Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.

Identifieur interne : 000228 ( PubMed/Curation ); précédent : 000227; suivant : 000229

Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.

Auteurs : S. Lombard [France] ; M E Helmy ; G. Piéroni

Source :

RBID : pubmed:11535138

English descriptors

Abstract

The present study was carried out with a view of determining ricin lipolytic activity on neutral lipids in emulsion and in a membrane-like model. Using 2,3-dimercapto-1-propanol tributyrate (BAL-TC(4)) as substrate, the lipolytic activity of ricin was found to be proportional to ricin and substrate concentrations, with an apparent K(m) (K(m,app)) of 2.4 mM, a k(cat) of 200 min(-1) and a specific activity of 1.0 unit/mg of protein. This work was extended to p-nitrophenyl (pNP) fatty acid esters containing two to twelve carbon atoms. Maximum lipolytic activity was registered on pNP decanoate (pNPC(10)), with a K(m,app) of 3.5 mM, a k(cat) of 173 min(-1) and a specific activity of 3.5 units/mg of protein. Ricin lipolytic activity is pH and galactose dependent, with a maximum at pH 7.0 in the presence of 0.2 M galactose. Using the monolayer technique with dicaprin as substrate, ricin showed a lipolytic activity proportional to the ricin concentration at 20 mN/m, which is dependent on the surface pressure of the lipid monolayer and is detectable up to 30 mN/m, a surface pressure that is of the same order of magnitude as that of natural cell membranes. The methods based on pNPC(10) and BAL-TC(4) hydrolysis are simple and reproducible; thus they can be used for routine studies of ricin lipolytic activity. Ricin from Ricinus communis and R. sanguineus were treated with diethyl p-nitrophenylphosphate, an irreversible serine esterase inhibitor, and their lipolytic activities on BAL-TC(4) and pNPC(10), and cytotoxic activity, were concurrently recorded. A reduction in lipolytic activity was accompanied by a decrease in cytotoxicity on Caco2 cells. These data support the idea that the lipolytic activity associated with ricin is relevant to a lipase whose activity is pH and galactose dependent, sensitive to diethyl p-nitrophenylphosphate, and that a lipolytic step may be involved in the process of cell poisoning by ricin. Both colorimetric tests used in this study are sensitive enough to be helpful in the detection of possible lipolytic activities associated with other cytotoxins or lectins.

PubMed: 11535138

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11535138

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.</title>
<author>
<name sortKey="Lombard, S" sort="Lombard, S" uniqKey="Lombard S" first="S" last="Lombard">S. Lombard</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM U476, 18 avenue Mozart, 13009 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM U476, 18 avenue Mozart, 13009 Marseille</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Helmy, M E" sort="Helmy, M E" uniqKey="Helmy M" first="M E" last="Helmy">M E Helmy</name>
</author>
<author>
<name sortKey="Pieroni, G" sort="Pieroni, G" uniqKey="Pieroni G" first="G" last="Piéroni">G. Piéroni</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11535138</idno>
<idno type="pmid">11535138</idno>
<idno type="wicri:Area/PubMed/Corpus">000228</idno>
<idno type="wicri:Area/PubMed/Curation">000228</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.</title>
<author>
<name sortKey="Lombard, S" sort="Lombard, S" uniqKey="Lombard S" first="S" last="Lombard">S. Lombard</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM U476, 18 avenue Mozart, 13009 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM U476, 18 avenue Mozart, 13009 Marseille</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Helmy, M E" sort="Helmy, M E" uniqKey="Helmy M" first="M E" last="Helmy">M E Helmy</name>
</author>
<author>
<name sortKey="Pieroni, G" sort="Pieroni, G" uniqKey="Pieroni G" first="G" last="Piéroni">G. Piéroni</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="ISSN">0264-6021</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Castor Bean (metabolism)</term>
<term>Consensus Sequence</term>
<term>Dimercaprol (analogs & derivatives)</term>
<term>Dimercaprol (metabolism)</term>
<term>Esters</term>
<term>Kinetics</term>
<term>Lectins (chemistry)</term>
<term>Lectins (metabolism)</term>
<term>Lipase (chemistry)</term>
<term>Lipase (metabolism)</term>
<term>Lipolysis</term>
<term>Plant Lectins</term>
<term>Plants, Toxic</term>
<term>Ricin (chemistry)</term>
<term>Ricin (metabolism)</term>
<term>Ricinus (metabolism)</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Dimercaprol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lectins</term>
<term>Lipase</term>
<term>Ricin</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Castor Bean</term>
<term>Dimercaprol</term>
<term>Lectins</term>
<term>Lipase</term>
<term>Ricin</term>
<term>Ricinus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Consensus Sequence</term>
<term>Esters</term>
<term>Kinetics</term>
<term>Lipolysis</term>
<term>Plant Lectins</term>
<term>Plants, Toxic</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study was carried out with a view of determining ricin lipolytic activity on neutral lipids in emulsion and in a membrane-like model. Using 2,3-dimercapto-1-propanol tributyrate (BAL-TC(4)) as substrate, the lipolytic activity of ricin was found to be proportional to ricin and substrate concentrations, with an apparent K(m) (K(m,app)) of 2.4 mM, a k(cat) of 200 min(-1) and a specific activity of 1.0 unit/mg of protein. This work was extended to p-nitrophenyl (pNP) fatty acid esters containing two to twelve carbon atoms. Maximum lipolytic activity was registered on pNP decanoate (pNPC(10)), with a K(m,app) of 3.5 mM, a k(cat) of 173 min(-1) and a specific activity of 3.5 units/mg of protein. Ricin lipolytic activity is pH and galactose dependent, with a maximum at pH 7.0 in the presence of 0.2 M galactose. Using the monolayer technique with dicaprin as substrate, ricin showed a lipolytic activity proportional to the ricin concentration at 20 mN/m, which is dependent on the surface pressure of the lipid monolayer and is detectable up to 30 mN/m, a surface pressure that is of the same order of magnitude as that of natural cell membranes. The methods based on pNPC(10) and BAL-TC(4) hydrolysis are simple and reproducible; thus they can be used for routine studies of ricin lipolytic activity. Ricin from Ricinus communis and R. sanguineus were treated with diethyl p-nitrophenylphosphate, an irreversible serine esterase inhibitor, and their lipolytic activities on BAL-TC(4) and pNPC(10), and cytotoxic activity, were concurrently recorded. A reduction in lipolytic activity was accompanied by a decrease in cytotoxicity on Caco2 cells. These data support the idea that the lipolytic activity associated with ricin is relevant to a lipase whose activity is pH and galactose dependent, sensitive to diethyl p-nitrophenylphosphate, and that a lipolytic step may be involved in the process of cell poisoning by ricin. Both colorimetric tests used in this study are sensitive enough to be helpful in the detection of possible lipolytic activities associated with other cytotoxins or lectins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">11535138</PMID>
<DateCreated>
<Year>2001</Year>
<Month>09</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2001</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0264-6021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>358</Volume>
<Issue>Pt 3</Issue>
<PubDate>
<Year>2001</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.</ArticleTitle>
<Pagination>
<MedlinePgn>773-81</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The present study was carried out with a view of determining ricin lipolytic activity on neutral lipids in emulsion and in a membrane-like model. Using 2,3-dimercapto-1-propanol tributyrate (BAL-TC(4)) as substrate, the lipolytic activity of ricin was found to be proportional to ricin and substrate concentrations, with an apparent K(m) (K(m,app)) of 2.4 mM, a k(cat) of 200 min(-1) and a specific activity of 1.0 unit/mg of protein. This work was extended to p-nitrophenyl (pNP) fatty acid esters containing two to twelve carbon atoms. Maximum lipolytic activity was registered on pNP decanoate (pNPC(10)), with a K(m,app) of 3.5 mM, a k(cat) of 173 min(-1) and a specific activity of 3.5 units/mg of protein. Ricin lipolytic activity is pH and galactose dependent, with a maximum at pH 7.0 in the presence of 0.2 M galactose. Using the monolayer technique with dicaprin as substrate, ricin showed a lipolytic activity proportional to the ricin concentration at 20 mN/m, which is dependent on the surface pressure of the lipid monolayer and is detectable up to 30 mN/m, a surface pressure that is of the same order of magnitude as that of natural cell membranes. The methods based on pNPC(10) and BAL-TC(4) hydrolysis are simple and reproducible; thus they can be used for routine studies of ricin lipolytic activity. Ricin from Ricinus communis and R. sanguineus were treated with diethyl p-nitrophenylphosphate, an irreversible serine esterase inhibitor, and their lipolytic activities on BAL-TC(4) and pNPC(10), and cytotoxic activity, were concurrently recorded. A reduction in lipolytic activity was accompanied by a decrease in cytotoxicity on Caco2 cells. These data support the idea that the lipolytic activity associated with ricin is relevant to a lipase whose activity is pH and galactose dependent, sensitive to diethyl p-nitrophenylphosphate, and that a lipolytic step may be involved in the process of cell poisoning by ricin. Both colorimetric tests used in this study are sensitive enough to be helpful in the detection of possible lipolytic activities associated with other cytotoxins or lectins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lombard</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>INSERM U476, 18 avenue Mozart, 13009 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Helmy</LastName>
<ForeName>M E</ForeName>
<Initials>ME</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Piéroni</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004952">Esters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037102">Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0CPP32S55X</RegistryNumber>
<NameOfSubstance UI="D004112">Dimercaprol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>58428-97-0</RegistryNumber>
<NameOfSubstance UI="C014496">2,3-dimercaptopropan-1-ol tributyrate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9009-86-3</RegistryNumber>
<NameOfSubstance UI="D012276">Ricin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.3</RegistryNumber>
<NameOfSubstance UI="D008049">Lipase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237-82</RefSource>
<PMID Version="1">8280743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1999 Sep 7;38(36):11677-85</RefSource>
<PMID Version="1">10512623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11328-32</RefSource>
<PMID Version="1">7972058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Planta. 1994;194(4):487-91</RefSource>
<PMID Version="1">7528586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Feb 2;271(5):2497-505</RefSource>
<PMID Version="1">8576213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Jan 21;275(3):1897-901</RefSource>
<PMID Version="1">10636890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2000 Jan;127(1):137-42</RefSource>
<PMID Version="1">10731676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 2000 May;267(9):2746-59</RefSource>
<PMID Version="1">10785398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2000 Sep 15;350 Pt 3:933-41</RefSource>
<PMID Version="1">10970811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1972 May 9;266(2):543-7</RefSource>
<PMID Version="1">4338881</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1972 Jul 13;276(1):162-75</RefSource>
<PMID Version="1">5047701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1973 Jun 10;248(11):4023-34</RefSource>
<PMID Version="1">4736081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1973 Jun 15;310(2):446-52</RefSource>
<PMID Version="1">4719153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1975 Sep 16;406(1):97-107</RefSource>
<PMID Version="1">1174576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1976 May 25;251(10):3128-33</RefSource>
<PMID Version="1">1270439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1979 Oct 25;254(20):10090-4</RefSource>
<PMID Version="1">489586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Chem. 1982 Jan;28(1):110-3</RefSource>
<PMID Version="1">7055891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1982 Feb 25;257(4):1598-601</RefSource>
<PMID Version="1">6120167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1982 Jul 10;257(13):7495-503</RefSource>
<PMID Version="1">6806276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1982 Jul 10;257(13):7504-13</RefSource>
<PMID Version="1">7085634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1985 Apr 15;148(2):265-70</RefSource>
<PMID Version="1">3838723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1985 Dec 15;260(29):15682-6</RefSource>
<PMID Version="1">2999130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1985 Nov 25;13(22):8019-33</RefSource>
<PMID Version="1">2999712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1987 Jan 30;911(2):191-200</RefSource>
<PMID Version="1">3801493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1988 Jan 13;937(1):10-22</RefSource>
<PMID Version="1">3334840</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1988 Aug 19;971(1):55-62</RefSource>
<PMID Version="1">2841982</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Blood. 1991 Jun 1;77(11):2404-12</RefSource>
<PMID Version="1">2039821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1991 Jun 15;198(3):723-32</RefSource>
<PMID Version="1">2050149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Commun. 1991 Jul;3(7):207-12</RefSource>
<PMID Version="1">1867954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 1996 Jan 15;235(1-2):128-37</RefSource>
<PMID Version="1">8631319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Biol (Noisy-le-grand). 1996 Jun;42(4):461-71</RefSource>
<PMID Version="1">8828901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1996 Nov 26;35(47):14749-56</RefSource>
<PMID Version="1">8942636</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1997 Jan 27;402(1):91-3</RefSource>
<PMID Version="1">9013865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Immunopharmacol. 1996 Dec;18(12):685-92</RefSource>
<PMID Version="1">9172011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1997 Dec 29;241(3):617-21</RefSource>
<PMID Version="1">9434757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1998 Apr 22;1371(1):11-6</RefSource>
<PMID Version="1">9565651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1999 Jan 15;285(2):567-80</RefSource>
<PMID Version="1">9878430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1999 May 10;258(2):252-5</RefSource>
<PMID Version="1">10329373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1999 Jun 4;452(1-2):67-70</RefSource>
<PMID Version="1">10376680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1999 Oct 1;459(1):80-4</RefSource>
<PMID Version="1">10508921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 1994 Feb;8(2):201-8</RefSource>
<PMID Version="1">8119491</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002367">Castor Bean</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016384">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004112">Dimercaprol</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000031">analogs & derivatives</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004952">Esters</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D037102">Lectins</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008049">Lipase</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008066">Lipolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D037121">Plant Lectins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D010947">Plants, Toxic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012276">Ricin</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012278">Ricinus</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016415">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013379">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC1222111</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11535138</ArticleId>
<ArticleId IdType="pmc">PMC1222111</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:11535138
   |texte=   Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:11535138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MozartV1 

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023