Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanism of sound absorption by seated audience in halls.

Identifieur interne : 000093 ( Ncbi/Checkpoint ); précédent : 000092; suivant : 000094

Mechanism of sound absorption by seated audience in halls.

Auteurs : N. Nishihara [Japon] ; T. Hidaka ; L L Beranek

Source :

RBID : pubmed:11757930

Abstract

Four methods are explored for predicting the reverberation times in fully occupied halls for music as related to the sound absorption by their audiences. The methods for providing audience absorptions include two that use reverberation chambers, namely, the ISO 354 method (and other similar standards) (ISO) and Kath and Kuhl's method (K & K) [Acustica 15, 127-131 (1965)], and two that use average data from halls, i.e., Beranek's method (COH) [Concert and Opera Halls: How They Sound (Acoustical Society of America, Melville, NY, 1996)], and the average audience power-per-seat absorption which in practice is multiplied by the number of seats (AA). These methods are applied to the calculation of reverberation times in six existing halls, fully occupied, and the results were compared with actual measurements. The COH method was best for predictions over the entire frequency range. The K & K method showed the highest accuracy at mid-frequencies. Both the ISO and the K & K methods yielded wide differences for the measurements in the 125- and 250-Hz bands. The AA method was as good as the COH method when the measurements for the six halls were averaged, but showed a wide spread in the predictions around the average because it does not consider the degree of upholstering of the seats. It was hypothecated by the authors that the principal reasons for the ISO and K & K discrepancies at low frequencies were (a) differences between the degree of sound diffusion in actual halls and that in reverberation chambers, and (b) lack of information on the mechanisms of absorption of sound by people seated side-by-side in rows, particularly for near-grazing incidence sound fields. First, this article explores the sound diffusivity in a reverberation chamber and in the halls using CAD models. A probability density function of the incident angles of the sound rays that impinge on the audiences is defined and was measured for each case. Using a unique method, the sound absorption coefficient of each portion of the body and chair in a seated audience was determined in an anechoic chamber as a function of the incident angle of a sound wave. With adjustments from these findings, the K & K method can be made to equal the COH method in accuracy at all frequencies. Its forte is that it can be used for the determination of the sound absorption of occupied chairs from measurements of a limited number in a reverberation chamber.

PubMed: 11757930


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11757930

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanism of sound absorption by seated audience in halls.</title>
<author>
<name sortKey="Nishihara, N" sort="Nishihara, N" uniqKey="Nishihara N" first="N" last="Nishihara">N. Nishihara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Takenaka Research & Development Institute, Inzai, Chiba, Japan. nishihara.noriko@takenaka.co.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Takenaka Research & Development Institute, Inzai, Chiba</wicri:regionArea>
<wicri:noRegion>Chiba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hidaka, T" sort="Hidaka, T" uniqKey="Hidaka T" first="T" last="Hidaka">T. Hidaka</name>
</author>
<author>
<name sortKey="Beranek, L L" sort="Beranek, L L" uniqKey="Beranek L" first="L L" last="Beranek">L L Beranek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11757930</idno>
<idno type="pmid">11757930</idno>
<idno type="wicri:Area/PubMed/Corpus">000627</idno>
<idno type="wicri:Area/PubMed/Curation">000627</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000593</idno>
<idno type="wicri:Area/Ncbi/Merge">000093</idno>
<idno type="wicri:Area/Ncbi/Curation">000093</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000093</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanism of sound absorption by seated audience in halls.</title>
<author>
<name sortKey="Nishihara, N" sort="Nishihara, N" uniqKey="Nishihara N" first="N" last="Nishihara">N. Nishihara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Takenaka Research & Development Institute, Inzai, Chiba, Japan. nishihara.noriko@takenaka.co.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Takenaka Research & Development Institute, Inzai, Chiba</wicri:regionArea>
<wicri:noRegion>Chiba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hidaka, T" sort="Hidaka, T" uniqKey="Hidaka T" first="T" last="Hidaka">T. Hidaka</name>
</author>
<author>
<name sortKey="Beranek, L L" sort="Beranek, L L" uniqKey="Beranek L" first="L L" last="Beranek">L L Beranek</name>
</author>
</analytic>
<series>
<title level="j">The Journal of the Acoustical Society of America</title>
<idno type="ISSN">0001-4966</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Four methods are explored for predicting the reverberation times in fully occupied halls for music as related to the sound absorption by their audiences. The methods for providing audience absorptions include two that use reverberation chambers, namely, the ISO 354 method (and other similar standards) (ISO) and Kath and Kuhl's method (K & K) [Acustica 15, 127-131 (1965)], and two that use average data from halls, i.e., Beranek's method (COH) [Concert and Opera Halls: How They Sound (Acoustical Society of America, Melville, NY, 1996)], and the average audience power-per-seat absorption which in practice is multiplied by the number of seats (AA). These methods are applied to the calculation of reverberation times in six existing halls, fully occupied, and the results were compared with actual measurements. The COH method was best for predictions over the entire frequency range. The K & K method showed the highest accuracy at mid-frequencies. Both the ISO and the K & K methods yielded wide differences for the measurements in the 125- and 250-Hz bands. The AA method was as good as the COH method when the measurements for the six halls were averaged, but showed a wide spread in the predictions around the average because it does not consider the degree of upholstering of the seats. It was hypothecated by the authors that the principal reasons for the ISO and K & K discrepancies at low frequencies were (a) differences between the degree of sound diffusion in actual halls and that in reverberation chambers, and (b) lack of information on the mechanisms of absorption of sound by people seated side-by-side in rows, particularly for near-grazing incidence sound fields. First, this article explores the sound diffusivity in a reverberation chamber and in the halls using CAD models. A probability density function of the incident angles of the sound rays that impinge on the audiences is defined and was measured for each case. Using a unique method, the sound absorption coefficient of each portion of the body and chair in a seated audience was determined in an anechoic chamber as a function of the incident angle of a sound wave. With adjustments from these findings, the K & K method can be made to equal the COH method in accuracy at all frequencies. Its forte is that it can be used for the determination of the sound absorption of occupied chairs from measurements of a limited number in a reverberation chamber.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beranek, L L" sort="Beranek, L L" uniqKey="Beranek L" first="L L" last="Beranek">L L Beranek</name>
<name sortKey="Hidaka, T" sort="Hidaka, T" uniqKey="Hidaka T" first="T" last="Hidaka">T. Hidaka</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Nishihara, N" sort="Nishihara, N" uniqKey="Nishihara N" first="N" last="Nishihara">N. Nishihara</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Ncbi/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000093 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd -nk 000093 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Ncbi
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:11757930
   |texte=   Mechanism of sound absorption by seated audience in halls.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/RBID.i   -Sk "pubmed:11757930" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024