |texte=   Trainable hardware for dynamical computing using error backpropagation through physical media.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25801303" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024