Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulation Model for Design of a New Power Supply

Identifieur interne : 000471 ( PascalFrancis/Curation ); précédent : 000470; suivant : 000472

Simulation Model for Design of a New Power Supply

Auteurs : T. Takayanagi [Japon] ; N. Hayashi [Japon] ; T. Ueno [Japon] ; T. Togashi [Japon] ; Y. Irie [Japon]

Source :

RBID : Pascal:13-0011400

Descripteurs français

English descriptors

Abstract

The simulation model for a new power supply of the injection bump system magnets [1]-[4] of the 3-GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Complex) [5], [6] has been constructed. The new power supply requires the reduction of the ripple noise current which will resonate with load and excites a forced beam oscillation at ∼96 kHz in the injection stage. In order to incorporate the load impedance in the simulation model, the impedances of a feeder line and the bump magnet with a ceramic vacuum chamber [7] inside were measured. The RF shield is formed on the ceramic surface along the beam direction. The results were successfully analysed using the OPERA-3D [8] and the circuit simulation code, Micro-Cap [9], and showed a good agreement. It was found the RF shield of a ceramic chamber has a resonant structure corresponding to ∼96 kHz.
pA  
A01 01  1    @0 1051-8223
A03   1    @0 IEEE trans. appl. supercond.
A05       @2 22
A06       @2 3
A08 01  1  ENG  @1 Simulation Model for Design of a New Power Supply
A09 01  1  ENG  @1 The Twenty-First International Conference on Magnet Technology
A11 01  1    @1 TAKAYANAGI (T.)
A11 02  1    @1 HAYASHI (N.)
A11 03  1    @1 UENO (T.)
A11 04  1    @1 TOGASHI (T.)
A11 05  1    @1 IRIE (Y.)
A14 01      @1 JAEA/J-PARC @2 Ibaraki-ken 319-1195 @3 JPN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 KEK @2 Ibaraki-Ken 305-0801 @3 JPN @Z 5 aut.
A18 01  1    @1 IEEE (Institute of Electrical and Electronics Engineers @3 USA @9 org-cong.
A20       @2 5400704.1-5400704.4
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 22424 @5 354000506810803660
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 13 ref.
A47 01  1    @0 13-0011400
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 IEEE transactions on applied superconductivity
A66 01      @0 USA
C01 01    ENG  @0 The simulation model for a new power supply of the injection bump system magnets [1]-[4] of the 3-GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Complex) [5], [6] has been constructed. The new power supply requires the reduction of the ripple noise current which will resonate with load and excites a forced beam oscillation at ∼96 kHz in the injection stage. In order to incorporate the load impedance in the simulation model, the impedances of a feeder line and the bump magnet with a ceramic vacuum chamber [7] inside were measured. The RF shield is formed on the ceramic surface along the beam direction. The results were successfully analysed using the OPERA-3D [8] and the circuit simulation code, Micro-Cap [9], and showed a good agreement. It was found the RF shield of a ceramic chamber has a resonant structure corresponding to ∼96 kHz.
C02 01  X    @0 001D03D
C02 02  X    @0 001D05H
C02 03  X    @0 001D05G01
C02 04  X    @0 001D03G01
C03 01  X  FRE  @0 Simulation système @5 01
C03 01  X  ENG  @0 System simulation @5 01
C03 01  X  SPA  @0 Simulación sistema @5 01
C03 02  X  FRE  @0 Alimentation électrique @5 02
C03 02  X  ENG  @0 Power supply @5 02
C03 02  X  SPA  @0 Alimentación eléctrica @5 02
C03 03  X  FRE  @0 Aimant @5 03
C03 03  X  ENG  @0 Magnet @5 03
C03 03  X  SPA  @0 Imán @5 03
C03 04  X  FRE  @0 Surface équivalente radar @5 04
C03 04  X  ENG  @0 Radar cross section @5 04
C03 04  X  SPA  @0 Superficie equivalente radar @5 04
C03 05  X  FRE  @0 Cyclage @5 05
C03 05  X  ENG  @0 Cycling @5 05
C03 05  X  SPA  @0 Ciclaje @5 05
C03 06  X  FRE  @0 Synchrotron @5 06
C03 06  X  ENG  @0 Synchrotrons @5 06
C03 06  X  SPA  @0 Sincrotrón @5 06
C03 07  X  FRE  @0 Japon @2 NG @5 07
C03 07  X  ENG  @0 Japan @2 NG @5 07
C03 07  X  SPA  @0 Japón @2 NG @5 07
C03 08  X  FRE  @0 Accélérateur proton @5 08
C03 08  X  ENG  @0 Proton accelerator @5 08
C03 08  X  SPA  @0 Acelerador protón @5 08
C03 09  X  FRE  @0 Oscillation forcée @5 09
C03 09  X  ENG  @0 Forced oscillation @5 09
C03 09  X  SPA  @0 Oscilación forzada @5 09
C03 10  X  FRE  @0 Impédance charge @5 10
C03 10  X  ENG  @0 Load impedance @5 10
C03 10  X  SPA  @0 Impedancia carga @5 10
C03 11  X  FRE  @0 Chambre à vide @5 11
C03 11  X  ENG  @0 Vacuum chamber @5 11
C03 11  X  SPA  @0 Cámara de vacío @5 11
C03 12  3  FRE  @0 Simulation circuit @5 12
C03 12  3  ENG  @0 Circuit simulation @5 12
C03 13  X  FRE  @0 Codage @5 13
C03 13  X  ENG  @0 Coding @5 13
C03 13  X  SPA  @0 Codificación @5 13
C03 14  X  FRE  @0 Structure résonnante @5 14
C03 14  X  ENG  @0 Resonant structure @5 14
C03 14  X  SPA  @0 Estructura resonante @5 14
C03 15  X  FRE  @0 Schéma équivalent @5 15
C03 15  X  ENG  @0 Equivalent circuit @5 15
C03 15  X  SPA  @0 Esquema equivalente @5 15
C03 16  X  FRE  @0 Céramique @5 22
C03 16  X  ENG  @0 Ceramic materials @5 22
C03 16  X  SPA  @0 Cerámica @5 22
C03 17  X  FRE  @0 Electronique puissance @5 46
C03 17  X  ENG  @0 Power electronics @5 46
C03 17  X  SPA  @0 Electrónica potencia @5 46
C03 18  X  FRE  @0 2920L @4 INC @5 56
C07 01  X  FRE  @0 Asie @2 NG
C07 01  X  ENG  @0 Asia @2 NG
C07 01  X  SPA  @0 Asia @2 NG
N21       @1 007
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Conference on Magnet Technology @2 22 @3 Marseille FRA @4 2011-09-12

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0011400

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simulation Model for Design of a New Power Supply</title>
<author>
<name sortKey="Takayanagi, T" sort="Takayanagi, T" uniqKey="Takayanagi T" first="T." last="Takayanagi">T. Takayanagi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, N" sort="Hayashi, N" uniqKey="Hayashi N" first="N." last="Hayashi">N. Hayashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Ueno, T" sort="Ueno, T" uniqKey="Ueno T" first="T." last="Ueno">T. Ueno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Togashi, T" sort="Togashi, T" uniqKey="Togashi T" first="T." last="Togashi">T. Togashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Irie, Y" sort="Irie, Y" uniqKey="Irie Y" first="Y." last="Irie">Y. Irie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KEK</s1>
<s2>Ibaraki-Ken 305-0801</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0011400</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0011400 INIST</idno>
<idno type="RBID">Pascal:13-0011400</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000049</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000471</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Simulation Model for Design of a New Power Supply</title>
<author>
<name sortKey="Takayanagi, T" sort="Takayanagi, T" uniqKey="Takayanagi T" first="T." last="Takayanagi">T. Takayanagi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, N" sort="Hayashi, N" uniqKey="Hayashi N" first="N." last="Hayashi">N. Hayashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Ueno, T" sort="Ueno, T" uniqKey="Ueno T" first="T." last="Ueno">T. Ueno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Togashi, T" sort="Togashi, T" uniqKey="Togashi T" first="T." last="Togashi">T. Togashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Irie, Y" sort="Irie, Y" uniqKey="Irie Y" first="Y." last="Irie">Y. Irie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KEK</s1>
<s2>Ibaraki-Ken 305-0801</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ceramic materials</term>
<term>Circuit simulation</term>
<term>Coding</term>
<term>Cycling</term>
<term>Equivalent circuit</term>
<term>Forced oscillation</term>
<term>Japan</term>
<term>Load impedance</term>
<term>Magnet</term>
<term>Power electronics</term>
<term>Power supply</term>
<term>Proton accelerator</term>
<term>Radar cross section</term>
<term>Resonant structure</term>
<term>Synchrotrons</term>
<term>System simulation</term>
<term>Vacuum chamber</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation système</term>
<term>Alimentation électrique</term>
<term>Aimant</term>
<term>Surface équivalente radar</term>
<term>Cyclage</term>
<term>Synchrotron</term>
<term>Japon</term>
<term>Accélérateur proton</term>
<term>Oscillation forcée</term>
<term>Impédance charge</term>
<term>Chambre à vide</term>
<term>Simulation circuit</term>
<term>Codage</term>
<term>Structure résonnante</term>
<term>Schéma équivalent</term>
<term>Céramique</term>
<term>Electronique puissance</term>
<term>2920L</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Japon</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Codage</term>
<term>Céramique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The simulation model for a new power supply of the injection bump system magnets [1]-[4] of the 3-GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Complex) [5], [6] has been constructed. The new power supply requires the reduction of the ripple noise current which will resonate with load and excites a forced beam oscillation at ∼96 kHz in the injection stage. In order to incorporate the load impedance in the simulation model, the impedances of a feeder line and the bump magnet with a ceramic vacuum chamber [7] inside were measured. The RF shield is formed on the ceramic surface along the beam direction. The results were successfully analysed using the OPERA-3D [8] and the circuit simulation code, Micro-Cap [9], and showed a good agreement. It was found the RF shield of a ceramic chamber has a resonant structure corresponding to ∼96 kHz.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1051-8223</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. appl. supercond.</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simulation Model for Design of a New Power Supply</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The Twenty-First International Conference on Magnet Technology</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TAKAYANAGI (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAYASHI (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>UENO (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TOGASHI (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>IRIE (Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>JAEA/J-PARC</s1>
<s2>Ibaraki-ken 319-1195</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>KEK</s1>
<s2>Ibaraki-Ken 305-0801</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>IEEE (Institute of Electrical and Electronics Engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>5400704.1-5400704.4</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22424</s2>
<s5>354000506810803660</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0011400</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on applied superconductivity</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The simulation model for a new power supply of the injection bump system magnets [1]-[4] of the 3-GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Complex) [5], [6] has been constructed. The new power supply requires the reduction of the ripple noise current which will resonate with load and excites a forced beam oscillation at ∼96 kHz in the injection stage. In order to incorporate the load impedance in the simulation model, the impedances of a feeder line and the bump magnet with a ceramic vacuum chamber [7] inside were measured. The RF shield is formed on the ceramic surface along the beam direction. The results were successfully analysed using the OPERA-3D [8] and the circuit simulation code, Micro-Cap [9], and showed a good agreement. It was found the RF shield of a ceramic chamber has a resonant structure corresponding to ∼96 kHz.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05H</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05G01</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03G01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Simulation système</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>System simulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Simulación sistema</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Alimentation électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Power supply</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Alimentación eléctrica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Aimant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Magnet</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Imán</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Surface équivalente radar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Radar cross section</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Superficie equivalente radar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cyclage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cycling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ciclaje</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Synchrotron</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Synchrotrons</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sincrotrón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Japon</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Japan</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Japón</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accélérateur proton</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Proton accelerator</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acelerador protón</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oscillation forcée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Forced oscillation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Oscilación forzada</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Impédance charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Load impedance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Impedancia carga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Chambre à vide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Vacuum chamber</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cámara de vacío</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Simulation circuit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Circuit simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Codage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Coding</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Codificación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Structure résonnante</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Resonant structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estructura resonante</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Schéma équivalent</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Equivalent circuit</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Esquema equivalente</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Céramique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ceramic materials</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Cerámica</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Electronique puissance</s0>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Power electronics</s0>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Electrónica potencia</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>2920L</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>007</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Magnet Technology</s1>
<s2>22</s2>
<s3>Marseille FRA</s3>
<s4>2011-09-12</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000471 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000471 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0011400
   |texte=   Simulation Model for Design of a New Power Supply
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024