Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results

Identifieur interne : 000409 ( PascalFrancis/Curation ); précédent : 000408; suivant : 000410

NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results

Auteurs : P. H. Titus [États-Unis] ; S. Avasaralla [États-Unis] ; A. Brooks [États-Unis] ; R. Hatcher [États-Unis]

Source :

RBID : Pascal:12-0099491

Descripteurs français

English descriptors

Abstract

The national spherical torus experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the centerstack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses. Published by Elsevier B.V.
pA  
A01 01  1    @0 0920-3796
A02 01      @0 FEDEEE
A03   1    @0 Fusion eng. des.
A05       @2 86
A06       @2 9-11
A08 01  1  ENG  @1 NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results
A09 01  1  ENG  @1 Proceedings of the 26th Symposium on Fusion Technology (SOFT-26), Porto, Portugal, September 27-October 1, 2010. Part B
A11 01  1    @1 TITUS (P. H.)
A11 02  1    @1 AVASARALLA (S.)
A11 03  1    @1 BROOKS (A.)
A11 04  1    @1 HATCHER (R.)
A12 01  1    @1 VARANDAS (Carlos) @9 ed.
A12 02  1    @1 GONCALVES (Bruno) @9 ed.
A12 03  1    @1 VARELA (Paulo) @9 ed.
A14 01      @1 Princeton Plasma Physics Laboratory, P.O. Box 451 @2 Princeton, NJ 08550 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 1784-1790
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 12262F @5 354000506761480500
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 5 ref.
A47 01  1    @0 12-0099491
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Fusion engineering and design
A66 01      @0 NLD
C01 01    ENG  @0 The national spherical torus experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the centerstack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses. Published by Elsevier B.V.
C02 01  X    @0 001D06D04E
C02 02  X    @0 230
C03 01  X  FRE  @0 Disruption @5 01
C03 01  X  ENG  @0 Disruption @5 01
C03 01  X  SPA  @0 Disrupción @5 01
C03 02  X  FRE  @0 Ecorceur @5 02
C03 02  X  ENG  @0 Divertor @5 02
C03 02  X  SPA  @0 Descortezador @5 02
C03 03  X  FRE  @0 Réacteur fusion nucléaire @5 03
C03 03  X  ENG  @0 Nuclear fusion reactor @5 03
C03 03  X  SPA  @0 Reactor fusión nuclear @5 03
C03 04  X  FRE  @0 Champ toroïdal @5 04
C03 04  X  ENG  @0 Toroidal field @5 04
C03 04  X  SPA  @0 Campo toroidal @5 04
C03 05  X  FRE  @0 Plasma @5 05
C03 05  X  ENG  @0 Plasma @5 05
C03 05  X  SPA  @0 Plasma @5 05
C03 06  X  FRE  @0 Faisceau particule neutre @5 06
C03 06  X  ENG  @0 Neutral beam @5 06
C03 06  X  SPA  @0 Haz partículas neutras @5 06
C03 07  X  FRE  @0 Modélisation @5 07
C03 07  X  ENG  @0 Modeling @5 07
C03 07  X  SPA  @0 Modelización @5 07
C03 08  X  FRE  @0 Tokamak @5 08
C03 08  X  ENG  @0 Tokamak @5 08
C03 08  X  SPA  @0 Tokamak @5 08
C03 09  X  FRE  @0 Courant Foucault @5 09
C03 09  X  ENG  @0 Eddy current @5 09
C03 09  X  SPA  @0 Corriente Foucault @5 09
N21       @1 079
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 SOFT-26 Symposium on Fusion Technology @2 26 @3 Porto PRT @4 2010-09-27

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0099491

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results</title>
<author>
<name sortKey="Titus, P H" sort="Titus, P H" uniqKey="Titus P" first="P. H." last="Titus">P. H. Titus</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Avasaralla, S" sort="Avasaralla, S" uniqKey="Avasaralla S" first="S." last="Avasaralla">S. Avasaralla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Brooks, A" sort="Brooks, A" uniqKey="Brooks A" first="A." last="Brooks">A. Brooks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hatcher, R" sort="Hatcher, R" uniqKey="Hatcher R" first="R." last="Hatcher">R. Hatcher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0099491</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0099491 INIST</idno>
<idno type="RBID">Pascal:12-0099491</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000109</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000409</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results</title>
<author>
<name sortKey="Titus, P H" sort="Titus, P H" uniqKey="Titus P" first="P. H." last="Titus">P. H. Titus</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Avasaralla, S" sort="Avasaralla, S" uniqKey="Avasaralla S" first="S." last="Avasaralla">S. Avasaralla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Brooks, A" sort="Brooks, A" uniqKey="Brooks A" first="A." last="Brooks">A. Brooks</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hatcher, R" sort="Hatcher, R" uniqKey="Hatcher R" first="R." last="Hatcher">R. Hatcher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Fusion engineering and design</title>
<title level="j" type="abbreviated">Fusion eng. des.</title>
<idno type="ISSN">0920-3796</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Fusion engineering and design</title>
<title level="j" type="abbreviated">Fusion eng. des.</title>
<idno type="ISSN">0920-3796</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Disruption</term>
<term>Divertor</term>
<term>Eddy current</term>
<term>Modeling</term>
<term>Neutral beam</term>
<term>Nuclear fusion reactor</term>
<term>Plasma</term>
<term>Tokamak</term>
<term>Toroidal field</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Disruption</term>
<term>Ecorceur</term>
<term>Réacteur fusion nucléaire</term>
<term>Champ toroïdal</term>
<term>Plasma</term>
<term>Faisceau particule neutre</term>
<term>Modélisation</term>
<term>Tokamak</term>
<term>Courant Foucault</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The national spherical torus experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the centerstack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses. Published by Elsevier B.V.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0920-3796</s0>
</fA01>
<fA02 i1="01">
<s0>FEDEEE</s0>
</fA02>
<fA03 i2="1">
<s0>Fusion eng. des.</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>9-11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 26th Symposium on Fusion Technology (SOFT-26), Porto, Portugal, September 27-October 1, 2010. Part B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TITUS (P. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AVASARALLA (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BROOKS (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HATCHER (R.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>VARANDAS (Carlos)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GONCALVES (Bruno)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>VARELA (Paulo)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Princeton Plasma Physics Laboratory, P.O. Box 451</s1>
<s2>Princeton, NJ 08550</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1784-1790</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12262F</s2>
<s5>354000506761480500</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>5 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0099491</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Fusion engineering and design</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The national spherical torus experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the centerstack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses. Published by Elsevier B.V.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D04E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Disruption</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Disruption</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Disrupción</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ecorceur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Divertor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Descortezador</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Réacteur fusion nucléaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nuclear fusion reactor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Reactor fusión nuclear</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Champ toroïdal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Toroidal field</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Campo toroidal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Plasma</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Faisceau particule neutre</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Neutral beam</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Haz partículas neutras</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Tokamak</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tokamak</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tokamak</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Courant Foucault</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Eddy current</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Corriente Foucault</s0>
<s5>09</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SOFT-26 Symposium on Fusion Technology</s1>
<s2>26</s2>
<s3>Porto PRT</s3>
<s4>2010-09-27</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000409 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000409 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0099491
   |texte=   NSTX disruption simulations of detailed divertor and passive plate models by vector potential transfer from OPERA global analysis results
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024