Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography

Identifieur interne : 000400 ( PascalFrancis/Corpus ); précédent : 000399; suivant : 000401

Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography

Auteurs : M. Straub ; L. H. Nguyen ; A. Fazlic ; M. Gu

Source :

RBID : Pascal:05-0234528

Descripteurs français

English descriptors

Abstract

Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-3467
A03   1    @0 Opt. mater. : (Amst.)
A05       @2 27
A06       @2 3
A08 01  1  ENG  @1 Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography
A11 01  1    @1 STRAUB (M.)
A11 02  1    @1 NGUYEN (L. H.)
A11 03  1    @1 FAZLIC (A.)
A11 04  1    @1 GU (M.)
A14 01      @1 Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218 @2 Hawthorn, Victoria 3122 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 359-364
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 22598 @5 354000126110430010
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 23 ref.
A47 01  1    @0 05-0234528
A60       @1 P
A61       @0 A
A64 01  1    @0 Optical materials : (Amsterdam)
A66 01      @0 NLD
C01 01    ENG  @0 Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.
C02 01  3    @0 001B40B70Q
C03 01  3  FRE  @0 Processus 2 photons @5 03
C03 01  3  ENG  @0 Two-photon processes @5 03
C03 02  3  FRE  @0 Transformation Fourier @5 23
C03 02  3  ENG  @0 Fourier transformation @5 23
C03 03  3  FRE  @0 Etude expérimentale @5 30
C03 03  3  ENG  @0 Experimental study @5 30
C03 04  3  FRE  @0 Rayonnement visible @5 37
C03 04  3  ENG  @0 Visible radiation @5 37
C03 05  3  FRE  @0 Microstructure @5 41
C03 05  3  ENG  @0 Microstructure @5 41
C03 06  3  FRE  @0 Propriété thermique @5 42
C03 06  3  ENG  @0 Thermal properties @5 42
C03 07  3  FRE  @0 Bande interdite photonique @5 43
C03 07  3  ENG  @0 Photonic band gap @5 43
C03 08  X  FRE  @0 Structure 3 dimensions @5 47
C03 08  X  ENG  @0 Three dimensional structure @5 47
C03 08  X  SPA  @0 Estructura 3 dimensiones @5 47
C03 09  3  FRE  @0 Cristal photonique @5 57
C03 09  3  ENG  @0 Photonic crystals @5 57
C03 10  3  FRE  @0 Matériau hybride organique minéral @5 58
C03 10  3  ENG  @0 Organic-inorganic hybrid materials @5 58
C03 11  3  FRE  @0 Siloxane polymère @5 61
C03 11  3  ENG  @0 Silicones @5 61
C03 12  3  FRE  @0 Polymérisation photochimique @5 62
C03 12  3  ENG  @0 Photopolymerization @5 62
C03 13  X  FRE  @0 Stéréolithographie @5 63
C03 13  X  ENG  @0 Stereolithography @5 63
C03 13  X  SPA  @0 Stereolitografia @5 63
C03 14  3  FRE  @0 Polymère @5 65
C03 14  3  ENG  @0 Polymers @5 65
C03 15  3  FRE  @0 4270Q @4 INC @5 79
N21       @1 157

Format Inist (serveur)

NO : PASCAL 05-0234528 INIST
ET : Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography
AU : STRAUB (M.); NGUYEN (L. H.); FAZLIC (A.); GU (M.)
AF : Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218/Hawthorn, Victoria 3122/Australie (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Optical materials : (Amsterdam); ISSN 0925-3467; Pays-Bas; Da. 2004; Vol. 27; No. 3; Pp. 359-364; Bibl. 23 ref.
LA : Anglais
EA : Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.
CC : 001B40B70Q
FD : Processus 2 photons; Transformation Fourier; Etude expérimentale; Rayonnement visible; Microstructure; Propriété thermique; Bande interdite photonique; Structure 3 dimensions; Cristal photonique; Matériau hybride organique minéral; Siloxane polymère; Polymérisation photochimique; Stéréolithographie; Polymère; 4270Q
ED : Two-photon processes; Fourier transformation; Experimental study; Visible radiation; Microstructure; Thermal properties; Photonic band gap; Three dimensional structure; Photonic crystals; Organic-inorganic hybrid materials; Silicones; Photopolymerization; Stereolithography; Polymers
SD : Estructura 3 dimensiones; Stereolitografia
LO : INIST-22598.354000126110430010
ID : 05-0234528

Links to Exploration step

Pascal:05-0234528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</title>
<author>
<name sortKey="Straub, M" sort="Straub, M" uniqKey="Straub M" first="M." last="Straub">M. Straub</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, L H" sort="Nguyen, L H" uniqKey="Nguyen L" first="L. H." last="Nguyen">L. H. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fazlic, A" sort="Fazlic, A" uniqKey="Fazlic A" first="A." last="Fazlic">A. Fazlic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gu, M" sort="Gu, M" uniqKey="Gu M" first="M." last="Gu">M. Gu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0234528</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0234528 INIST</idno>
<idno type="RBID">Pascal:05-0234528</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000400</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</title>
<author>
<name sortKey="Straub, M" sort="Straub, M" uniqKey="Straub M" first="M." last="Straub">M. Straub</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, L H" sort="Nguyen, L H" uniqKey="Nguyen L" first="L. H." last="Nguyen">L. H. Nguyen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fazlic, A" sort="Fazlic, A" uniqKey="Fazlic A" first="A." last="Fazlic">A. Fazlic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gu, M" sort="Gu, M" uniqKey="Gu M" first="M." last="Gu">M. Gu</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Experimental study</term>
<term>Fourier transformation</term>
<term>Microstructure</term>
<term>Organic-inorganic hybrid materials</term>
<term>Photonic band gap</term>
<term>Photonic crystals</term>
<term>Photopolymerization</term>
<term>Polymers</term>
<term>Silicones</term>
<term>Stereolithography</term>
<term>Thermal properties</term>
<term>Three dimensional structure</term>
<term>Two-photon processes</term>
<term>Visible radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Processus 2 photons</term>
<term>Transformation Fourier</term>
<term>Etude expérimentale</term>
<term>Rayonnement visible</term>
<term>Microstructure</term>
<term>Propriété thermique</term>
<term>Bande interdite photonique</term>
<term>Structure 3 dimensions</term>
<term>Cristal photonique</term>
<term>Matériau hybride organique minéral</term>
<term>Siloxane polymère</term>
<term>Polymérisation photochimique</term>
<term>Stéréolithographie</term>
<term>Polymère</term>
<term>4270Q</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-3467</s0>
</fA01>
<fA03 i2="1">
<s0>Opt. mater. : (Amst.)</s0>
</fA03>
<fA05>
<s2>27</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STRAUB (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NGUYEN (L. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FAZLIC (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GU (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>359-364</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22598</s2>
<s5>354000126110430010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0234528</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optical materials : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Processus 2 photons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Two-photon processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transformation Fourier</s0>
<s5>23</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Fourier transformation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Rayonnement visible</s0>
<s5>37</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Visible radiation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>43</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>43</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure 3 dimensions</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Three dimensional structure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura 3 dimensiones</s0>
<s5>47</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cristal photonique</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photonic crystals</s0>
<s5>57</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau hybride organique minéral</s0>
<s5>58</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Organic-inorganic hybrid materials</s0>
<s5>58</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Siloxane polymère</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silicones</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Polymérisation photochimique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photopolymerization</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stéréolithographie</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stereolithography</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Stereolitografia</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>65</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>65</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>4270Q</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 05-0234528 INIST</NO>
<ET>Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</ET>
<AU>STRAUB (M.); NGUYEN (L. H.); FAZLIC (A.); GU (M.)</AU>
<AF>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218/Hawthorn, Victoria 3122/Australie (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Optical materials : (Amsterdam); ISSN 0925-3467; Pays-Bas; Da. 2004; Vol. 27; No. 3; Pp. 359-364; Bibl. 23 ref.</SO>
<LA>Anglais</LA>
<EA>Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.</EA>
<CC>001B40B70Q</CC>
<FD>Processus 2 photons; Transformation Fourier; Etude expérimentale; Rayonnement visible; Microstructure; Propriété thermique; Bande interdite photonique; Structure 3 dimensions; Cristal photonique; Matériau hybride organique minéral; Siloxane polymère; Polymérisation photochimique; Stéréolithographie; Polymère; 4270Q</FD>
<ED>Two-photon processes; Fourier transformation; Experimental study; Visible radiation; Microstructure; Thermal properties; Photonic band gap; Three dimensional structure; Photonic crystals; Organic-inorganic hybrid materials; Silicones; Photopolymerization; Stereolithography; Polymers</ED>
<SD>Estructura 3 dimensiones; Stereolitografia</SD>
<LO>INIST-22598.354000126110430010</LO>
<ID>05-0234528</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0234528
   |texte=   Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024