Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model

Identifieur interne : 000156 ( PascalFrancis/Corpus ); précédent : 000155; suivant : 000157

Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model

Auteurs : Daniel Q. Tong ; Denise L. Mauzerall

Source :

RBID : Pascal:06-0320245

Descripteurs français

English descriptors

Abstract

This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O3 concentration. The model best simulates observed O3 for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O3 for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O3 in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O3 at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O3 with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O3 distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O3 concentrations limit the ability of CMAQ to reproduce O3 concentrations in the upper troposphere.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 40
A06       @2 17
A08 01  1  ENG  @1 Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model
A11 01  1    @1 TONG (Daniel Q.)
A11 02  1    @1 MAUZERALL (Denise L.)
A14 01      @1 Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 1 aut. @Z 2 aut.
A14 02      @1 Geosciences Department, Princeton University @3 USA @Z 2 aut.
A20       @1 3041-3056
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000142637850040
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 06-0320245
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O3 concentration. The model best simulates observed O3 for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O3 for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O3 in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O3 at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O3 with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O3 distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O3 concentrations limit the ability of CMAQ to reproduce O3 concentrations in the upper troposphere.
C02 01  X    @0 001D16C03
C03 01  X  FRE  @0 Troposphère @5 01
C03 01  X  ENG  @0 Troposphere @5 01
C03 01  X  SPA  @0 Troposfera @5 01
C03 02  X  FRE  @0 Eté @5 02
C03 02  X  ENG  @0 Summer @5 02
C03 02  X  SPA  @0 Verano @5 02
C03 03  X  FRE  @0 Pollution air @5 03
C03 03  X  ENG  @0 Air pollution @5 03
C03 03  X  SPA  @0 Contaminación aire @5 03
C03 04  3  FRE  @0 Oxydant photochimique @5 04
C03 04  3  ENG  @0 Photochemical oxidants @5 04
C03 05  X  FRE  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Ozone @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Ozono @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Distribution concentration @5 06
C03 06  X  ENG  @0 Concentration distribution @5 06
C03 06  X  SPA  @0 Distribución concentración @5 06
C03 07  X  FRE  @0 Variation spatiale @5 07
C03 07  X  ENG  @0 Spatial variation @5 07
C03 07  X  SPA  @0 Variación espacial @5 07
C03 08  X  FRE  @0 Répartition altitudinale @5 08
C03 08  X  ENG  @0 Altitudinal distribution @5 08
C03 08  X  SPA  @0 Distribución de altitud @5 08
C03 09  X  FRE  @0 Simulation numérique @5 09
C03 09  X  ENG  @0 Numerical simulation @5 09
C03 09  X  SPA  @0 Simulación numérica @5 09
C03 10  X  FRE  @0 Qualité air @5 10
C03 10  X  ENG  @0 Air quality @5 10
C03 10  X  SPA  @0 Calidad aire @5 10
C03 11  X  FRE  @0 Performance algorithme @5 11
C03 11  X  ENG  @0 Algorithm performance @5 11
C03 11  X  SPA  @0 Resultado algoritmo @5 11
C03 12  X  FRE  @0 Moyenne temporelle @5 12
C03 12  X  ENG  @0 Time average @5 12
C03 12  X  SPA  @0 Promedio temporal @5 12
C03 13  X  FRE  @0 Cartographie @5 13
C03 13  X  ENG  @0 Cartography @5 13
C03 13  X  SPA  @0 Cartografía @5 13
C03 14  X  FRE  @0 Etats Unis @2 NG @5 31
C03 14  X  ENG  @0 United States @2 NG @5 31
C03 14  X  SPA  @0 Estados Unidos @2 NG @5 31
C07 01  X  FRE  @0 Amérique du Nord @2 NG
C07 01  X  ENG  @0 North America @2 NG
C07 01  X  SPA  @0 America del norte @2 NG
C07 02  X  FRE  @0 Amérique @2 NG
C07 02  X  ENG  @0 America @2 NG
C07 02  X  SPA  @0 America @2 NG
N21       @1 205

Format Inist (serveur)

NO : PASCAL 06-0320245 INIST
ET : Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model
AU : TONG (Daniel Q.); MAUZERALL (Denise L.)
AF : Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut.); Geosciences Department, Princeton University/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2006; Vol. 40; No. 17; Pp. 3041-3056; Bibl. 1 p.1/4
LA : Anglais
EA : This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O3 concentration. The model best simulates observed O3 for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O3 for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O3 in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O3 at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O3 with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O3 distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O3 concentrations limit the ability of CMAQ to reproduce O3 concentrations in the upper troposphere.
CC : 001D16C03
FD : Troposphère; Eté; Pollution air; Oxydant photochimique; Ozone; Distribution concentration; Variation spatiale; Répartition altitudinale; Simulation numérique; Qualité air; Performance algorithme; Moyenne temporelle; Cartographie; Etats Unis
FG : Amérique du Nord; Amérique
ED : Troposphere; Summer; Air pollution; Photochemical oxidants; Ozone; Concentration distribution; Spatial variation; Altitudinal distribution; Numerical simulation; Air quality; Algorithm performance; Time average; Cartography; United States
EG : North America; America
SD : Troposfera; Verano; Contaminación aire; Ozono; Distribución concentración; Variación espacial; Distribución de altitud; Simulación numérica; Calidad aire; Resultado algoritmo; Promedio temporal; Cartografía; Estados Unidos
LO : INIST-8940B.354000142637850040
ID : 06-0320245

Links to Exploration step

Pascal:06-0320245

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model</title>
<author>
<name sortKey="Tong, Daniel Q" sort="Tong, Daniel Q" uniqKey="Tong D" first="Daniel Q." last="Tong">Daniel Q. Tong</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geosciences Department, Princeton University</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0320245</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0320245 INIST</idno>
<idno type="RBID">Pascal:06-0320245</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000156</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model</title>
<author>
<name sortKey="Tong, Daniel Q" sort="Tong, Daniel Q" uniqKey="Tong D" first="Daniel Q." last="Tong">Daniel Q. Tong</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Geosciences Department, Princeton University</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Air quality</term>
<term>Algorithm performance</term>
<term>Altitudinal distribution</term>
<term>Cartography</term>
<term>Concentration distribution</term>
<term>Numerical simulation</term>
<term>Ozone</term>
<term>Photochemical oxidants</term>
<term>Spatial variation</term>
<term>Summer</term>
<term>Time average</term>
<term>Troposphere</term>
<term>United States</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Eté</term>
<term>Pollution air</term>
<term>Oxydant photochimique</term>
<term>Ozone</term>
<term>Distribution concentration</term>
<term>Variation spatiale</term>
<term>Répartition altitudinale</term>
<term>Simulation numérique</term>
<term>Qualité air</term>
<term>Performance algorithme</term>
<term>Moyenne temporelle</term>
<term>Cartographie</term>
<term>Etats Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O
<sub>3</sub>
) at the surface and in the free troposphere over the continental United States. Simulated surface O
<sub>3</sub>
concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O
<sub>3</sub>
concentration. The model best simulates observed O
<sub>3</sub>
for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O
<sub>3</sub>
for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O
<sub>3</sub>
in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O
<sub>3</sub>
at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O
<sub>3</sub>
with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O
<sub>3</sub>
distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O
<sub>3</sub>
concentrations limit the ability of CMAQ to reproduce O
<sub>3</sub>
concentrations in the upper troposphere.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TONG (Daniel Q.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAUZERALL (Denise L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geosciences Department, Princeton University</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>3041-3056</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000142637850040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0320245</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O
<sub>3</sub>
) at the surface and in the free troposphere over the continental United States. Simulated surface O
<sub>3</sub>
concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O
<sub>3</sub>
concentration. The model best simulates observed O
<sub>3</sub>
for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O
<sub>3</sub>
for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O
<sub>3</sub>
in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O
<sub>3</sub>
at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O
<sub>3</sub>
with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O
<sub>3</sub>
distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O
<sub>3</sub>
concentrations limit the ability of CMAQ to reproduce O
<sub>3</sub>
concentrations in the upper troposphere.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Eté</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Summer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Verano</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Oxydant photochimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photochemical oxidants</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Variation spatiale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Spatial variation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Variación espacial</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Répartition altitudinale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Altitudinal distribution</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Distribución de altitud</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Performance algorithme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Algorithm performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Resultado algoritmo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Moyenne temporelle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Time average</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Promedio temporal</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cartographie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cartography</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cartografía</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>205</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 06-0320245 INIST</NO>
<ET>Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model</ET>
<AU>TONG (Daniel Q.); MAUZERALL (Denise L.)</AU>
<AF>Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut.); Geosciences Department, Princeton University/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2006; Vol. 40; No. 17; Pp. 3041-3056; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O
<sub>3</sub>
) at the surface and in the free troposphere over the continental United States. Simulated surface O
<sub>3</sub>
concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ's ability to reproduce surface observations varies with O
<sub>3</sub>
concentration. The model best simulates observed O
<sub>3</sub>
for intermediate concentrations (40-60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O
<sub>3</sub>
for a wide range of conditions (30-80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between ±15% for the whole domain. Although systematically over-predicting O
<sub>3</sub>
in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O
<sub>3</sub>
at rural sites (MB = -5 ppbv, NMB = -5% and NME = 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB = 6 ppbv, NMB = 7% and NME = 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8-h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O
<sub>3</sub>
with ozonesonde data show both overestimation and underestimation by 10-20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O
<sub>3</sub>
distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere-troposphere exchange to tropospheric O
<sub>3</sub>
concentrations limit the ability of CMAQ to reproduce O
<sub>3</sub>
concentrations in the upper troposphere.</EA>
<CC>001D16C03</CC>
<FD>Troposphère; Eté; Pollution air; Oxydant photochimique; Ozone; Distribution concentration; Variation spatiale; Répartition altitudinale; Simulation numérique; Qualité air; Performance algorithme; Moyenne temporelle; Cartographie; Etats Unis</FD>
<FG>Amérique du Nord; Amérique</FG>
<ED>Troposphere; Summer; Air pollution; Photochemical oxidants; Ozone; Concentration distribution; Spatial variation; Altitudinal distribution; Numerical simulation; Air quality; Algorithm performance; Time average; Cartography; United States</ED>
<EG>North America; America</EG>
<SD>Troposfera; Verano; Contaminación aire; Ozono; Distribución concentración; Variación espacial; Distribución de altitud; Simulación numérica; Calidad aire; Resultado algoritmo; Promedio temporal; Cartografía; Estados Unidos</SD>
<LO>INIST-8940B.354000142637850040</LO>
<ID>06-0320245</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0320245
   |texte=   Spatial variability of summertime tropospheric ozone over the continental United States : Implications of an evaluation of the CMAQ model
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023