Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Designing a New Post Insulator Using 3-D Electric-Field Analysis

Identifieur interne : 000236 ( PascalFrancis/Corpus ); précédent : 000235; suivant : 000237

Designing a New Post Insulator Using 3-D Electric-Field Analysis

Auteurs : Joze Hrastnik ; Joze Pihler

Source :

RBID : Pascal:09-0314629

Descripteurs français

English descriptors

Abstract

Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0885-8977
A02 01      @0 ITPDE5
A03   1    @0 IEEE trans. power deliv.
A05       @2 24
A06       @2 3
A08 01  1  ENG  @1 Designing a New Post Insulator Using 3-D Electric-Field Analysis
A11 01  1    @1 HRASTNIK (Joze)
A11 02  1    @1 PIHLER (Joze)
A14 01      @1 Izoelektro d.o.o. @2 Pesnica pri Mariboru 2211 @3 SVN @Z 1 aut.
A14 02      @1 Faculty of Electrical Engineering and Computer Science, University of Maribor @2 Maribor 2000 @3 SVN @Z 2 aut.
A20       @1 1377-1381
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 21015B @5 354000187266620470
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 11 ref.
A47 01  1    @0 09-0314629
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on power delivery
A66 01      @0 USA
C01 01    ENG  @0 Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.
C02 01  X    @0 001D05G05
C02 02  X    @0 001D05I01I
C02 03  X    @0 001D05C
C02 04  X    @0 001D05B
C03 01  X  FRE  @0 Isolateur @5 01
C03 01  X  ENG  @0 Insulator @5 01
C03 01  X  SPA  @0 Aislador @5 01
C03 02  X  FRE  @0 Champ électrique @5 02
C03 02  X  ENG  @0 Electric field @5 02
C03 02  X  SPA  @0 Campo eléctrico @5 02
C03 03  X  FRE  @0 Puissance électrique @5 03
C03 03  X  ENG  @0 Electric power @5 03
C03 03  X  SPA  @0 Potencia eléctrica @5 03
C03 04  X  FRE  @0 Réseau électrique @5 04
C03 04  X  ENG  @0 Electrical network @5 04
C03 04  X  SPA  @0 Red eléctrica @5 04
C03 05  X  FRE  @0 Matériau composite @5 05
C03 05  X  ENG  @0 Composite material @5 05
C03 05  X  SPA  @0 Material compuesto @5 05
C03 06  X  FRE  @0 Isolant électrique @5 06
C03 06  X  ENG  @0 Electric insulating material @5 06
C03 06  X  SPA  @0 Aíslante eléctrico @5 06
C03 07  X  FRE  @0 Rigidité diélectrique @5 07
C03 07  X  ENG  @0 Dielectric strength @5 07
C03 07  X  SPA  @0 Resistencia dieléctrica @5 07
C03 08  X  FRE  @0 Champ vectoriel @5 08
C03 08  X  ENG  @0 Vector field @5 08
C03 08  X  SPA  @0 Campo vectorial @5 08
C03 09  X  FRE  @0 Méthode élément fini @5 09
C03 09  X  ENG  @0 Finite element method @5 09
C03 09  X  SPA  @0 Método elemento finito @5 09
C03 10  X  FRE  @0 Moyenne tension @5 10
C03 10  X  ENG  @0 Medium voltage @5 10
C03 10  X  SPA  @0 Tensión media @5 10
C03 11  X  FRE  @0 Décharge partielle @5 11
C03 11  X  ENG  @0 Partial discharge @5 11
C03 11  X  SPA  @0 Descarga parcial @5 11
C03 12  X  FRE  @0 Diélectrique @5 22
C03 12  X  ENG  @0 Dielectric materials @5 22
C03 12  X  SPA  @0 Dieléctrico @5 22
C03 13  X  FRE  @0 Matériau conducteur @5 23
C03 13  X  ENG  @0 Conducting material @5 23
C03 13  X  SPA  @0 Material conductor @5 23
N21       @1 229
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0314629 INIST
ET : Designing a New Post Insulator Using 3-D Electric-Field Analysis
AU : HRASTNIK (Joze); PIHLER (Joze)
AF : Izoelektro d.o.o./Pesnica pri Mariboru 2211/Slovénie (1 aut.); Faculty of Electrical Engineering and Computer Science, University of Maribor/Maribor 2000/Slovénie (2 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on power delivery; ISSN 0885-8977; Coden ITPDE5; Etats-Unis; Da. 2009; Vol. 24; No. 3; Pp. 1377-1381; Bibl. 11 ref.
LA : Anglais
EA : Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.
CC : 001D05G05; 001D05I01I; 001D05C; 001D05B
FD : Isolateur; Champ électrique; Puissance électrique; Réseau électrique; Matériau composite; Isolant électrique; Rigidité diélectrique; Champ vectoriel; Méthode élément fini; Moyenne tension; Décharge partielle; Diélectrique; Matériau conducteur
ED : Insulator; Electric field; Electric power; Electrical network; Composite material; Electric insulating material; Dielectric strength; Vector field; Finite element method; Medium voltage; Partial discharge; Dielectric materials; Conducting material
SD : Aislador; Campo eléctrico; Potencia eléctrica; Red eléctrica; Material compuesto; Aíslante eléctrico; Resistencia dieléctrica; Campo vectorial; Método elemento finito; Tensión media; Descarga parcial; Dieléctrico; Material conductor
LO : INIST-21015B.354000187266620470
ID : 09-0314629

Links to Exploration step

Pascal:09-0314629

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Designing a New Post Insulator Using 3-D Electric-Field Analysis</title>
<author>
<name sortKey="Hrastnik, Joze" sort="Hrastnik, Joze" uniqKey="Hrastnik J" first="Joze" last="Hrastnik">Joze Hrastnik</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Izoelektro d.o.o.</s1>
<s2>Pesnica pri Mariboru 2211</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pihler, Joze" sort="Pihler, Joze" uniqKey="Pihler J" first="Joze" last="Pihler">Joze Pihler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Electrical Engineering and Computer Science, University of Maribor</s1>
<s2>Maribor 2000</s2>
<s3>SVN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0314629</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0314629 INIST</idno>
<idno type="RBID">Pascal:09-0314629</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000236</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Designing a New Post Insulator Using 3-D Electric-Field Analysis</title>
<author>
<name sortKey="Hrastnik, Joze" sort="Hrastnik, Joze" uniqKey="Hrastnik J" first="Joze" last="Hrastnik">Joze Hrastnik</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Izoelektro d.o.o.</s1>
<s2>Pesnica pri Mariboru 2211</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pihler, Joze" sort="Pihler, Joze" uniqKey="Pihler J" first="Joze" last="Pihler">Joze Pihler</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculty of Electrical Engineering and Computer Science, University of Maribor</s1>
<s2>Maribor 2000</s2>
<s3>SVN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on power delivery</title>
<title level="j" type="abbreviated">IEEE trans. power deliv.</title>
<idno type="ISSN">0885-8977</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on power delivery</title>
<title level="j" type="abbreviated">IEEE trans. power deliv.</title>
<idno type="ISSN">0885-8977</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Composite material</term>
<term>Conducting material</term>
<term>Dielectric materials</term>
<term>Dielectric strength</term>
<term>Electric field</term>
<term>Electric insulating material</term>
<term>Electric power</term>
<term>Electrical network</term>
<term>Finite element method</term>
<term>Insulator</term>
<term>Medium voltage</term>
<term>Partial discharge</term>
<term>Vector field</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Isolateur</term>
<term>Champ électrique</term>
<term>Puissance électrique</term>
<term>Réseau électrique</term>
<term>Matériau composite</term>
<term>Isolant électrique</term>
<term>Rigidité diélectrique</term>
<term>Champ vectoriel</term>
<term>Méthode élément fini</term>
<term>Moyenne tension</term>
<term>Décharge partielle</term>
<term>Diélectrique</term>
<term>Matériau conducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0885-8977</s0>
</fA01>
<fA02 i1="01">
<s0>ITPDE5</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. power deliv.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Designing a New Post Insulator Using 3-D Electric-Field Analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HRASTNIK (Joze)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PIHLER (Joze)</s1>
</fA11>
<fA14 i1="01">
<s1>Izoelektro d.o.o.</s1>
<s2>Pesnica pri Mariboru 2211</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Electrical Engineering and Computer Science, University of Maribor</s1>
<s2>Maribor 2000</s2>
<s3>SVN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1377-1381</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21015B</s2>
<s5>354000187266620470</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0314629</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on power delivery</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05G05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I01I</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05C</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D05B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Isolateur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Insulator</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aislador</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Puissance électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electric power</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Potencia eléctrica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réseau électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrical network</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Red eléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériau composite</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Composite material</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Material compuesto</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Isolant électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electric insulating material</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aíslante eléctrico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Rigidité diélectrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dielectric strength</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Resistencia dieléctrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Champ vectoriel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Vector field</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Campo vectorial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Moyenne tension</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Medium voltage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tensión media</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Décharge partielle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Partial discharge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Descarga parcial</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diélectrique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Dielectric materials</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dieléctrico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>229</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0314629 INIST</NO>
<ET>Designing a New Post Insulator Using 3-D Electric-Field Analysis</ET>
<AU>HRASTNIK (Joze); PIHLER (Joze)</AU>
<AF>Izoelektro d.o.o./Pesnica pri Mariboru 2211/Slovénie (1 aut.); Faculty of Electrical Engineering and Computer Science, University of Maribor/Maribor 2000/Slovénie (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on power delivery; ISSN 0885-8977; Coden ITPDE5; Etats-Unis; Da. 2009; Vol. 24; No. 3; Pp. 1377-1381; Bibl. 11 ref.</SO>
<LA>Anglais</LA>
<EA>Insulators are very important elements of electric power systems. This paper introduces an analysis of electrical conditions in the area between the conductor and the insulator's upperfitting. The designing of new a composite post insulator is presented with the upperfitting made of insulating material. Previous composite post insulators have had upperfittings made of conducting material metal. 3-D analysis of electric-field strength in the insulator and its surroundings are also given. The computation was carried out by using the OPERA Vector Fields program tool. The results of this analysis are presented for both-new and old versions of a composite post insulator. 3-D analysis shows that the new version has up to five times lower magnitudes of electric-field strength.</EA>
<CC>001D05G05; 001D05I01I; 001D05C; 001D05B</CC>
<FD>Isolateur; Champ électrique; Puissance électrique; Réseau électrique; Matériau composite; Isolant électrique; Rigidité diélectrique; Champ vectoriel; Méthode élément fini; Moyenne tension; Décharge partielle; Diélectrique; Matériau conducteur</FD>
<ED>Insulator; Electric field; Electric power; Electrical network; Composite material; Electric insulating material; Dielectric strength; Vector field; Finite element method; Medium voltage; Partial discharge; Dielectric materials; Conducting material</ED>
<SD>Aislador; Campo eléctrico; Potencia eléctrica; Red eléctrica; Material compuesto; Aíslante eléctrico; Resistencia dieléctrica; Campo vectorial; Método elemento finito; Tensión media; Descarga parcial; Dieléctrico; Material conductor</SD>
<LO>INIST-21015B.354000187266620470</LO>
<ID>09-0314629</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000236 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000236 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0314629
   |texte=   Designing a New Post Insulator Using 3-D Electric-Field Analysis
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024