Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of neurotrophins in brain metastasis of malignant melanoma cells

Identifieur interne : 001303 ( Istex/Corpus ); précédent : 001302; suivant : 001304

The role of neurotrophins in brain metastasis of malignant melanoma cells

Auteurs : G. L. Nicolson

Source :

RBID : ISTEX:B78097D79D2C12F72330AF3CEA88553810DC0762

English descriptors

Abstract

We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.

Url:
DOI: 10.1111/j.0906-6705.2004.0212n.x

Links to Exploration step

ISTEX:B78097D79D2C12F72330AF3CEA88553810DC0762

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
<author>
<name sortKey="Nicolson, G L" sort="Nicolson, G L" uniqKey="Nicolson G" first="G. L." last="Nicolson">G. L. Nicolson</name>
<affiliation>
<mods:affiliation>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B78097D79D2C12F72330AF3CEA88553810DC0762</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1111/j.0906-6705.2004.0212n.x</idno>
<idno type="url">https://api.istex.fr/document/B78097D79D2C12F72330AF3CEA88553810DC0762/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001303</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001303</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
<author>
<name sortKey="Nicolson, G L" sort="Nicolson, G L" uniqKey="Nicolson G" first="G. L." last="Nicolson">G. L. Nicolson</name>
<affiliation>
<mods:affiliation>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Experimental Dermatology</title>
<idno type="ISSN">0906-6705</idno>
<idno type="eISSN">1600-0625</idno>
<imprint>
<publisher>Blackwell Publishing Ltd/Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-09">2004-09</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="570">570</biblScope>
<biblScope unit="page" to="571">571</biblScope>
</imprint>
<idno type="ISSN">0906-6705</idno>
</series>
<idno type="istex">B78097D79D2C12F72330AF3CEA88553810DC0762</idno>
<idno type="DOI">10.1111/j.0906-6705.2004.0212n.x</idno>
<idno type="ArticleID">EXD212N</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0906-6705</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>2department</term>
<term>3department</term>
<term>Acth</term>
<term>Activates</term>
<term>Adhesion</term>
<term>Adrenomedullin</term>
<term>Agonist</term>
<term>Allergic dermatitis</term>
<term>Anagen</term>
<term>Antimicrobial</term>
<term>Antioxidant</term>
<term>Apoptosis</term>
<term>Apoptotic</term>
<term>Atopic</term>
<term>Atopic dermatitis</term>
<term>Autoimmune</term>
<term>Basal</term>
<term>Bdnf</term>
<term>Biomedical</term>
<term>Biomedical sciences</term>
<term>Bmdcs</term>
<term>Bohm1</term>
<term>Boltzmann</term>
<term>Calcitonin</term>
<term>Calcitonin peptide</term>
<term>Capsaicin</term>
<term>Cell biology</term>
<term>Cgrp</term>
<term>Charite</term>
<term>Costimulatory molecules</term>
<term>Cutaneous</term>
<term>Cutaneous inflammation</term>
<term>Cytokine</term>
<term>Cytotoxicity</term>
<term>Dendricity</term>
<term>Dendritic</term>
<term>Dendritic cells</term>
<term>Dermal</term>
<term>Dermal microvascular</term>
<term>Dermatitis</term>
<term>Dermatology</term>
<term>Endocrine</term>
<term>Endogenous</term>
<term>Endothelial</term>
<term>Endothelial cells</term>
<term>Eosinophil</term>
<term>Epidermal</term>
<term>Epithelial</term>
<term>Extracellular</term>
<term>Fibre</term>
<term>Fibroblast</term>
<term>Follicle</term>
<term>Functional role</term>
<term>Glutamine</term>
<term>Hacat</term>
<term>Hacat cells</term>
<term>Hair follicle</term>
<term>Hair follicles</term>
<term>Hair growth</term>
<term>Hamburg</term>
<term>Hdmec</term>
<term>Healthy subjects</term>
<term>Homeostasis</term>
<term>Human hair follicle</term>
<term>Human sebocytes</term>
<term>Human skin</term>
<term>Hyperalgesia</term>
<term>Immune</term>
<term>Immune cells</term>
<term>Immune response</term>
<term>Immune system</term>
<term>Immunobiology</term>
<term>Immunohistochemistry</term>
<term>Immunomodulatory</term>
<term>Immunoreactivity</term>
<term>Important role</term>
<term>Inflammation</term>
<term>Inflammatory</term>
<term>Insr</term>
<term>Internal medicine</term>
<term>Intracellular</term>
<term>Intracellular calcium concentration</term>
<term>Keratinocyte</term>
<term>Keratinocytes</term>
<term>Kinase</term>
<term>Ligand</term>
<term>Ludwig boltzmann institute</term>
<term>Luger1</term>
<term>Lymphocyte</term>
<term>Mast cells</term>
<term>Mc1r</term>
<term>Mediator</term>
<term>Melanin</term>
<term>Melanocortin</term>
<term>Melanocortin receptors</term>
<term>Melanocyte</term>
<term>Melanogenesis</term>
<term>Melanoma</term>
<term>Melanoma cells</term>
<term>Melatonin</term>
<term>Microvascular</term>
<term>Mitf</term>
<term>Modulators</term>
<term>Mrna</term>
<term>Msc</term>
<term>Munster</term>
<term>Murine</term>
<term>Naltrexone</term>
<term>Nerve fibers</term>
<term>Nerve fibres</term>
<term>Nerve growth factor</term>
<term>Nervous system</term>
<term>Neuroendocrine</term>
<term>Neurogenic</term>
<term>Neurogenic inflammation</term>
<term>Neuron</term>
<term>Neuropeptide</term>
<term>Neuropeptides</term>
<term>Neurotrophic</term>
<term>Neurotrophic factor</term>
<term>Neurotrophin</term>
<term>Neurotrophins</term>
<term>Neutral endopeptidase</term>
<term>Nk1r</term>
<term>Nmda</term>
<term>Pacap</term>
<term>Papilla</term>
<term>Par2</term>
<term>Pathway</term>
<term>Peptide</term>
<term>Peripheral blood eosinophils</term>
<term>Pigmentation</term>
<term>Plasma membrane</term>
<term>Pomc</term>
<term>Pomc peptides</term>
<term>Present study</term>
<term>Proinflammatory</term>
<term>Pruritus</term>
<term>Receptor</term>
<term>Regulator</term>
<term>Rheumatoid arthritis</term>
<term>Schwann</term>
<term>Sebaceous</term>
<term>Sebaceous gland</term>
<term>Sebocytes</term>
<term>Sensitization</term>
<term>Sensory nerves</term>
<term>Sensory neurons</term>
<term>Somatostatin</term>
<term>Trafficking</term>
<term>Transgenic</term>
<term>Transgenic mice</term>
<term>Trpv1</term>
<term>Tumour</term>
<term>Upregulated</term>
<term>Upregulation</term>
<term>Uremic pruritus</term>
<term>Urocortin</term>
<term>Vanilloid</term>
<term>Vasoactive</term>
<term>Vellus hair follicles</term>
<term>Wound healing</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>receptor</json:string>
<json:string>dermatology</json:string>
<json:string>follicle</json:string>
<json:string>keratinocytes</json:string>
<json:string>cutaneous</json:string>
<json:string>melanocyte</json:string>
<json:string>fibroblast</json:string>
<json:string>peptide</json:string>
<json:string>munster</json:string>
<json:string>mc1r</json:string>
<json:string>immune</json:string>
<json:string>pathway</json:string>
<json:string>inflammation</json:string>
<json:string>neuropeptides</json:string>
<json:string>melanoma</json:string>
<json:string>cgrp</json:string>
<json:string>epidermal</json:string>
<json:string>neurogenic</json:string>
<json:string>pomc</json:string>
<json:string>agonist</json:string>
<json:string>bdnf</json:string>
<json:string>dermatitis</json:string>
<json:string>2department</json:string>
<json:string>neuropeptide</json:string>
<json:string>dermal</json:string>
<json:string>capsaicin</json:string>
<json:string>pruritus</json:string>
<json:string>fibre</json:string>
<json:string>human skin</json:string>
<json:string>kinase</json:string>
<json:string>nk1r</json:string>
<json:string>melatonin</json:string>
<json:string>neurotrophins</json:string>
<json:string>intracellular</json:string>
<json:string>pigmentation</json:string>
<json:string>melanocortin</json:string>
<json:string>apoptosis</json:string>
<json:string>eosinophil</json:string>
<json:string>glutamine</json:string>
<json:string>mrna</json:string>
<json:string>hacat</json:string>
<json:string>microvascular</json:string>
<json:string>neurogenic inflammation</json:string>
<json:string>sebocytes</json:string>
<json:string>upregulation</json:string>
<json:string>trpv1</json:string>
<json:string>tumour</json:string>
<json:string>atopic</json:string>
<json:string>cytokine</json:string>
<json:string>murine</json:string>
<json:string>neuron</json:string>
<json:string>mediator</json:string>
<json:string>sensitization</json:string>
<json:string>calcitonin</json:string>
<json:string>inflammatory</json:string>
<json:string>luger1</json:string>
<json:string>atopic dermatitis</json:string>
<json:string>proinflammatory</json:string>
<json:string>somatostatin</json:string>
<json:string>endothelial cells</json:string>
<json:string>dendritic</json:string>
<json:string>3department</json:string>
<json:string>endothelial</json:string>
<json:string>urocortin</json:string>
<json:string>immunohistochemistry</json:string>
<json:string>cutaneous inflammation</json:string>
<json:string>vanilloid</json:string>
<json:string>hair follicle</json:string>
<json:string>sebaceous</json:string>
<json:string>pomc peptides</json:string>
<json:string>cell biology</json:string>
<json:string>melanin</json:string>
<json:string>neurotrophin</json:string>
<json:string>par2</json:string>
<json:string>melanogenesis</json:string>
<json:string>upregulated</json:string>
<json:string>nmda</json:string>
<json:string>hacat cells</json:string>
<json:string>papilla</json:string>
<json:string>pacap</json:string>
<json:string>immunoreactivity</json:string>
<json:string>sensory neurons</json:string>
<json:string>sensory nerves</json:string>
<json:string>cytotoxicity</json:string>
<json:string>naltrexone</json:string>
<json:string>msc</json:string>
<json:string>basal</json:string>
<json:string>schwann</json:string>
<json:string>immunobiology</json:string>
<json:string>anagen</json:string>
<json:string>antimicrobial</json:string>
<json:string>antioxidant</json:string>
<json:string>trafficking</json:string>
<json:string>calcitonin peptide</json:string>
<json:string>immune cells</json:string>
<json:string>transgenic</json:string>
<json:string>neurotrophic</json:string>
<json:string>hamburg</json:string>
<json:string>vasoactive</json:string>
<json:string>homeostasis</json:string>
<json:string>biomedical</json:string>
<json:string>apoptotic</json:string>
<json:string>lymphocyte</json:string>
<json:string>bmdcs</json:string>
<json:string>melanoma cells</json:string>
<json:string>neuroendocrine</json:string>
<json:string>extracellular</json:string>
<json:string>charite</json:string>
<json:string>immunomodulatory</json:string>
<json:string>endocrine</json:string>
<json:string>keratinocyte</json:string>
<json:string>nervous system</json:string>
<json:string>acth</json:string>
<json:string>activates</json:string>
<json:string>nerve fibres</json:string>
<json:string>mitf</json:string>
<json:string>biomedical sciences</json:string>
<json:string>dendricity</json:string>
<json:string>autoimmune</json:string>
<json:string>hair growth</json:string>
<json:string>nerve growth factor</json:string>
<json:string>human sebocytes</json:string>
<json:string>epithelial</json:string>
<json:string>bohm1</json:string>
<json:string>important role</json:string>
<json:string>dermal microvascular</json:string>
<json:string>hyperalgesia</json:string>
<json:string>mast cells</json:string>
<json:string>ludwig boltzmann institute</json:string>
<json:string>insr</json:string>
<json:string>modulators</json:string>
<json:string>adrenomedullin</json:string>
<json:string>hdmec</json:string>
<json:string>transgenic mice</json:string>
<json:string>neurotrophic factor</json:string>
<json:string>healthy subjects</json:string>
<json:string>immune response</json:string>
<json:string>wound healing</json:string>
<json:string>neutral endopeptidase</json:string>
<json:string>dendritic cells</json:string>
<json:string>endogenous</json:string>
<json:string>regulator</json:string>
<json:string>functional role</json:string>
<json:string>immune system</json:string>
<json:string>human hair follicle</json:string>
<json:string>nerve fibers</json:string>
<json:string>rheumatoid arthritis</json:string>
<json:string>allergic dermatitis</json:string>
<json:string>vellus hair follicles</json:string>
<json:string>sebaceous gland</json:string>
<json:string>intracellular calcium concentration</json:string>
<json:string>plasma membrane</json:string>
<json:string>present study</json:string>
<json:string>peripheral blood eosinophils</json:string>
<json:string>costimulatory molecules</json:string>
<json:string>internal medicine</json:string>
<json:string>melanocortin receptors</json:string>
<json:string>hair follicles</json:string>
<json:string>uremic pruritus</json:string>
<json:string>adhesion</json:string>
<json:string>ligand</json:string>
<json:string>boltzmann</json:string>
<json:string>hair buds</json:string>
<json:string>plasma leakage</json:string>
<json:string>cell surface</json:string>
<json:string>epidermal growth factor</json:string>
<json:string>growth factors</json:string>
<json:string>autoimmune diseases</json:string>
<json:string>human melanocytes</json:string>
<json:string>northwestern university</json:string>
<json:string>hair cycle</json:string>
<json:string>merkel cells</json:string>
<json:string>first time</json:string>
<json:string>skin cells</json:string>
<json:string>molecular biology</json:string>
<json:string>contact dermatitis</json:string>
<json:string>adaptive immunity</json:string>
<json:string>inflammatory responses</json:string>
<json:string>schwann cells</json:string>
<json:string>topical application</json:string>
<json:string>oxidative stress</json:string>
<json:string>human keratinocytes</json:string>
<json:string>crucial role</json:string>
<json:string>reconstructed skin</json:string>
<json:string>cell death</json:string>
<json:string>plasma extravasation</json:string>
<json:string>stratum corneum</json:string>
<json:string>anagen hair follicles</json:string>
<json:string>various skin diseases</json:string>
<json:string>neuronal</json:string>
<json:string>afferent</json:string>
<json:string>ethanol</json:string>
<json:string>mouse</json:string>
<json:string>physiology</json:string>
<json:string>proliferation</json:string>
<json:string>allergic</json:string>
<json:string>epidermis</json:string>
<json:string>blood vessels</json:string>
<json:string>melanocyte dendricity</json:string>
<json:string>university hospital</json:string>
<json:string>melanocyte differentiation</json:string>
<json:string>adverse events</json:string>
<json:string>skin cancer</json:string>
<json:string>pivotal role</json:string>
<json:string>human hair growth</json:string>
<json:string>hapten uptake</json:string>
<json:string>intercellular adhesion</json:string>
<json:string>hair growth cycle</json:string>
<json:string>public health</json:string>
<json:string>functional absence</json:string>
<json:string>proteolytic peptidases</json:string>
<json:string>lesional skin</json:string>
<json:string>transcription factors</json:string>
<json:string>respiratory burst</json:string>
<json:string>protein expression</json:string>
<json:string>prurigo nodularis</json:string>
<json:string>significant increase</json:string>
<json:string>proinflammatory cytokines</json:string>
<json:string>epidermal cells</json:string>
<json:string>sensorial neurons</json:string>
<json:string>dorsal root ganglia</json:string>
<json:string>cell proliferation</json:string>
<json:string>protein level</json:string>
<json:string>sebaceous glands</json:string>
<json:string>molecular medicine</json:string>
<json:string>nmda receptors</json:string>
<json:string>postnatal development</json:string>
<json:string>glutamine synthetase</json:string>
<json:string>cutaneous expression</json:string>
<json:string>dermal papilla</json:string>
<json:string>terminal schwann cells</json:string>
<json:string>protein kinase</json:string>
<json:string>nk1r trafficking</json:string>
<json:string>hacat keratinocytes</json:string>
<json:string>human epidermis</json:string>
<json:string>university medicine berlin</json:string>
<json:string>neuropeptide substance</json:string>
<json:string>hair loss</json:string>
<json:string>contact hypersensitivity</json:string>
<json:string>humboldt university</json:string>
<json:string>sigma receptors</json:string>
<json:string>high concentrations</json:string>
<json:string>human fibroblasts</json:string>
<json:string>hair follicle growth</json:string>
<json:string>hair fibre elongation</json:string>
<json:string>hair manner</json:string>
<json:string>western blot</json:string>
<json:string>capsaicin cytotoxicity</json:string>
<json:string>human terminal</json:string>
<json:string>receptor system</json:string>
<json:string>mrna expression</json:string>
<json:string>avena rhealba1</json:string>
<json:string>morphine modulation</json:string>
<json:string>urocortin peptides</json:string>
<json:string>cutaneous neurogenic inflammation</json:string>
<json:string>other hand</json:string>
<json:string>several neuropeptides</json:string>
<json:string>skin inflammation</json:string>
<json:string>dermal fibroblasts</json:string>
<json:string>inhibitor</json:string>
<json:string>activation</json:string>
<json:string>antagonist</json:string>
<json:string>mast</json:string>
<json:string>molecule</json:string>
<json:string>cell</json:string>
<json:string>cultured</json:string>
<json:string>vivo</json:string>
<json:string>skin</json:string>
<json:string>nerve</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>G. L. Nicolson</name>
<affiliations>
<json:string>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>EXD212N</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>abstract</json:string>
</originalGenre>
<abstract>We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>2299</abstractCharCount>
<pdfWordCount>23570</pdfWordCount>
<pdfCharCount>158516</pdfCharCount>
<pdfPageCount>25</pdfPageCount>
<abstractWordCount>317</abstractWordCount>
</qualityIndicators>
<title>The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
<genre>
<json:string>abstract</json:string>
</genre>
<host>
<title>Experimental Dermatology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1600-0625</json:string>
</doi>
<issn>
<json:string>0906-6705</json:string>
</issn>
<eissn>
<json:string>1600-0625</json:string>
</eissn>
<publisherId>
<json:string>EXD</json:string>
</publisherId>
<volume>13</volume>
<issue>9</issue>
<pages>
<first>570</first>
<last>571</last>
<total>1</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>dermatology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>dermatology & venereal diseases</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1111/j.0906-6705.2004.0212n.x</json:string>
</doi>
<id>B78097D79D2C12F72330AF3CEA88553810DC0762</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/B78097D79D2C12F72330AF3CEA88553810DC0762/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/B78097D79D2C12F72330AF3CEA88553810DC0762/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B78097D79D2C12F72330AF3CEA88553810DC0762/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd/Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
<author xml:id="author-1">
<persName>
<forename type="first">G. L.</forename>
<surname>Nicolson</surname>
</persName>
<affiliation>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Experimental Dermatology</title>
<idno type="pISSN">0906-6705</idno>
<idno type="eISSN">1600-0625</idno>
<idno type="DOI">10.1111/(ISSN)1600-0625</idno>
<imprint>
<publisher>Blackwell Publishing Ltd/Inc</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-09"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="570">570</biblScope>
<biblScope unit="page" to="571">571</biblScope>
</imprint>
</monogr>
<idno type="istex">B78097D79D2C12F72330AF3CEA88553810DC0762</idno>
<idno type="DOI">10.1111/j.0906-6705.2004.0212n.x</idno>
<idno type="ArticleID">EXD212N</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2004-09">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-12-14">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-02-9">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/B78097D79D2C12F72330AF3CEA88553810DC0762/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd/Inc</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1600-0625</doi>
<issn type="print">0906-6705</issn>
<issn type="electronic">1600-0625</issn>
<idGroup>
<id type="product" value="EXD"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EXPERIMENTAL DERMATOLOGY">Experimental Dermatology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="09009">
<doi origin="wiley">10.1111/exd.2004.13.issue-9</doi>
<numberingGroup>
<numbering type="journalVolume" number="13">13</numbering>
<numbering type="journalIssue" number="9">9</numbering>
</numberingGroup>
<coverDate startDate="2004-09">September 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="abstract" position="0057000" status="forIssue">
<doi origin="wiley">10.1111/j.0906-6705.2004.0212n.x</doi>
<idGroup>
<id type="unit" value="EXD212N"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Abstracts</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2008-06-28"></event>
<event type="publishedOnlineFinalForm" date="2008-06-28"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.15 mode:FullText source:Header result:Header" date="2010-07-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-17"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="570">570</numbering>
<numbering type="pageLast" number="571">571</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EXD.EXD212n.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="0"></count>
<count type="wordTotal" number="2708"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>G. L.</givenNames>
<familyName>Nicolson</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>
<b>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</b>
</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The role of neurotrophins in brain metastasis of malignant melanoma cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">G. L.</namePart>
<namePart type="family">Nicolson</namePart>
<affiliation>Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="abstract" displayLabel="abstract"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd/Inc</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-09</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="words">2708</extent>
</physicalDescription>
<abstract lang="en">We have examined the role of neurotrophin receptors and neurotrophins in brain invasion and colonization of malignant melanoma cells. Using mouse and human melanoma variant cell sublines that have the capacity to form brain tumor colonies in nude mice, we studied the effects of neurotrophins and growth factors on malignant properties. The high brain‐colonizing melanoma lines were characterized by high expression of the low‐affinity nerve growth factor (NGF) receptor p75NTR, which forms transmembrane complexes containing the neurotrophin and its receptors, but they expressed very low amounts if any of the high‐affinity neurotrophin receptor trkA. In the presence of brain endothelial cell‐derived motility factors, NGF and other neurotrophins, such as neurotrophin‐3 (NT‐3), stimulate release of basement membrane degradative enzymes and significantly increase the invasion of endothelial cell extracellular matrix and Matigel‐coated filters. Enzymes such as the collagenase‐degrading enzyme MMP‐2 and heparan sulfate‐degrading enzyme heparanase are increased in their synthesis and release from the high brain‐colonizing but not by other melanoma variant lines by NGF or NT‐3. The increase in heparanase can be blocked by antisense resulting in decreased invasion and capacity to colonize brain. Neurotrophins also stimulate the synthesis and release of autocrine growth factors by brain‐colonizing melanoma cells. Brain‐colonizing melanoma cells also respond to paracrine growth factors in the brain, and one of the important paracrine growth factors in brain metastasis has been identified as a transferrin. Examination of the invasion front in brains colonized by the brain‐colonizing melanoma cells revealed high concentrations of NGF and other neurotrophins (NT‐3) at the interface between melanoma cells and adjoining normal brain tissue (with extensive gliosis) that gradually diminished with distance from the invasion front. Using immunohistochemical techniques to detect neurotrophins, uninvolved brain tissue (adult animals) possessed very low or undetectable concentrations of these neurotrophins. Trophic factors, autocrine factors, paracrine growth factors and other factors may determine whether metastatic melanoma cells can successfully invade, colonize and grow in the CNS.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Experimental Dermatology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0906-6705</identifier>
<identifier type="eISSN">1600-0625</identifier>
<identifier type="DOI">10.1111/(ISSN)1600-0625</identifier>
<identifier type="PublisherID">EXD</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>570</start>
<end>571</end>
<total>1</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B78097D79D2C12F72330AF3CEA88553810DC0762</identifier>
<identifier type="DOI">10.1111/j.0906-6705.2004.0212n.x</identifier>
<identifier type="ArticleID">EXD212N</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd/Inc</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001303 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001303 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B78097D79D2C12F72330AF3CEA88553810DC0762
   |texte=   The role of neurotrophins in brain metastasis of malignant melanoma cells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024