Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation

Identifieur interne : 001768 ( Istex/Corpus ); précédent : 001767; suivant : 001769

Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation

Auteurs : H. Schmidt ; G. P. Brasseur ; M. A. Giorgetta

Source :

RBID : ISTEX:9A38D9383946448CD1EEBD5DB7CDC097A9EC0835

Abstract

Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.

Url:
DOI: 10.1029/2009JD012542

Links to Exploration step

ISTEX:9A38D9383946448CD1EEBD5DB7CDC097A9EC0835

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
<author>
<name sortKey="Schmidt, H" sort="Schmidt, H" uniqKey="Schmidt H" first="H." last="Schmidt">H. Schmidt</name>
<affiliation>
<mods:affiliation>E-mail: hauke.schmidt@zmaw.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<mods:affiliation>Climate Service Center, Hamburg, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ESSL, National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giorgetta, M A" sort="Giorgetta, M A" uniqKey="Giorgetta M" first="M. A." last="Giorgetta">M. A. Giorgetta</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9A38D9383946448CD1EEBD5DB7CDC097A9EC0835</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1029/2009JD012542</idno>
<idno type="url">https://api.istex.fr/document/9A38D9383946448CD1EEBD5DB7CDC097A9EC0835/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001768</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
<author>
<name sortKey="Schmidt, H" sort="Schmidt, H" uniqKey="Schmidt H" first="H." last="Schmidt">H. Schmidt</name>
<affiliation>
<mods:affiliation>E-mail: hauke.schmidt@zmaw.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<mods:affiliation>Climate Service Center, Hamburg, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ESSL, National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giorgetta, M A" sort="Giorgetta, M A" uniqKey="Giorgetta M" first="M. A." last="Giorgetta">M. A. Giorgetta</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2010-01-16">2010-01-16</date>
<biblScope unit="volume">115</biblScope>
<biblScope unit="issue">D1</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">9A38D9383946448CD1EEBD5DB7CDC097A9EC0835</idno>
<idno type="DOI">10.1029/2009JD012542</idno>
<idno type="ArticleID">2009JD012542</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>H. Schmidt</name>
<affiliations>
<json:string>E-mail: hauke.schmidt@zmaw.de</json:string>
<json:string>Max Planck Institute for Meteorology, Hamburg, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. P. Brasseur</name>
<affiliations>
<json:string>Climate Service Center, Hamburg, Germany</json:string>
<json:string>ESSL, National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. A. Giorgetta</name>
<affiliations>
<json:string>Max Planck Institute for Meteorology, Hamburg, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>middle atmosphere dynamics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>solar cycle</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.</abstract>
<qualityIndicators>
<score>8.068</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>2</keywordCount>
<abstractCharCount>1399</abstractCharCount>
<pdfWordCount>9825</pdfWordCount>
<pdfCharCount>58505</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>214</abstractWordCount>
</qualityIndicators>
<title>Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>115</volume>
<pages>
<total>16</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>D1</issue>
<subject>
<json:item>
<value>Climate and Weather of the Sun‐Earth System (CAWSES)</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Middle atmosphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Middle atmosphere: constituent transport and chemistry</value>
</json:item>
<json:item>
<value>Middle atmosphere: energy deposition</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Solar variability</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Middle atmosphere dynamics</value>
</json:item>
<json:item>
<value>Stratosphere/troposphere interactions</value>
</json:item>
<json:item>
<value>SOLAR PHYSICS, ASTROPHYSICS, AND ASTRONOMY</value>
</json:item>
<json:item>
<value>Solar and stellar variability</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Atmospheres</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1029/2009JD012542</json:string>
</doi>
<id>9A38D9383946448CD1EEBD5DB7CDC097A9EC0835</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/9A38D9383946448CD1EEBD5DB7CDC097A9EC0835/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/9A38D9383946448CD1EEBD5DB7CDC097A9EC0835/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9A38D9383946448CD1EEBD5DB7CDC097A9EC0835/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
<author>
<persName>
<forename type="first">H.</forename>
<surname>Schmidt</surname>
</persName>
<email>hauke.schmidt@zmaw.de</email>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">G. P.</forename>
<surname>Brasseur</surname>
</persName>
<affiliation>Climate Service Center, Hamburg, Germany</affiliation>
<affiliation>ESSL, National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">M. A.</forename>
<surname>Giorgetta</surname>
</persName>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2010-01-16"></date>
<biblScope unit="volume">115</biblScope>
<biblScope unit="issue">D1</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">9A38D9383946448CD1EEBD5DB7CDC097A9EC0835</idno>
<idno type="DOI">10.1029/2009JD012542</idno>
<idno type="ArticleID">2009JD012542</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>middle atmosphere dynamics</term>
</item>
<item>
<term>solar cycle</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Climate and Weather of the Sun‐Earth System (CAWSES)</term>
</item>
<item>
<term>Composition and Chemistry</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Middle atmosphere: composition and chemistry</term>
</item>
<item>
<term>Middle atmosphere: constituent transport and chemistry</term>
</item>
<item>
<term>Middle atmosphere: energy deposition</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Solar variability</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Middle atmosphere dynamics</term>
</item>
<item>
<term>Stratosphere/troposphere interactions</term>
</item>
<item>
<term>SOLAR PHYSICS, ASTROPHYSICS, AND ASTRONOMY</term>
</item>
<item>
<term>Solar and stellar variability</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Composition and Chemistry</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-05-27">Received</change>
<change when="2009-12-10">Registration</change>
<change when="2010-01-16">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/9A38D9383946448CD1EEBD5DB7CDC097A9EC0835/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd15819">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi>10.1002/jgrd.v115.D1</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="115">115</numbering>
<numbering type="journalIssue">D1</numbering>
</numberingGroup>
<coverDate startDate="2010-01-16">16 January 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="220" type="article" status="forIssue">
<doi>10.1029/2009JD012542</doi>
<idGroup>
<id type="editorialOffice" value="2009JD012542"></id>
<id type="society" value="D00I14"></id>
<id type="unit" value="JGRD15819"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Composition and Chemistry</title>
<title type="tocHeading1">Composition and Chemistry</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2010 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-05-27"></event>
<event type="manuscriptRevised" date="2009-11-20"></event>
<event type="manuscriptAccepted" date="2009-12-10"></event>
<event type="firstOnline" date="2010-04-17"></event>
<event type="publishedOnlineFinalForm" date="2010-04-17"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-18"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/CAWSES1">Climate and Weather of the Sun‐Earth System (CAWSES)</subject>
<subject href="http://psi.agu.org/subset/ACH">Composition and Chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0340">Middle atmosphere: composition and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0341">Middle atmosphere: constituent transport and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0342">Middle atmosphere: energy deposition</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1650">Solar variability</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3334">Middle atmosphere dynamics</subject>
<subject href="http://psi.agu.org/taxonomy5/3362">Stratosphere/troposphere interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7500">SOLAR PHYSICS, ASTROPHYSICS, AND ASTRONOMY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7537">Solar and stellar variability</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd15819-cit-0000" type="self">
<author>
<familyName>Schmidt</familyName>
,
<givenNames>H.</givenNames>
</author>
,
<author>
<givenNames>G. P.</givenNames>
<familyName>Brasseur</familyName>
</author>
, and
<author>
<givenNames>M. A.</givenNames>
<familyName>Giorgetta</familyName>
</author>
(
<pubYear year="2010">2010</pubYear>
),
<articleTitle>Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>115</vol>
, D00I14, doi:
<accessionId ref="info:doi/10.1029/2009JD012542">10.1029/2009JD012542</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD15819.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="main">Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
<title type="short">QBO DEPENDENT SOLAR CYCLE SIGNAL</title>
<title type="shortAuthors">Schmidt
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd15819-cr-0001" affiliationRef="#jgrd15819-aff-0001">
<personName>
<givenNames>H.</givenNames>
<familyName>Schmidt</familyName>
</personName>
<contactDetails>
<email normalForm="hauke.schmidt@zmaw.de">hauke.schmidt@zmaw.de</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrd15819-cr-0002" affiliationRef="#jgrd15819-aff-0002 #jgrd15819-aff-0003">
<personName>
<givenNames>G. P.</givenNames>
<familyName>Brasseur</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd15819-cr-0003" affiliationRef="#jgrd15819-aff-0001">
<personName>
<givenNames>M. A.</givenNames>
<familyName>Giorgetta</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="DE" type="organization" xml:id="jgrd15819-aff-0001">
<orgName>Max Planck Institute for Meteorology</orgName>
<address>
<city>Hamburg</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="jgrd15819-aff-0002">
<orgName>Climate Service Center</orgName>
<address>
<city>Hamburg</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd15819-aff-0003">
<orgDiv>ESSL</orgDiv>
<orgName>National Center for Atmospheric Research</orgName>
<address>
<city>Boulder</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd15819-kwd-0001">middle atmosphere dynamics</keyword>
<keyword xml:id="jgrd15819-kwd-0002">solar cycle</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd15819-para-0001" label="1">Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>QBO DEPENDENT SOLAR CYCLE SIGNAL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Schmidt</namePart>
<affiliation>E-mail: hauke.schmidt@zmaw.de</affiliation>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G. P.</namePart>
<namePart type="family">Brasseur</namePart>
<affiliation>Climate Service Center, Hamburg, Germany</affiliation>
<affiliation>ESSL, National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. A.</namePart>
<namePart type="family">Giorgetta</namePart>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2010-01-16</dateIssued>
<dateCaptured encoding="w3cdtf">2009-05-27</dateCaptured>
<dateValid encoding="w3cdtf">2009-12-10</dateValid>
<edition>Schmidt, H., G. P. Brasseur, and M. A. Giorgetta (2010), Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation, J. Geophys. Res., 115, D00I14, doi:10.1029/2009JD012542.</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">13</extent>
</physicalDescription>
<abstract>Simulations with the HAMMONIA general circulation and chemistry model are analyzed to improve the understanding of the atmospheric response to solar cycle variations and the role of the quasi‐biennial oscillation of equatorial winds (QBO) for this response. The focus is on the Northern Hemisphere winter stratosphere. Owing to the internally produced QBO, albeit with a too short period of 24 months, the model is particularly suited for such an exercise. The simulation setup with only solar and QBO forcing allows an unambiguous attribution of the simulated signals. Two separate simulations have been performed for perpetual solar maximum and minimum conditions. The simulations confirm the plausibility of dynamical mechanisms, suggested earlier, that propagate the solar signal from the stratopause region downward to the troposphere. One feature involved in this propagation is a response maximum of temperature and ozone in the lower equatorial stratosphere. In our model, this maximum appears as a pure solar signal independent of the QBO and of other forcings. As observed, the simulated response of the stratospheric polar vortex to solar cycle forcing depends on the QBO phase. However, in the model this is statistically significant only in late winter. The simulation for early and mid winter suffers probably from a too strong internal variability of the polar vortex in early winter.</abstract>
<subject>
<genre>Keywords</genre>
<topic>middle atmosphere dynamics</topic>
<topic>solar cycle</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/CAWSES1">Climate and Weather of the Sun‐Earth System (CAWSES)</topic>
<topic authorityURI="http://psi.agu.org/subset/ACH">Composition and Chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0340">Middle atmosphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0341">Middle atmosphere: constituent transport and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0342">Middle atmosphere: energy deposition</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1650">Solar variability</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3334">Middle atmosphere dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3362">Stratosphere/troposphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7500">SOLAR PHYSICS, ASTROPHYSICS, AND ASTRONOMY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7537">Solar and stellar variability</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Composition and Chemistry</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>115</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D1</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9A38D9383946448CD1EEBD5DB7CDC097A9EC0835</identifier>
<identifier type="DOI">10.1029/2009JD012542</identifier>
<identifier type="ArticleID">2009JD012542</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2010 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001768 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001768 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9A38D9383946448CD1EEBD5DB7CDC097A9EC0835
   |texte=   Solar cycle signal in a general circulation and chemistry model with internally generated quasi‐biennial oscillation
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023