Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of satellite observed tropospheric NO2 over India with model simulations

Identifieur interne : 000069 ( PascalFrancis/Corpus ); précédent : 000068; suivant : 000070

Comparison of satellite observed tropospheric NO2 over India with model simulations

Auteurs : Varun Sheel ; Shyam Lal ; Andreas Richter ; John P. Burrows

Source :

RBID : Pascal:10-0482923

Descripteurs français

English descriptors

Abstract

Nitrogen dioxide (NO2) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO2 over this region. We thus take recourse to satellite data and compare tropospheric NO2 column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO2 compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 44
A06       @2 27
A08 01  1  ENG  @1 Comparison of satellite observed tropospheric NO2 over India with model simulations
A11 01  1    @1 SHEEL (Varun)
A11 02  1    @1 LAL (Shyam)
A11 03  1    @1 RICHTER (Andreas)
A11 04  1    @1 BURROWS (John P.)
A14 01      @1 Physical Research Laboratory, Ahmedabad 380009 @2 Gujarat @3 IND @Z 1 aut. @Z 2 aut.
A14 02      @1 Institute of Environmental Physics, University of Bremen @2 Bremen @3 DEU @Z 3 aut. @Z 4 aut.
A20       @1 3314-3321
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000193877460110
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 10-0482923
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Nitrogen dioxide (NO2) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO2 over this region. We thus take recourse to satellite data and compare tropospheric NO2 column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO2 compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.
C02 01  X    @0 001D16C
C02 02  2    @0 001E02D
C03 01  X  FRE  @0 Observation par satellite @5 01
C03 01  X  ENG  @0 Satellite observation @5 01
C03 01  X  SPA  @0 Observación por satélite @5 01
C03 02  X  FRE  @0 Troposphère @5 02
C03 02  X  ENG  @0 Troposphere @5 02
C03 02  X  SPA  @0 Troposfera @5 02
C03 03  X  FRE  @0 Dioxyde d'azote @2 NK @2 FX @5 03
C03 03  X  ENG  @0 Nitrogen dioxide @2 NK @2 FX @5 03
C03 03  X  SPA  @0 Nitrógeno dióxido @2 NK @2 FX @5 03
C03 04  X  FRE  @0 Modélisation @5 04
C03 04  X  ENG  @0 Modeling @5 04
C03 04  X  SPA  @0 Modelización @5 04
C03 05  X  FRE  @0 Modèle chimique @5 05
C03 05  X  ENG  @0 Chemical model @5 05
C03 05  X  SPA  @0 Modelo químico @5 05
C03 06  X  FRE  @0 Combustion @5 06
C03 06  X  ENG  @0 Combustion @5 06
C03 06  X  SPA  @0 Combustión @5 06
C03 07  X  FRE  @0 Croissance @5 07
C03 07  X  ENG  @0 Growth @5 07
C03 07  X  SPA  @0 Crecimiento @5 07
C03 08  X  FRE  @0 Densité colonne @5 08
C03 08  X  ENG  @0 Column density @5 08
C03 08  X  SPA  @0 Densidad columna @5 08
C03 09  X  FRE  @0 Transport chimique @5 09
C03 09  X  ENG  @0 Chemical transport @5 09
C03 09  X  SPA  @0 Transporte químico @5 09
C03 10  X  FRE  @0 Ozone @2 NK @2 FX @5 10
C03 10  X  ENG  @0 Ozone @2 NK @2 FX @5 10
C03 10  X  SPA  @0 Ozono @2 NK @2 FX @5 10
C03 11  X  FRE  @0 Surveillance @5 11
C03 11  X  ENG  @0 Surveillance @5 11
C03 11  X  SPA  @0 Vigilancia @5 11
C03 12  X  FRE  @0 Incertitude @5 12
C03 12  X  ENG  @0 Uncertainty @5 12
C03 12  X  SPA  @0 Incertidumbre @5 12
C03 13  X  FRE  @0 Inventaire émission @5 13
C03 13  X  ENG  @0 Emission inventory @5 13
C03 13  X  SPA  @0 Inventario emisión @5 13
C03 14  X  FRE  @0 Analyse tendance @5 14
C03 14  X  ENG  @0 Trend analysis @5 14
C03 14  X  SPA  @0 Análisis tendencia @5 14
C03 15  X  FRE  @0 Zone urbaine @5 15
C03 15  X  ENG  @0 Urban area @5 15
C03 15  X  SPA  @0 Zona urbana @5 15
C03 16  X  FRE  @0 Trafic routier @5 16
C03 16  X  ENG  @0 Road traffic @5 16
C03 16  X  SPA  @0 Tráfico carretera @5 16
C03 17  X  FRE  @0 Inde @2 NG @5 31
C03 17  X  ENG  @0 India @2 NG @5 31
C03 17  X  SPA  @0 India @2 NG @5 31
C03 18  X  FRE  @0 Télédétection spatiale @5 35
C03 18  X  ENG  @0 Space remote sensing @5 35
C03 18  X  SPA  @0 Teledetección espacial @5 35
C03 19  X  FRE  @0 Composé de l'azote @2 NK @5 36
C03 19  X  ENG  @0 Nitrogen compounds @2 NK @5 36
C03 19  X  SPA  @0 Compuesto nitrogenado @2 NK @5 36
C03 20  X  FRE  @0 Pollution air @5 37
C03 20  X  ENG  @0 Air pollution @5 37
C03 20  X  SPA  @0 Contaminación aire @5 37
C03 21  X  FRE  @0 Véhicule à moteur @5 38
C03 21  X  ENG  @0 Motor vehicle @5 38
C03 21  X  SPA  @0 Vehículo de motor @5 38
C07 01  X  FRE  @0 Asie @2 NG
C07 01  X  ENG  @0 Asia @2 NG
C07 01  X  SPA  @0 Asia @2 NG
N21       @1 319
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0482923 INIST
ET : Comparison of satellite observed tropospheric NO2 over India with model simulations
AU : SHEEL (Varun); LAL (Shyam); RICHTER (Andreas); BURROWS (John P.)
AF : Physical Research Laboratory, Ahmedabad 380009/Gujarat/Inde (1 aut., 2 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2010; Vol. 44; No. 27; Pp. 3314-3321; Bibl. 3/4 p.
LA : Anglais
EA : Nitrogen dioxide (NO2) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO2 over this region. We thus take recourse to satellite data and compare tropospheric NO2 column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO2 compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.
CC : 001D16C; 001E02D
FD : Observation par satellite; Troposphère; Dioxyde d'azote; Modélisation; Modèle chimique; Combustion; Croissance; Densité colonne; Transport chimique; Ozone; Surveillance; Incertitude; Inventaire émission; Analyse tendance; Zone urbaine; Trafic routier; Inde; Télédétection spatiale; Composé de l'azote; Pollution air; Véhicule à moteur
FG : Asie
ED : Satellite observation; Troposphere; Nitrogen dioxide; Modeling; Chemical model; Combustion; Growth; Column density; Chemical transport; Ozone; Surveillance; Uncertainty; Emission inventory; Trend analysis; Urban area; Road traffic; India; Space remote sensing; Nitrogen compounds; Air pollution; Motor vehicle
EG : Asia
SD : Observación por satélite; Troposfera; Nitrógeno dióxido; Modelización; Modelo químico; Combustión; Crecimiento; Densidad columna; Transporte químico; Ozono; Vigilancia; Incertidumbre; Inventario emisión; Análisis tendencia; Zona urbana; Tráfico carretera; India; Teledetección espacial; Compuesto nitrogenado; Contaminación aire; Vehículo de motor
LO : INIST-8940B.354000193877460110
ID : 10-0482923

Links to Exploration step

Pascal:10-0482923

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of satellite observed tropospheric NO
<sub>2</sub>
over India with model simulations</title>
<author>
<name sortKey="Sheel, Varun" sort="Sheel, Varun" uniqKey="Sheel V" first="Varun" last="Sheel">Varun Sheel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physical Research Laboratory, Ahmedabad 380009</s1>
<s2>Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lal, Shyam" sort="Lal, Shyam" uniqKey="Lal S" first="Shyam" last="Lal">Shyam Lal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physical Research Laboratory, Ahmedabad 380009</s1>
<s2>Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, John P" sort="Burrows, John P" uniqKey="Burrows J" first="John P." last="Burrows">John P. Burrows</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0482923</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0482923 INIST</idno>
<idno type="RBID">Pascal:10-0482923</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000069</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Comparison of satellite observed tropospheric NO
<sub>2</sub>
over India with model simulations</title>
<author>
<name sortKey="Sheel, Varun" sort="Sheel, Varun" uniqKey="Sheel V" first="Varun" last="Sheel">Varun Sheel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physical Research Laboratory, Ahmedabad 380009</s1>
<s2>Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lal, Shyam" sort="Lal, Shyam" uniqKey="Lal S" first="Shyam" last="Lal">Shyam Lal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physical Research Laboratory, Ahmedabad 380009</s1>
<s2>Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, John P" sort="Burrows, John P" uniqKey="Burrows J" first="John P." last="Burrows">John P. Burrows</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Chemical model</term>
<term>Chemical transport</term>
<term>Column density</term>
<term>Combustion</term>
<term>Emission inventory</term>
<term>Growth</term>
<term>India</term>
<term>Modeling</term>
<term>Motor vehicle</term>
<term>Nitrogen compounds</term>
<term>Nitrogen dioxide</term>
<term>Ozone</term>
<term>Road traffic</term>
<term>Satellite observation</term>
<term>Space remote sensing</term>
<term>Surveillance</term>
<term>Trend analysis</term>
<term>Troposphere</term>
<term>Uncertainty</term>
<term>Urban area</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Observation par satellite</term>
<term>Troposphère</term>
<term>Dioxyde d'azote</term>
<term>Modélisation</term>
<term>Modèle chimique</term>
<term>Combustion</term>
<term>Croissance</term>
<term>Densité colonne</term>
<term>Transport chimique</term>
<term>Ozone</term>
<term>Surveillance</term>
<term>Incertitude</term>
<term>Inventaire émission</term>
<term>Analyse tendance</term>
<term>Zone urbaine</term>
<term>Trafic routier</term>
<term>Inde</term>
<term>Télédétection spatiale</term>
<term>Composé de l'azote</term>
<term>Pollution air</term>
<term>Véhicule à moteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nitrogen dioxide (NO
<sub>2</sub>
) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO
<sub>2</sub>
over this region. We thus take recourse to satellite data and compare tropospheric NO
<sub>2</sub>
column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO
<sub>2</sub>
compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>27</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of satellite observed tropospheric NO
<sub>2</sub>
over India with model simulations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHEEL (Varun)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LAL (Shyam)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RICHTER (Andreas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BURROWS (John P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physical Research Laboratory, Ahmedabad 380009</s1>
<s2>Gujarat</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3314-3321</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000193877460110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0482923</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Nitrogen dioxide (NO
<sub>2</sub>
) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO
<sub>2</sub>
over this region. We thus take recourse to satellite data and compare tropospheric NO
<sub>2</sub>
column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO
<sub>2</sub>
compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dioxyde d'azote</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Combustion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Combustion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Combustión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Growth</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Densité colonne</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Column density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Densidad columna</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transport chimique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Chemical transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transporte químico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Surveillance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Surveillance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Vigilancia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Incertitude</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Uncertainty</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Incertidumbre</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Inventaire émission</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Emission inventory</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Inventario emisión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Analyse tendance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Trend analysis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Análisis tendencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Zone urbaine</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Urban area</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zona urbana</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Trafic routier</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Road traffic</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tráfico carretera</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Inde</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>India</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>India</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Télédétection spatiale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Space remote sensing</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Teledetección espacial</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé de l'azote</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Nitrogen compounds</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto nitrogenado</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Véhicule à moteur</s0>
<s5>38</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Motor vehicle</s0>
<s5>38</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Vehículo de motor</s0>
<s5>38</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>319</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0482923 INIST</NO>
<ET>Comparison of satellite observed tropospheric NO
<sub>2</sub>
over India with model simulations</ET>
<AU>SHEEL (Varun); LAL (Shyam); RICHTER (Andreas); BURROWS (John P.)</AU>
<AF>Physical Research Laboratory, Ahmedabad 380009/Gujarat/Inde (1 aut., 2 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2010; Vol. 44; No. 27; Pp. 3314-3321; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Nitrogen dioxide (NO
<sub>2</sub>
) plays a key role in the chemistry of the atmosphere and is emitted mainly by combustion processes. These emissions have been increasing over India over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of NO
<sub>2</sub>
over this region. We thus take recourse to satellite data and compare tropospheric NO
<sub>2</sub>
column abundances simulated by a chemical transport model, MOZART, with data from the Global Ozone Monitoring Experiment (GOME) for a few locations in India that have seen a rapid economic growth in the last decade. The model generally simulates higher columnar abundances of NO
<sub>2</sub>
compared to GOME observations and does not reproduce the features of the observed seasonal behaviour. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data. The ten year data (1996-2006) from GOME and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) show increasing trends for Indian cities where rapid industrial and vehicular traffic growth has been observed during this period.</EA>
<CC>001D16C; 001E02D</CC>
<FD>Observation par satellite; Troposphère; Dioxyde d'azote; Modélisation; Modèle chimique; Combustion; Croissance; Densité colonne; Transport chimique; Ozone; Surveillance; Incertitude; Inventaire émission; Analyse tendance; Zone urbaine; Trafic routier; Inde; Télédétection spatiale; Composé de l'azote; Pollution air; Véhicule à moteur</FD>
<FG>Asie</FG>
<ED>Satellite observation; Troposphere; Nitrogen dioxide; Modeling; Chemical model; Combustion; Growth; Column density; Chemical transport; Ozone; Surveillance; Uncertainty; Emission inventory; Trend analysis; Urban area; Road traffic; India; Space remote sensing; Nitrogen compounds; Air pollution; Motor vehicle</ED>
<EG>Asia</EG>
<SD>Observación por satélite; Troposfera; Nitrógeno dióxido; Modelización; Modelo químico; Combustión; Crecimiento; Densidad columna; Transporte químico; Ozono; Vigilancia; Incertidumbre; Inventario emisión; Análisis tendencia; Zona urbana; Tráfico carretera; India; Teledetección espacial; Compuesto nitrogenado; Contaminación aire; Vehículo de motor</SD>
<LO>INIST-8940B.354000193877460110</LO>
<ID>10-0482923</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0482923
   |texte=   Comparison of satellite observed tropospheric NO2 over India with model simulations
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023