Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait in Stroke Patients

Identifieur interne : 000756 ( Pmc/Curation ); précédent : 000755; suivant : 000757

Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait in Stroke Patients

Auteurs : Yuri Cha ; Young Kim ; Yijung Chung

Source :

RBID : PMC:3996403

Abstract

[Purpose] The aim of this study was to investigate the effects of tempo changes in rhythmic auditory stimulation (RAS) on gait in stroke patients. [Subjects] Forty-one chronic stroke patients who had had a stroke with more than 6 months previously were recruited for this study. [Methods] All participants were asked to walk under 5 different conditions in random order: (1) no RAS (baseline); (2) baseline-matched RAS (0%); and (3) −10%, (4) +10%, and (5) +20% of the baseline. A GAITRite system was used to evaluate the spatial and temporal parameters of gait. [Results] Compared with under the RAS 0% conditions, the gait velocity, cadence, and stride length on the affected side were significantly decreased under the RAS −10% conditions. Gait velocity and cadence were significantly improved, but gait symmetry was significantly decreased under the RAS +10% and +20% conditions compared with under the RAS 0% conditions. [Conclusion] A faster RAS tempo significantly improved gait velocity and cadence, and applying RAS significantly improved the gait symmetry of stroke patients.


Url:
DOI: 10.1589/jpts.26.479
PubMed: 24764615
PubMed Central: 3996403

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3996403

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait in Stroke Patients</title>
<author>
<name sortKey="Cha, Yuri" sort="Cha, Yuri" uniqKey="Cha Y" first="Yuri" last="Cha">Yuri Cha</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Young" sort="Kim, Young" uniqKey="Kim Y" first="Young" last="Kim">Young Kim</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Yijung" sort="Chung, Yijung" uniqKey="Chung Y" first="Yijung" last="Chung">Yijung Chung</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24764615</idno>
<idno type="pmc">3996403</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996403</idno>
<idno type="RBID">PMC:3996403</idno>
<idno type="doi">10.1589/jpts.26.479</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000756</idno>
<idno type="wicri:Area/Pmc/Curation">000756</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait in Stroke Patients</title>
<author>
<name sortKey="Cha, Yuri" sort="Cha, Yuri" uniqKey="Cha Y" first="Yuri" last="Cha">Yuri Cha</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Young" sort="Kim, Young" uniqKey="Kim Y" first="Young" last="Kim">Young Kim</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chung, Yijung" sort="Chung, Yijung" uniqKey="Chung Y" first="Yijung" last="Chung">Yijung Chung</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Physical Therapy Science</title>
<idno type="ISSN">0915-5287</idno>
<idno type="e-ISSN">2187-5626</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p> [Purpose] The aim of this study was to investigate the effects of tempo changes in rhythmic auditory stimulation (RAS) on gait in stroke patients. [Subjects] Forty-one chronic stroke patients who had had a stroke with more than 6 months previously were recruited for this study. [Methods] All participants were asked to walk under 5 different conditions in random order: (1) no RAS (baseline); (2) baseline-matched RAS (0%); and (3) −10%, (4) +10%, and (5) +20% of the baseline. A GAITRite system was used to evaluate the spatial and temporal parameters of gait. [Results] Compared with under the RAS 0% conditions, the gait velocity, cadence, and stride length on the affected side were significantly decreased under the RAS −10% conditions. Gait velocity and cadence were significantly improved, but gait symmetry was significantly decreased under the RAS +10% and +20% conditions compared with under the RAS 0% conditions. [Conclusion] A faster RAS tempo significantly improved gait velocity and cadence, and applying RAS significantly improved the gait symmetry of stroke patients.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, Mh" uniqKey="Thaut M">MH Thaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Sj" uniqKey="Kim S">SJ Kim</name>
</author>
<author>
<name sortKey="Kwak, Ee" uniqKey="Kwak E">EE Kwak</name>
</author>
<author>
<name sortKey="Park, Es" uniqKey="Park E">ES Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, Mh" uniqKey="Thaut M">MH Thaut</name>
</author>
<author>
<name sortKey="Leins, Ak" uniqKey="Leins A">AK Leins</name>
</author>
<author>
<name sortKey="Rice, Rr" uniqKey="Rice R">RR Rice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez Del Olmo, M" uniqKey="Fernandez Del Olmo M">M Fernandez del Olmo</name>
</author>
<author>
<name sortKey="Cudeiro, J" uniqKey="Cudeiro J">J Cudeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ford, Mp" uniqKey="Ford M">MP Ford</name>
</author>
<author>
<name sortKey="Malone, La" uniqKey="Malone L">LA Malone</name>
</author>
<author>
<name sortKey="Nyikos, I" uniqKey="Nyikos I">I Nyikos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roerdink, M" uniqKey="Roerdink M">M Roerdink</name>
</author>
<author>
<name sortKey="Lamoth, Cj" uniqKey="Lamoth C">CJ Lamoth</name>
</author>
<author>
<name sortKey="Kwakkel, G" uniqKey="Kwakkel G">G Kwakkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molinari, M" uniqKey="Molinari M">M Molinari</name>
</author>
<author>
<name sortKey="Leggio, Mg" uniqKey="Leggio M">MG Leggio</name>
</author>
<author>
<name sortKey="De Martin, M" uniqKey="De Martin M">M De Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, Mh" uniqKey="Thaut M">MH Thaut</name>
</author>
<author>
<name sortKey="Stephan, Km" uniqKey="Stephan K">KM Stephan</name>
</author>
<author>
<name sortKey="Wunderlich, G" uniqKey="Wunderlich G">G Wunderlich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De L Toile, Sk" uniqKey="De L Toile S">SK de l’Etoile</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willems, Am" uniqKey="Willems A">AM Willems</name>
</author>
<author>
<name sortKey="Nieuwboer, A" uniqKey="Nieuwboer A">A Nieuwboer</name>
</author>
<author>
<name sortKey="Chavret, F" uniqKey="Chavret F">F Chavret</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hausdorff, Jm" uniqKey="Hausdorff J">JM Hausdorff</name>
</author>
<author>
<name sortKey="Lowenthal, J" uniqKey="Lowenthal J">J Lowenthal</name>
</author>
<author>
<name sortKey="Herman, T" uniqKey="Herman T">T Herman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falkenstein, M" uniqKey="Falkenstein M">M Falkenstein</name>
</author>
<author>
<name sortKey="Willemssen, R" uniqKey="Willemssen R">R Willemssen</name>
</author>
<author>
<name sortKey="Hohnsbein, J" uniqKey="Hohnsbein J">J Hohnsbein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bilney, B" uniqKey="Bilney B">B Bilney</name>
</author>
<author>
<name sortKey="Morris, M" uniqKey="Morris M">M Morris</name>
</author>
<author>
<name sortKey="Webster, K" uniqKey="Webster K">K Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menz, Hb" uniqKey="Menz H">HB Menz</name>
</author>
<author>
<name sortKey="Latt, Md" uniqKey="Latt M">MD Latt</name>
</author>
<author>
<name sortKey="Tiedemann, A" uniqKey="Tiedemann A">A Tiedemann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barth, E" uniqKey="Barth E">E Barth</name>
</author>
<author>
<name sortKey="Herrman, V" uniqKey="Herrman V">V Herrman</name>
</author>
<author>
<name sortKey="Levine, P" uniqKey="Levine P">P Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patterson, Sl" uniqKey="Patterson S">SL Patterson</name>
</author>
<author>
<name sortKey="Rodgers, Mm" uniqKey="Rodgers M">MM Rodgers</name>
</author>
<author>
<name sortKey="Macko, Rf" uniqKey="Macko R">RF Macko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, Ee" uniqKey="Kwak E">EE Kwak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, Lg" uniqKey="Richards L">LG Richards</name>
</author>
<author>
<name sortKey="Senesac, Cr" uniqKey="Senesac C">CR Senesac</name>
</author>
<author>
<name sortKey="Davis, Sb" uniqKey="Davis S">SB Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amatachaya, S" uniqKey="Amatachaya S">S Amatachaya</name>
</author>
<author>
<name sortKey="Keawsutthi, M" uniqKey="Keawsutthi M">M Keawsutthi</name>
</author>
<author>
<name sortKey="Amatachaya, P" uniqKey="Amatachaya P">P Amatachaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbud, Ga" uniqKey="Abbud G">GA Abbud</name>
</author>
<author>
<name sortKey="Li, Kz" uniqKey="Li K">KZ Li</name>
</author>
<author>
<name sortKey="Demont, Rg" uniqKey="Demont R">RG DeMont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arias, P" uniqKey="Arias P">P Arias</name>
</author>
<author>
<name sortKey="Cudeiro, J" uniqKey="Cudeiro J">J Cudeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prassas, S" uniqKey="Prassas S">S Prassas</name>
</author>
<author>
<name sortKey="Thaut, M" uniqKey="Thaut M">M Thaut</name>
</author>
<author>
<name sortKey="Mclntosh, G" uniqKey="Mclntosh G">G Mclntosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schauer, M" uniqKey="Schauer M">M Schauer</name>
</author>
<author>
<name sortKey="Mauritz, Kh" uniqKey="Mauritz K">KH Mauritz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dozza, M" uniqKey="Dozza M">M Dozza</name>
</author>
<author>
<name sortKey="Chiari, L" uniqKey="Chiari L">L Chiari</name>
</author>
<author>
<name sortKey="Chan, B" uniqKey="Chan B">B Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mergner, T" uniqKey="Mergner T">T Mergner</name>
</author>
<author>
<name sortKey="Maurer, C" uniqKey="Maurer C">C Maurer</name>
</author>
<author>
<name sortKey="Peterka, Rj" uniqKey="Peterka R">RJ Peterka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baram, Y" uniqKey="Baram Y">Y Baram</name>
</author>
<author>
<name sortKey="Miller, A" uniqKey="Miller A">A Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, Mh" uniqKey="Thaut M">MH Thaut</name>
</author>
<author>
<name sortKey="Kenyon, Gp" uniqKey="Kenyon G">GP Kenyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaut, Mh" uniqKey="Thaut M">MH Thaut</name>
</author>
<author>
<name sortKey="Mcintosh, Gc" uniqKey="Mcintosh G">GC McIntosh</name>
</author>
<author>
<name sortKey="Rice, Rr" uniqKey="Rice R">RR Rice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagenaar, Rc" uniqKey="Wagenaar R">RC Wagenaar</name>
</author>
<author>
<name sortKey="Beek, Wj" uniqKey="Beek W">WJ Beek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
<author>
<name sortKey="Norman, Ke" uniqKey="Norman K">KE Norman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suteerawattananon, M" uniqKey="Suteerawattananon M">M Suteerawattananon</name>
</author>
<author>
<name sortKey="Morris, Gs" uniqKey="Morris G">GS Morris</name>
</author>
<author>
<name sortKey="Etnyre, Br" uniqKey="Etnyre B">BR Etnyre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Wf" uniqKey="Thompson W">WF Thompson</name>
</author>
<author>
<name sortKey="Schellenber, Eg" uniqKey="Schellenber E">EG Schellenber</name>
</author>
<author>
<name sortKey="Husain, G" uniqKey="Husain G">G Husain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
<author>
<name sortKey="Levitin, Dj" uniqKey="Levitin D">DJ Levitin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashby, Fg" uniqKey="Ashby F">FG Ashby</name>
</author>
<author>
<name sortKey="Isen, Am" uniqKey="Isen A">AM Isen</name>
</author>
<author>
<name sortKey="Turken, Au" uniqKey="Turken A">AU Turken</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Phys Ther Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J Phys Ther Sci</journal-id>
<journal-id journal-id-type="publisher-id">JPTS</journal-id>
<journal-title-group>
<journal-title>Journal of Physical Therapy Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">0915-5287</issn>
<issn pub-type="epub">2187-5626</issn>
<publisher>
<publisher-name>The Society of Physical Therapy Science</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24764615</article-id>
<article-id pub-id-type="pmc">3996403</article-id>
<article-id pub-id-type="publisher-id">jpts-2013-410</article-id>
<article-id pub-id-type="doi">10.1589/jpts.26.479</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait in Stroke Patients</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cha</surname>
<given-names>Yuri</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Young</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chung</surname>
<given-names>Yijung</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref rid="cor1" ref-type="corresp">
<sup>*</sup>
</xref>
</contrib>
<aff id="aff1">
<label>1)</label>
Department of Physical Therapy, The Graduate School, Sahmyook University, Republic of Korea</aff>
<aff id="aff2">
<label>2)</label>
Department of Physical Therapy, College of Health and Welfare, Sahmyook University, Republic of Korea</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
Corresponding Author: Yijung Chung, epartment of Physical Therapy, College of Health and Welfare, Sahmyook University: 815 Hwarang-ro, Nowon-gu, Seoul, Republic of Korea. (E-mail:
<email xlink:href="yijung36@syu.ac.kr">yijung36@syu.ac.kr</email>
)</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>23</day>
<month>4</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="ppub">
<month>4</month>
<year>2014</year>
</pub-date>
<volume>26</volume>
<issue>4</issue>
<fpage>479</fpage>
<lpage>482</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>10</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>2014©by the Society of Physical Therapy Science</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. </license-p>
</license>
</permissions>
<abstract>
<p> [Purpose] The aim of this study was to investigate the effects of tempo changes in rhythmic auditory stimulation (RAS) on gait in stroke patients. [Subjects] Forty-one chronic stroke patients who had had a stroke with more than 6 months previously were recruited for this study. [Methods] All participants were asked to walk under 5 different conditions in random order: (1) no RAS (baseline); (2) baseline-matched RAS (0%); and (3) −10%, (4) +10%, and (5) +20% of the baseline. A GAITRite system was used to evaluate the spatial and temporal parameters of gait. [Results] Compared with under the RAS 0% conditions, the gait velocity, cadence, and stride length on the affected side were significantly decreased under the RAS −10% conditions. Gait velocity and cadence were significantly improved, but gait symmetry was significantly decreased under the RAS +10% and +20% conditions compared with under the RAS 0% conditions. [Conclusion] A faster RAS tempo significantly improved gait velocity and cadence, and applying RAS significantly improved the gait symmetry of stroke patients.</p>
</abstract>
<kwd-group>
<title>Key words</title>
<kwd>Gait</kwd>
<kwd>Rhythmic auditory stimulation</kwd>
<kwd>Stroke</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>INTRODUCTION</title>
<p>Rhythmic auditory stimulation (RAS) is one of the neurological therapeutic methods that has physiological effects in rehabilitative exercise therapy, which improves movement control
<xref rid="r1" ref-type="bibr">1</xref>
<sup>)</sup>
. It is reported to improve gait in terms of velocity, stride length, and cadence when applied to patients with cerebral palsy, stroke, and Parkinson’s disease (various kinds of neurologic diseases) as a rehabilitation therapy
<xref rid="r2" ref-type="bibr">2</xref>
,
<xref rid="r3" ref-type="bibr">3</xref>
,
<xref rid="r4" ref-type="bibr">4</xref>
<sup>)</sup>
. RAS guides the patients to hit the ground with their feet as they walk and simultaneously hear an external auditory cue, synchronizing the time of contact between the foot and ground with the sound
<xref rid="r5" ref-type="bibr">5</xref>
<sup>)</sup>
. According to previous researchers, rhythm is an essential element of motor movement including motor control and output
<xref rid="r6" ref-type="bibr">6</xref>
,
<xref rid="r7" ref-type="bibr">7</xref>
<sup>)</sup>
, because rhythmic auditory cuing facilitates movement by providing a mechanism for planning movements
<xref rid="r3" ref-type="bibr">3</xref>
<sup>)</sup>
. Thaut et al. (2009) studied the effects of different RAS speeds (3%, 7%, 20%) on tapping in healthy adults and reported that both sides of the frontal lobe and occipital lobe showed increased neuronal population activation as the speed increased, and that the increased activity in the occipital lobe also included synchronized rhythm patterns when the rhythm was increased 20%
<xref rid="r8" ref-type="bibr">8</xref>
<sup>)</sup>
. Patients with spinal cord injury (SCI) showed decreased gait velocity and cadence, and increased stride length at a normal RAS speed, but these walking abilities all decreased at a 5% faster tempo
<xref rid="r9" ref-type="bibr">9</xref>
<sup>)</sup>
. Patients with Parkinson’s disease showed a significantly decreased gait velocity and cadence, and significantly increased stride length and double limb support at an RAS speed of −10%. As the RAS tempo was increased, the gait velocity and cadence significantly increased
<xref rid="r10" ref-type="bibr">10</xref>
<sup>)</sup>
. Most of the studies on stroke patients have used RAS with constant speed or time-based stimulation increase. Research on the effects of tempo changes on gait in stroke patients is currently insufficient. Therefore, this study attempted to determine the immediate effects of RAS tempo changes on the walking abilities of stroke patients.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>SUBJECTS AND METHODS</title>
<p>A total of 41 patients who had recently had their first ischemic cerebrovascular accident (CVA) (24 men and 17 women) were recruited from K, H, and O rehabilitation centers in Korea. The inclusion criteria were as follows: (1) at least 6 months from the onset of stroke (ICD-10 code 160 and 163), (2) able to walk more than 10 m independently, (3) no hearing, visual deficits
<xref rid="r10" ref-type="bibr">10</xref>
,
<xref rid="r11" ref-type="bibr">11</xref>
<sup>)</sup>
, and (4) a Mini-Mental State Examination (MMSE) score of 24 or higher
<xref rid="r10" ref-type="bibr">10</xref>
,
<xref rid="r11" ref-type="bibr">11</xref>
,
<xref rid="r12" ref-type="bibr">12</xref>
<sup>)</sup>
. Any patient with one or more of the following conditions was excluded from the study: (1) symptomatic cardiac failure, (2) uncontrolled hypertension, (3) significant orthopedic or chronic pain conditions affecting gait performance, or (4) any neurologic disease except for the first stroke. Subjects were selected according to the inclusion criteria and were recruited from December 2010 to February 2011 for this cross-sectional study.
<xref rid="tbl_001" ref-type="table">Table 1</xref>
<table-wrap id="tbl_001" orientation="portrait" position="float">
<label>Table 1.</label>
<caption>
<title> General characteristics of subjects (n=41)</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Subjects (n=41)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Gender (M/F)</td>
<td align="center" rowspan="1" colspan="1">24/17</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Age (years)</td>
<td align="center" rowspan="1" colspan="1">60.8±19.8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Height (cm)</td>
<td align="center" rowspan="1" colspan="1">165.7±7.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Weight (kg)</td>
<td align="center" rowspan="1" colspan="1">65.3±7.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Paretic side (right/left)</td>
<td align="center" rowspan="1" colspan="1">19/22</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Since onset (months)</td>
<td align="center" rowspan="1" colspan="1">8.68±2.35</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MMSE-K
<sup>a</sup>
</td>
<td align="center" rowspan="1" colspan="1">26.6±1.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Berg Balance Scale</td>
<td align="center" rowspan="1" colspan="1">43.8±6.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brunnstrom stage (lower limb)</td>
<td align="center" rowspan="1" colspan="1">3.2±0.7</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Mean±SD.
<sup>a</sup>
MMSE-K: Mini Mental State Examination-Korean version</p>
</table-wrap-foot>
</table-wrap>
lists the general characteristics of the subjects. This research protocol was approved by the local Human Investigation Committee, and all participating patients signed a letter of informed consent after receiving a description of the project.</p>
<p>Subjects were examined under 5 different walking conditions: gait without RAS (baseline) and gait with RAS at −10%, 0%, +10%, and +20% of the baseline tempo. These conditions were applied in random order, and the frequency of the metronome was determined by each subject’s comfortable walking speed
<xref rid="r3" ref-type="bibr">3</xref>
<sup>)</sup>
. All subjects were instructed to walk to the beat of the metronome, that is, to step in time with the rhythm
<xref rid="r10" ref-type="bibr">10</xref>
<sup>)</sup>
. To help the patients to adapt to the rhythm, they listened to the rhythm of the metronome for 30 seconds before walking with RAS
<xref rid="r1" ref-type="bibr">1</xref>
<sup>)</sup>
. The purpose, study procedure, and evaluation tools used in the study were explained to the subjects before the study. For safety, each patient was assisted by a research assistant, and walking aides (quad cane and straight cane) were allowed to be used during the experiment.</p>
<p>A GAITRite system (GAITRite, CIR Systems Inc, USA, 2008), which is an electronic walkway used to measure the spatial and temporal parameters of gait, was used in this study. It has been shown to provide valid and reliable data
<xref rid="r13" ref-type="bibr">13</xref>
,
<xref rid="r14" ref-type="bibr">14</xref>
<sup>)</sup>
. The walkway is 457 cm long, and the active area is 366 cm in length and 61 cm in width. A series of pressure sensors (16,128 sensors) are embedded in the electronic walkway. The GAITRite system recorded the gait velocity, cadence, stride length, double limb support (% of cycle), and double single limb support (% of cycle)
<xref rid="r15" ref-type="bibr">15</xref>
<sup>)</sup>
. Each patient walked on the mat at his/her usual comfortable walking speed. For accurate data collection, the first and last few steps of each trial were not recorded; patients started walking from a point 2 m before the mat and stopped at a point 2 m after the mat, and walking aids were allowed to be used when necessary. Measurement was repeated 3 times, and a 3-minute break was given in between trials.</p>
<p>An electronic metronome was used to assess each patient’s walking tempo in order to provide an accurate rhythm for each patient. The tempo (beats per minute) was set according to the baseline cadence, and the subjects were to step in time with the beat in two-one time. All subjects listened to the rhythm of the metronome for 30 seconds before walking to the beat
<xref rid="r1" ref-type="bibr">1</xref>
<sup>)</sup>
.</p>
<p>In this study, the temporal symmetry ratio proposed by Patterson was used, and the details are as follows
<xref rid="r16" ref-type="bibr">16</xref>
<sup>)</sup>
. The gait symmetry ratio was used to calculate the time of the swing phase/stance phase of the leg on the affected and unaffected side, separately. The ratio was an the absolute value; gait symmetry increases as the value gets closer to 1, and it decreases as it gets farther away from 1.</p>
<p>Data were analyzed using SPSS ver. 12.0 for statistics and processing. The Kolmogorov-Smirnov test was used for analysis of the general properties and variables of the subjects. One-way repeated measures ANOVA was used, and the LSD post hoc test was performed. Significance was set at p<0.05.</p>
</sec>
<sec sec-type="results" id="s3">
<title>RESULTS</title>
<p>
<xref rid="tbl_002" ref-type="table">Table 2</xref>
<table-wrap id="tbl_002" orientation="portrait" position="float">
<label>Table 2.</label>
<caption>
<title> Spatiotemporal parameters of gait under the five conditions (n=41)</title>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" valign="top" rowspan="1" colspan="1"></th>
<th align="center" valign="top" rowspan="1" colspan="1">Baseline</th>
<th align="center" valign="top" rowspan="1" colspan="1">-10%</th>
<th align="center" valign="top" rowspan="1" colspan="1">0%</th>
<th align="center" valign="top" rowspan="1" colspan="1">+10%</th>
<th align="center" valign="top" rowspan="1" colspan="1">+20%</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Gait velocity (cm/sec)</td>
<td align="center" valign="top" rowspan="1" colspan="1">42.1±23.3</td>
<td align="center" valign="top" rowspan="1" colspan="1">35.6±19.5*
<sup>bcd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">41.3±23.2
<sup>acd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">46.3±25.5*
<sup>abd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">51.0±28.4*
<sup>abc</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Cadence (step/min)</td>
<td align="center" valign="top" rowspan="1" colspan="1">76.5±19.8</td>
<td align="center" valign="top" rowspan="1" colspan="1">70.8±20.6*
<sup>bcd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">77.1±22.0
<sup>acd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">83.6±22.4*
<sup>abd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">88.4±23.1*
<sup>abc</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Stride length on the affected side (cm)</td>
<td align="center" valign="top" rowspan="1" colspan="1">63.2±21.6</td>
<td align="center" valign="top" rowspan="1" colspan="1">59.4±18.9*
<sup>bcd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">63.5±20.8
<sup>ad</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">65.2±22.9
<sup>ad</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">67.9±25.1*
<sup>abc</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Stride length on the unaffected side (cm)</td>
<td align="center" valign="top" rowspan="1" colspan="1">63.6±21.3</td>
<td align="center" valign="top" rowspan="1" colspan="1">59.2±18.7*
<sup>bcd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">62.9±20.3
<sup>ad</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">65.0±22.9
<sup>a</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">66.6±24.3*
<sup>ab</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Double limb support (% of cycle)</td>
<td align="center" valign="top" rowspan="1" colspan="1">39.2±11.9</td>
<td align="center" valign="top" rowspan="1" colspan="1">41.6±10.6*
<sup>bcd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">38.2±10.4
<sup>a</sup>
</td>
<td align="left" valign="top" rowspan="1" colspan="1">38.6±11.8
<sup>ad</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">36.5±12.2*
<sup>ac</sup>
</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Gait symmetry (%)</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.4±1.1</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.2±0.8
<sup>b</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.0±0.6*
<sup>acd</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.3±0.7
<sup>b</sup>
</td>
<td align="center" valign="top" rowspan="1" colspan="1">1.3±0.9
<sup>b</sup>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Mean±SD. *Significantly different from baseline (no RAS) tempo (p<0.05).
<sup>a</sup>
Significantly different from −10% RAS tempo (p<0.05).
<sup>b</sup>
Significantly different from 0% RAS tempo (p<0.05).
<sup>c</sup>
Significantly different from +10% RAS tempo (p<0.05).
<sup>d</sup>
Significantly different from +20% RAS tempo (p<0.05)</p>
</table-wrap-foot>
</table-wrap>
shows the study results in terms of the spatiotemporal parameters of gait. The gait with RAS 10% slower than the baseline significantly decreased the gait velocity to 35.6±19.5 cm/sec, cadence to 70.8±20.6 steps/min, stride length on the affected side to 59.4±18.9 cm, and the stride length on the unaffected side to 59.2±18.7 cm. The double limb support (% of cycle) was significantly increased to 41.6±10.6 (% of cycle). In the gait with RAS 10% faster than the baseline, the gait velocity was significantly increased to 46.3±25.5 cm/sec, and cadence was significantly increased to 83.6±22.4 steps/min. In the gait with RAS 20% faster than the baseline, the gait velocity was significantly increased to 51.0±28.4 cm/sec, cadence was significantly increased to 88.4±23.1 steps/min, stride length on the affected side was significantly increased to 67.9±25.1 cm, stride length on the unaffected side to 66.6±24.3 cm, and double limb support (% of cycle) was significantly decreased to 36.5±12.2 (% of cycle) compared with the baseline gait. Gait symmetry was significantly decreased to 1.0±0.6 in the gait with RAS 0% when compared with the baseline gait (1.4±1.1). This means that gait symmetry was significantly improved under the RAS 0% conditions.</p>
</sec>
<sec sec-type="discussion" id="s4">
<title>DISCUSSION</title>
<p>RAS is reported to improve movement patterns by activating the internal timekeeping mechanism, which leads to movement synchronization
<xref rid="r17" ref-type="bibr">17</xref>
<sup>)</sup>
. Recently, RAS has been clinically applied as a therapeutic intervention to improve the upper and lower extremity functions in the patients with various neurological diseases
<xref rid="r3" ref-type="bibr">3</xref>
,
<xref rid="r11" ref-type="bibr">11</xref>
,
<xref rid="r18" ref-type="bibr">18</xref>
,
<xref rid="r19" ref-type="bibr">19</xref>
,
<xref rid="r20" ref-type="bibr">20</xref>
<sup>)</sup>
. Thus, this study was conducted to determine the effects of RAS tempo variations on the walking abilities of stroke patients.</p>
<p>Most of the previous studies reported significant changes in gait velocity at a certain rhythm tempo. Based on these findings, this study used 4 different tempo variations of RAS (−10%, 0%, +10% +20%) for higher significance in proving the effects
<xref rid="r10" ref-type="bibr">10</xref>
,
<xref rid="r11" ref-type="bibr">11</xref>
,
<xref rid="r21" ref-type="bibr">21</xref>
<sup>)</sup>
. The results of this study showed significant improvements in gait velocity, cadence, stride length on the affected side, double limb support on the affected side, and gait symmetry as the RAS tempo was increased compared with the no RAS or RAS 0% condition. When RAS −10% was applied, gait velocity, cadence, and stride length on the affected side significantly decreased and double limb support on the affected side significantly increased. Under the RAS +10% conditions, gait velocity and cadence were significantly increased, and gait symmetry was significantly decreased. When RAS +20% was applied, the gait velocity and cadence increased, and double limb support on the affected side and gait symmetry decreased (p<0.05). Increased gait velocity, which is determined by cadence and stride length, is commonly used as the gait evaluation index
<xref rid="r16" ref-type="bibr">16</xref>
<sup>)</sup>
. These results showed that application of a faster RAS tempo increased gait velocity, revealing the potential to immediately improve walking abilities. Double limb support was significantly decreased as the gait velocity was increased. This means that gait function was improved, and therefore application of afaster RAS tempo can also improve balance and stability.</p>
<p>A previous study reported no significant difference in walking ability between a no music group and a 0% speed group in healthy adult subjects
<xref rid="r11" ref-type="bibr">11</xref>
<sup>)</sup>
. A study on stroke patients also reported no significant difference in stride length when RAS equal to the baseline speed was applied
<xref rid="r22" ref-type="bibr">22</xref>
<sup>)</sup>
. This means that stimulations with rhythmical tempo variations have a positive influence on the gaits of stroke patients but that a rhythm equivalent to the gait velocity does not have significant effects on the gaits of patients. Previous studies reported improved gait symmetry when RAS was applied
<xref rid="r23" ref-type="bibr">23</xref>
<sup>)</sup>
, but they only compared groups with RAS application with groups without RAS. These studies did not analyze the effects of RAS tempo. However, the present study applied 4 different RAS tempos (−10%, 0%, +10%, +20%), and found that gait symmetry was the highest at RAS 0%. Gait velocity improved as the RAS tempo was increased; RAS 20% showed the highest gait velocity among the four conditions. All of these results were significantly higher compared to with those under the no rhythm conditions.</p>
<p>According to the results of previous studies, auditory stimulation plays an important role in feedback and feed-forward in an unstable posture; it was reported to increase immediate postural stability by controlling the feedback and sensory response
<xref rid="r24" ref-type="bibr">24</xref>
,
<xref rid="r25" ref-type="bibr">25</xref>
<sup>)</sup>
. The results of the present study also showed improved gait symmetry as the subjects learned to use feed-forward control to take steps at the given RAS tempo. RAS can increase the excitability of spinal motor neurons via the reticulospinal pathway, thereby reducing the amount of time needed for the muscle to respond to a given motor command. In order to improve the quality of walking abilities, immediate sensory response is needed, and variations in auditory stimulation can be effective in improving the quality of gait
<xref rid="r26" ref-type="bibr">26</xref>
<sup>)</sup>
.</p>
<p>RAS was proved to have an effect on cerebral activity by inducing synchronization of movement and rhythm through sensory stimulation. By applying RAS, a movement can be synchronized to the beat as the movement is actively repeated at the same rhythm
<xref rid="r27" ref-type="bibr">27</xref>
<sup>)</sup>
, and as the person tries to synchronize their movement with the music, concentration and motor control are both promoted. In terms of setting of movement goals, the sensory information, visual feedback, and somatosensory feedback from an auditory cue seemed to be effective in movement relearning, which is based on motor learning
<xref rid="r28" ref-type="bibr">28</xref>
<sup>)</sup>
. RAS has no side effects, is cost effective, can be used independently or in combination with other treatments, and can decrease muscle fatigue during physical training
<xref rid="r17" ref-type="bibr">17</xref>
<sup>)</sup>
. External stimuli promote the essential energy needed for movement through synchronized and integrated physical movement
<xref rid="r29" ref-type="bibr">29</xref>
<sup>)</sup>
, and auditory stimulation can improve walking abilities by redefining gait patterns and motor control
<xref rid="r19" ref-type="bibr">19</xref>
,
<xref rid="r30" ref-type="bibr">30</xref>
<sup>)</sup>
. Auditory stimulation can also be used for cadence to speed up the gait
<xref rid="r31" ref-type="bibr">31</xref>
<sup>)</sup>
, and application of rhythm can improve independent gait and gait pattern
<xref rid="r17" ref-type="bibr">17</xref>
<sup>)</sup>
.</p>
<p>Using music as an auditory stimulation was reported to induce positive effects on improvement of performance of cognitive tasks
<xref rid="r32" ref-type="bibr">32</xref>
<sup>)</sup>
Previous studies also reported that pleasant auditory stimulation can have effects on coping with stress
<xref rid="r33" ref-type="bibr">33</xref>
<sup>)</sup>
and can mediate arousal, emotion, reward, motivation, memory, attention, and executive functioning
<xref rid="r34" ref-type="bibr">34</xref>
<sup>)</sup>
. Such psychological factors may have influenced the patients’performance in this study, and it is possible that RAS-related improvements seen in the study were mediated by positive mood or self-efficacy. However, these factors were not considered in this study, as this was a cross-sectional study that investigated the immediate effects of different RAS tempos. Further research to determine the emotional and cognitive effects of RAS is needed.</p>
<p>The present study also showed that applying RAS to the gait of stroke patients not only increases the gait velocity but also increases the stride length and gait symmetry at the same time. The subjects who participated in this study adjusted well to the changing tempo, and gait improvement was also found at a tempo that was as high as 20% RAS baseline. We expect to find positive long-term effects after a certain period of training, as Thaut et al. (2007) reported improvements in gait velocity, stride length, cadence, and symmetry after applying RAS with a 5% increase from the baseline tempo for 3 weeks
<xref rid="r3" ref-type="bibr">3</xref>
<sup>)</sup>
. Further studies are needed in order to ascertain whether using graded increases in tempo throughout the training process will produce improvements in stroke patients.</p>
</sec>
</body>
<back>
<ref-list>
<title>REFERENCES</title>
<ref id="r1">
<label>1</label>
<mixed-citation publication-type="book">
<person-group>
<name>
<surname>Thaut</surname>
<given-names>MH</given-names>
</name>
</person-group>
: Rhythm, music, and the brain: Scientific foundations and clinical applications. In: Rhythmic auditory stimulation, Sensorimotor function recovery training. Trans. Youngah Cha. New York: Routledge,
<year>2005</year>
, pp 99–106, 215–229.</mixed-citation>
</ref>
<ref id="r2">
<label>2</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Kim</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>ES</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial</article-title>
.
<source>Clin Rehabil</source>
,
<year>2012</year>
,
<volume>26</volume>
:
<fpage>904</fpage>
<lpage>914</lpage>
<pub-id pub-id-type="pmid">22308559</pub-id>
</mixed-citation>
</ref>
<ref id="r3">
<label>3</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Thaut</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Leins</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>RR</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Rhythmic auditory stimulation improves gait more than ndt/bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial</article-title>
.
<source>Neurorehabil Neural Repair</source>
,
<year>2007</year>
,
<volume>21</volume>
:
<fpage>455</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="pmid">17426347</pub-id>
</mixed-citation>
</ref>
<ref id="r4">
<label>4</label>
<mixed-citation publication-type="other">
<person-group>
<name>
<surname>Fernandez del Olmo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cudeiro</surname>
<given-names>J</given-names>
</name>
</person-group>
: A simple procedure using auditory stimuli to improve movement in parkinson’s disease: a pilot study. Neurol Clin Neurophysiol, 2003,
<year>2003</year>
: 1–7.</mixed-citation>
</ref>
<ref id="r5">
<label>5</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Ford</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Malone</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Nyikos</surname>
<given-names>I</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Gait training with progressive external auditory cueing in persons with parkinson’s disease</article-title>
.
<source>Arch Phys Med Rehabil</source>
,
<year>2010</year>
,
<volume>91</volume>
:
<fpage>1255</fpage>
<lpage>1261</lpage>
<pub-id pub-id-type="pmid">20684907</pub-id>
</mixed-citation>
</ref>
<ref id="r6">
<label>6</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Roerdink</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lamoth</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Kwakkel</surname>
<given-names>G</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Gait coordination after stroke: benefits of acoustically paced treadmill walking</article-title>
.
<source>Phys Ther</source>
,
<year>2007</year>
,
<volume>87</volume>
:
<fpage>1009</fpage>
<lpage>1022</lpage>
<pub-id pub-id-type="pmid">17553922</pub-id>
</mixed-citation>
</ref>
<ref id="r7">
<label>7</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Molinari</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Leggio</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>De Martin</surname>
<given-names>M</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Neurobiology of rhythmic motor entrainment</article-title>
.
<source>Ann N Y Acad Sci</source>
,
<year>2003</year>
,
<volume>999</volume>
:
<fpage>313</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">14681155</pub-id>
</mixed-citation>
</ref>
<ref id="r8">
<label>8</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Thaut</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Stephan</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Wunderlich</surname>
<given-names>G</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization</article-title>
.
<source>Cortex</source>
,
<year>2009</year>
,
<volume>45</volume>
:
<fpage>44</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">19081087</pub-id>
</mixed-citation>
</ref>
<ref id="r9">
<label>9</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>de l’Etoile</surname>
<given-names>SK</given-names>
</name>
</person-group>
:
<article-title>The effect of rhythmic auditory stimulation on the gait parameters of patients with incomplete spinal cord injury: an exploratory pilot study</article-title>
.
<source>Int J Rehabil Res</source>
,
<year>2008</year>
,
<volume>31</volume>
:
<fpage>155</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">18467930</pub-id>
</mixed-citation>
</ref>
<ref id="r10">
<label>10</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Willems</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Nieuwboer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chavret</surname>
<given-names>F</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>The use of rhythmic auditory cues to influence gait in patients with parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study</article-title>
.
<source>Disabil Rehabil</source>
,
<year>2006</year>
,
<volume>28</volume>
:
<fpage>721</fpage>
<lpage>728</lpage>
<pub-id pub-id-type="pmid">16809215</pub-id>
</mixed-citation>
</ref>
<ref id="r11">
<label>11</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Hausdorff</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lowenthal</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>T</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Rhythmic auditory stimulation modulates gait variability in parkinson’s disease</article-title>
.
<source>Eur J Neurosci</source>
,
<year>2007</year>
,
<volume>26</volume>
:
<fpage>2369</fpage>
<lpage>2375</lpage>
<pub-id pub-id-type="pmid">17953624</pub-id>
</mixed-citation>
</ref>
<ref id="r12">
<label>12</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Falkenstein</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Willemssen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hohnsbein</surname>
<given-names>J</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Effects of stimulus-response compatibility in parkinson’s disease: a psychophysiological analysis</article-title>
.
<source>J Neural Transm</source>
,
<year>2006</year>
,
<volume>113</volume>
:
<fpage>1449</fpage>
<lpage>1462</lpage>
<pub-id pub-id-type="pmid">16465455</pub-id>
</mixed-citation>
</ref>
<ref id="r13">
<label>13</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Bilney</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>K</given-names>
</name>
</person-group>
:
<article-title>Concurrent related validity of the gaitrite walkway system for quantification of the spatial and temporal parameters of gait</article-title>
.
<source>Gait Posture</source>
,
<year>2003</year>
,
<volume>17</volume>
:
<fpage>68</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">12535728</pub-id>
</mixed-citation>
</ref>
<ref id="r14">
<label>14</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Menz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Latt</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Tiedemann</surname>
<given-names>A</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Reliability of the gaitrite walkway system for the quantification of temporo-spatial parameters of gait in young and older people</article-title>
.
<source>Gait Posture</source>
,
<year>2004</year>
,
<volume>20</volume>
:
<fpage>20</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">15196515</pub-id>
</mixed-citation>
</ref>
<ref id="r15">
<label>15</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Barth</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Herrman</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>P</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Low-dose, emg-triggered electrical stimulation for balance and gait in chronic stroke</article-title>
.
<source>Top Stroke Rehabil</source>
,
<year>2008</year>
,
<volume>15</volume>
:
<fpage>451</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="pmid">19008204</pub-id>
</mixed-citation>
</ref>
<ref id="r16">
<label>16</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Patterson</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Rodgers</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Macko</surname>
<given-names>RF</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: a preliminary report</article-title>
.
<source>J Rehabil Res Dev</source>
,
<year>2008</year>
,
<volume>45</volume>
:
<fpage>221</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="pmid">18566940</pub-id>
</mixed-citation>
</ref>
<ref id="r17">
<label>17</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Kwak</surname>
<given-names>EE</given-names>
</name>
</person-group>
:
<article-title>Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy</article-title>
.
<source>J Music Ther</source>
,
<year>2007</year>
,
<volume>44</volume>
:
<fpage>198</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">17645385</pub-id>
</mixed-citation>
</ref>
<ref id="r18">
<label>18</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Richards</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Senesac</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>SB</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Bilateral arm training with rhythmic auditory cueing in chronic stroke: not always efficacious</article-title>
.
<source>Neurorehabil Neural Repair</source>
,
<year>2008</year>
,
<volume>22</volume>
:
<fpage>180</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">17660456</pub-id>
</mixed-citation>
</ref>
<ref id="r19">
<label>19</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Amatachaya</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Keawsutthi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Amatachaya</surname>
<given-names>P</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Effects of external cues on gait performance in independent ambulatory incomplete spinal cord injury patients</article-title>
.
<source>Spinal Cord</source>
,
<year>2009</year>
,
<volume>47</volume>
:
<fpage>668</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">19139759</pub-id>
</mixed-citation>
</ref>
<ref id="r20">
<label>20</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Abbud</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>KZ</given-names>
</name>
<name>
<surname>DeMont</surname>
<given-names>RG</given-names>
</name>
</person-group>
:
<article-title>Attentional requirements of walking according to the gait phase and onset of auditory stimuli</article-title>
.
<source>Gait Posture</source>
,
<year>2009</year>
,
<volume>30</volume>
:
<fpage>227</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">19540124</pub-id>
</mixed-citation>
</ref>
<ref id="r21">
<label>21</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Arias</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Cudeiro</surname>
<given-names>J</given-names>
</name>
</person-group>
:
<article-title>Effects of rhythmic sensory stimulation (auditory, visual) on gait in parkinson’s disease patients</article-title>
.
<source>Exp Brain Res</source>
,
<year>2008</year>
,
<volume>186</volume>
:
<fpage>589</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="pmid">18214453</pub-id>
</mixed-citation>
</ref>
<ref id="r22">
<label>22</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Prassas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Thaut</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mclntosh</surname>
<given-names>G</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Effect of auditory rhythmic cuing on gait kinematic parameters of stroke patients</article-title>
.
<source>Gait Posture</source>
,
<year>1997</year>
,
<volume>6</volume>
:
<fpage>218</fpage>
<lpage>223</lpage>
</mixed-citation>
</ref>
<ref id="r23">
<label>23</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Schauer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mauritz</surname>
<given-names>KH</given-names>
</name>
</person-group>
:
<article-title>Musical motor feedback (mmf) in walking hemiparetic stroke patients: randomized trials of gait improvement</article-title>
.
<source>Clin Rehabil</source>
,
<year>2003</year>
,
<volume>17</volume>
:
<fpage>713</fpage>
<lpage>722</lpage>
<pub-id pub-id-type="pmid">14606736</pub-id>
</mixed-citation>
</ref>
<ref id="r24">
<label>24</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Dozza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chiari</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>B</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Influence of a portable audio-biofeedback device on structural properties of postural sway</article-title>
.
<source>J Neuroeng Rehabil</source>
,
<year>2005</year>
,
<volume>2</volume>
:
<fpage>13</fpage>
<pub-id pub-id-type="pmid">15927058</pub-id>
</mixed-citation>
</ref>
<ref id="r25">
<label>25</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Mergner</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Maurer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Peterka</surname>
<given-names>RJ</given-names>
</name>
</person-group>
:
<article-title>A multisensory posture control model of human upright stance</article-title>
.
<source>Prog Brain Res</source>
,
<year>2003</year>
,
<volume>142</volume>
:
<fpage>189</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="pmid">12693262</pub-id>
</mixed-citation>
</ref>
<ref id="r26">
<label>26</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Baram</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>A</given-names>
</name>
</person-group>
:
<article-title>Auditory feedback control for improvement of gait in patients with multiple sclerosis</article-title>
.
<source>J Neurol Sci</source>
,
<year>2007</year>
,
<volume>254</volume>
:
<fpage>90</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">17316692</pub-id>
</mixed-citation>
</ref>
<ref id="r27">
<label>27</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Thaut</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Kenyon</surname>
<given-names>GP</given-names>
</name>
</person-group>
:
<article-title>Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization</article-title>
.
<source>Hum Mov Sci</source>
,
<year>2003</year>
,
<volume>22</volume>
:
<fpage>321</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="pmid">12967761</pub-id>
</mixed-citation>
</ref>
<ref id="r28">
<label>28</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Thaut</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>McIntosh</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>RR</given-names>
</name>
</person-group>
:
<article-title>Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation</article-title>
.
<source>J Neurol Sci</source>
,
<year>1997</year>
,
<volume>151</volume>
:
<fpage>207</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="pmid">9349677</pub-id>
</mixed-citation>
</ref>
<ref id="r29">
<label>29</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Wagenaar</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Beek</surname>
<given-names>WJ</given-names>
</name>
</person-group>
:
<article-title>Hemiplegic gait: a kinematic analysis using walking speed as a basis</article-title>
.
<source>J Biomech</source>
,
<year>1992</year>
,
<volume>25</volume>
:
<fpage>1007</fpage>
<lpage>1015</lpage>
<pub-id pub-id-type="pmid">1517261</pub-id>
</mixed-citation>
</ref>
<ref id="r30">
<label>30</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Norman</surname>
<given-names>KE</given-names>
</name>
</person-group>
:
<article-title>Effects of visual and auditory cues on gait initiation in people with parkinson’s disease</article-title>
.
<source>Clin Rehabil</source>
,
<year>2006</year>
,
<volume>20</volume>
:
<fpage>36</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">16502748</pub-id>
</mixed-citation>
</ref>
<ref id="r31">
<label>31</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Suteerawattananon</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Morris</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Etnyre</surname>
<given-names>BR</given-names>
</name>
<etal>et al.</etal>
</person-group>
:
<article-title>Effects of visual and auditory cues on gait in individuals with parkinson’s disease</article-title>
.
<source>J Neurol Sci</source>
,
<year>2004</year>
,
<volume>219</volume>
:
<fpage>63</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">15050439</pub-id>
</mixed-citation>
</ref>
<ref id="r32">
<label>32</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Thompson</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Schellenber</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Husain</surname>
<given-names>G</given-names>
</name>
</person-group>
:
<article-title>Arousal, mood, and the mozart effect</article-title>
.
<source>Psychol Sci</source>
,
<year>2001</year>
,
<volume>12</volume>
:
<fpage>248</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">11437309</pub-id>
</mixed-citation>
</ref>
<ref id="r33">
<label>33</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Levitin</surname>
<given-names>DJ</given-names>
</name>
</person-group>
:
<article-title>The rewards of music listening: response and physiological connectivity of the mesolimbic system</article-title>
.
<source>Neuroimage</source>
,
<year>2005</year>
,
<volume>28</volume>
:
<fpage>175</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">16023376</pub-id>
</mixed-citation>
</ref>
<ref id="r34">
<label>34</label>
<mixed-citation publication-type="journal">
<person-group>
<name>
<surname>Ashby</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Isen</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Turken</surname>
<given-names>AU</given-names>
</name>
</person-group>
:
<article-title>A neuropsychological theory of positive affect and its influence on cognition</article-title>
.
<source>Psychol Rev</source>
,
<year>1999</year>
,
<volume>106</volume>
:
<fpage>529</fpage>
<lpage>550</lpage>
<pub-id pub-id-type="pmid">10467897</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3996403
   |texte=   Immediate Effects of Rhythmic Auditory Stimulation with Tempo Changes on Gait
in Stroke Patients
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:24764615" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MozartV1 

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023