Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of the global impact of aerosols on tropospheric oxidants

Identifieur interne : 000064 ( Istex/Corpus ); précédent : 000063; suivant : 000065

Assessment of the global impact of aerosols on tropospheric oxidants

Auteurs : Xuexi Tie ; Sasha Madronich ; Stacy Walters ; David P. Edwards ; Paul Ginoux ; Natalie Mahowald ; Renyi Zhang ; Chao Lou ; Guy Brasseur

Source :

RBID : ISTEX:6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0

Abstract

We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO2 and CH2O on sulfate have an important impact on HOx (OH + HO2) concentrations, while the heterogeneous reaction of O3 on soot has a minor effect on O3 concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HOx and O3 in the region of dust mobilization, where the reduction of HOx and O3 concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HOx and to a few percent change in the O3 abundance in these regions.

Url:
DOI: 10.1029/2004JD005359

Links to Exploration step

ISTEX:6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of the global impact of aerosols on tropospheric oxidants</title>
<author>
<name sortKey="Tie, Xuexi" sort="Tie, Xuexi" uniqKey="Tie X" first="Xuexi" last="Tie">Xuexi Tie</name>
<affiliation>
<mods:affiliation>E-mail: xxtie@ucar.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madronich, Sasha" sort="Madronich, Sasha" uniqKey="Madronich S" first="Sasha" last="Madronich">Sasha Madronich</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Edwards, David P" sort="Edwards, David P" uniqKey="Edwards D" first="David P." last="Edwards">David P. Edwards</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<mods:affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahowald, Natalie" sort="Mahowald, Natalie" uniqKey="Mahowald N" first="Natalie" last="Mahowald">Natalie Mahowald</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Renyi" sort="Zhang, Renyi" uniqKey="Zhang R" first="Renyi" last="Zhang">Renyi Zhang</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Science, Texas A&M University, Texas, College Station, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lou, Chao" sort="Lou, Chao" uniqKey="Lou C" first="Chao" last="Lou">Chao Lou</name>
<affiliation>
<mods:affiliation>Institute for Computational Earth Systems Science, University of California, California, Santa Barbara, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy" sort="Brasseur, Guy" uniqKey="Brasseur G" first="Guy" last="Brasseur">Guy Brasseur</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Boulder, Colorado, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1029/2004JD005359</idno>
<idno type="url">https://api.istex.fr/document/6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Assessment of the global impact of aerosols on tropospheric oxidants</title>
<author>
<name sortKey="Tie, Xuexi" sort="Tie, Xuexi" uniqKey="Tie X" first="Xuexi" last="Tie">Xuexi Tie</name>
<affiliation>
<mods:affiliation>E-mail: xxtie@ucar.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Madronich, Sasha" sort="Madronich, Sasha" uniqKey="Madronich S" first="Sasha" last="Madronich">Sasha Madronich</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Edwards, David P" sort="Edwards, David P" uniqKey="Edwards D" first="David P." last="Edwards">David P. Edwards</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<mods:affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mahowald, Natalie" sort="Mahowald, Natalie" uniqKey="Mahowald N" first="Natalie" last="Mahowald">Natalie Mahowald</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Renyi" sort="Zhang, Renyi" uniqKey="Zhang R" first="Renyi" last="Zhang">Renyi Zhang</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Science, Texas A&M University, Texas, College Station, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lou, Chao" sort="Lou, Chao" uniqKey="Lou C" first="Chao" last="Lou">Chao Lou</name>
<affiliation>
<mods:affiliation>Institute for Computational Earth Systems Science, University of California, California, Santa Barbara, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy" sort="Brasseur, Guy" uniqKey="Brasseur G" first="Guy" last="Brasseur">Guy Brasseur</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Boulder, Colorado, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2005-02-16">2005-02-16</date>
<biblScope unit="volume">110</biblScope>
<biblScope unit="issue">D3</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0</idno>
<idno type="DOI">10.1029/2004JD005359</idno>
<idno type="ArticleID">2004JD005359</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO2 and CH2O on sulfate have an important impact on HOx (OH + HO2) concentrations, while the heterogeneous reaction of O3 on soot has a minor effect on O3 concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HOx and O3 in the region of dust mobilization, where the reduction of HOx and O3 concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HOx and to a few percent change in the O3 abundance in these regions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Xuexi Tie</name>
<affiliations>
<json:string>E-mail: xxtie@ucar.edu</json:string>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sasha Madronich</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Stacy Walters</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David P. Edwards</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paul Ginoux</name>
<affiliations>
<json:string>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Natalie Mahowald</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>RenYi Zhang</name>
<affiliations>
<json:string>Department of Atmospheric Science, Texas A&M University, Texas, College Station, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Chao Lou</name>
<affiliations>
<json:string>Institute for Computational Earth Systems Science, University of California, California, Santa Barbara, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Guy Brasseur</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Boulder, Colorado, USA</json:string>
<json:string>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>aerosols</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>troposphere</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>oxidants</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO2 and CH2O on sulfate have an important impact on HOx (OH + HO2) concentrations, while the heterogeneous reaction of O3 on soot has a minor effect on O3 concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HOx and O3 in the region of dust mobilization, where the reduction of HOx and O3 concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HOx and to a few percent change in the O3 abundance in these regions.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>2831</abstractCharCount>
<pdfWordCount>15024</pdfWordCount>
<pdfCharCount>88578</pdfCharCount>
<pdfPageCount>46</pdfPageCount>
<abstractWordCount>429</abstractWordCount>
</qualityIndicators>
<title>Assessment of the global impact of aerosols on tropospheric oxidants</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>110</volume>
<pages>
<total>32</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>D3</issue>
<subject>
<json:item>
<value>Aerosol and Clouds</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Aerosols and particles</value>
</json:item>
<json:item>
<value>Evolution of the atmosphere</value>
</json:item>
<json:item>
<value>Troposphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Pollution: urban and regional</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Atmosphere</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Aerosols</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Aerosols</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Evolution of the Earth</value>
</json:item>
<json:item>
<value>Aerosol and Clouds</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Atmospheres</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
</host>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1029/2004JD005359</json:string>
</doi>
<id>6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Assessment of the global impact of aerosols on tropospheric oxidants</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2005</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Assessment of the global impact of aerosols on tropospheric oxidants</title>
<author>
<persName>
<forename type="first">Xuexi</forename>
<surname>Tie</surname>
</persName>
<email>xxtie@ucar.edu</email>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Sasha</forename>
<surname>Madronich</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Stacy</forename>
<surname>Walters</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">David P.</forename>
<surname>Edwards</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Paul</forename>
<surname>Ginoux</surname>
</persName>
<affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Natalie</forename>
<surname>Mahowald</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">RenYi</forename>
<surname>Zhang</surname>
</persName>
<affiliation>Department of Atmospheric Science, Texas A&M University, Texas, College Station, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Chao</forename>
<surname>Lou</surname>
</persName>
<affiliation>Institute for Computational Earth Systems Science, University of California, California, Santa Barbara, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Guy</forename>
<surname>Brasseur</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Boulder, Colorado, USA</affiliation>
<affiliation>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2005-02-16"></date>
<biblScope unit="volume">110</biblScope>
<biblScope unit="issue">D3</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0</idno>
<idno type="DOI">10.1029/2004JD005359</idno>
<idno type="ArticleID">2004JD005359</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO2 and CH2O on sulfate have an important impact on HOx (OH + HO2) concentrations, while the heterogeneous reaction of O3 on soot has a minor effect on O3 concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HOx and O3 in the region of dust mobilization, where the reduction of HOx and O3 concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HOx and to a few percent change in the O3 abundance in these regions.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>aerosols</term>
</item>
<item>
<term>troposphere</term>
</item>
<item>
<term>oxidants</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Aerosol and Clouds</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Aerosols and particles</term>
</item>
<item>
<term>Evolution of the atmosphere</term>
</item>
<item>
<term>Troposphere: composition and chemistry</term>
</item>
<item>
<term>Pollution: urban and regional</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Atmosphere</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Aerosols</term>
</item>
<item>
<term>PALEOCEANOGRAPHY</term>
</item>
<item>
<term>Aerosols</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Evolution of the Earth</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Aerosol and Clouds</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-08-17">Received</change>
<change when="2004-11-24">Registration</change>
<change when="2005-02-16">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd11805">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/jgrd.v110.D3</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="110">110</numbering>
<numbering type="journalIssue">D3</numbering>
</numberingGroup>
<coverDate startDate="2005-02-16">16 February 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="50" type="article" status="forIssue">
<doi>10.1029/2004JD005359</doi>
<idGroup>
<id type="editorialOffice" value="2004JD005359"></id>
<id type="society" value="D03204"></id>
<id type="unit" value="JGRD11805"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="32"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Aerosol and Clouds</title>
<title type="tocHeading1">Aerosol and Clouds</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2005 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-08-17"></event>
<event type="manuscriptRevised" date="2004-10-27"></event>
<event type="manuscriptAccepted" date="2004-11-24"></event>
<event type="firstOnline" date="2005-02-10"></event>
<event type="publishedOnlineFinalForm" date="2005-02-10"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-18"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/AAC">Aerosol and Clouds</subject>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</subject>
<subject href="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</subject>
<subject href="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1610">Atmosphere</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4801">Aerosols</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4906">Aerosols</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8125">Evolution of the Earth</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd11805-cit-0000" type="self">
<author>
<familyName>Tie</familyName>
,
<givenNames>X.</givenNames>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Madronich</familyName>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Walters</familyName>
</author>
,
<author>
<givenNames>D. P.</givenNames>
<familyName>Edwards</familyName>
</author>
,
<author>
<givenNames>P.</givenNames>
<familyName>Ginoux</familyName>
</author>
,
<author>
<givenNames>N.</givenNames>
<familyName>Mahowald</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Zhang</familyName>
</author>
,
<author>
<givenNames>C.</givenNames>
<familyName>Lou</familyName>
</author>
, and
<author>
<givenNames>G.</givenNames>
<familyName>Brasseur</familyName>
</author>
(
<pubYear year="2005">2005</pubYear>
),
<articleTitle>Assessment of the global impact of aerosols on tropospheric oxidants</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>110</vol>
, D03204, doi:
<accessionId ref="info:doi/10.1029/2004JD005359">10.1029/2004JD005359</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD11805.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="24"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Assessment of the global impact of aerosols on tropospheric oxidants</title>
<title type="short">AEROSOLS AND OXIDANTS</title>
<title type="shortAuthors">Tie
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd11805-cr-0001" affiliationRef="#jgrd11805-aff-0001">
<personName>
<givenNames>Xuexi</givenNames>
<familyName>Tie</familyName>
</personName>
<contactDetails>
<email normalForm="xxtie@ucar.edu">xxtie@ucar.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0002" affiliationRef="#jgrd11805-aff-0001">
<personName>
<givenNames>Sasha</givenNames>
<familyName>Madronich</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0003" affiliationRef="#jgrd11805-aff-0001">
<personName>
<givenNames>Stacy</givenNames>
<familyName>Walters</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0004" affiliationRef="#jgrd11805-aff-0001">
<personName>
<givenNames>David P.</givenNames>
<familyName>Edwards</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0005" affiliationRef="#jgrd11805-aff-0002">
<personName>
<givenNames>Paul</givenNames>
<familyName>Ginoux</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0006" affiliationRef="#jgrd11805-aff-0001">
<personName>
<givenNames>Natalie</givenNames>
<familyName>Mahowald</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0007" affiliationRef="#jgrd11805-aff-0003">
<personName>
<givenNames>RenYi</givenNames>
<familyName>Zhang</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0008" affiliationRef="#jgrd11805-aff-0004">
<personName>
<givenNames>Chao</givenNames>
<familyName>Lou</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11805-cr-0009" affiliationRef="#jgrd11805-aff-0001 #jgrd11805-aff-0005">
<personName>
<givenNames>Guy</givenNames>
<familyName>Brasseur</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrd11805-aff-0001">
<orgName>National Center for Atmospheric Research</orgName>
<address>
<city>Boulder</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd11805-aff-0002">
<orgDiv>Geophysical Fluid Dynamics Laboratory</orgDiv>
<orgName>NOAA</orgName>
<address>
<city>Princeton</city>
<countryPart>New Jersey</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd11805-aff-0003">
<orgDiv>Department of Atmospheric Science</orgDiv>
<orgName>Texas A&M University</orgName>
<address>
<city>College Station</city>
<countryPart>Texas</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd11805-aff-0004">
<orgDiv>Institute for Computational Earth Systems Science</orgDiv>
<orgName>University of California</orgName>
<address>
<city>Santa Barbara</city>
<countryPart>California</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="jgrd11805-aff-0005">
<unparsedAffiliation>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd11805-kwd-0001">aerosols</keyword>
<keyword xml:id="jgrd11805-kwd-0002">troposphere</keyword>
<keyword xml:id="jgrd11805-kwd-0003">oxidants</keyword>
</keywordGroup>
<supportingInformation></supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd11805-para-0001" label="1">We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO
<sub>2</sub>
and CH
<sub>2</sub>
O on sulfate have an important impact on HO
<sub>x</sub>
(OH + HO
<sub>2</sub>
) concentrations, while the heterogeneous reaction of O
<sub>3</sub>
on soot has a minor effect on O
<sub>3</sub>
concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HO
<sub>x</sub>
and O
<sub>3</sub>
in the region of dust mobilization, where the reduction of HO
<sub>x</sub>
and O
<sub>3</sub>
concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HO
<sub>x</sub>
and to a few percent change in the O
<sub>3</sub>
abundance in these regions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Assessment of the global impact of aerosols on tropospheric oxidants</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AEROSOLS AND OXIDANTS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Assessment of the global impact of aerosols on tropospheric oxidants</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuexi</namePart>
<namePart type="family">Tie</namePart>
<affiliation>E-mail: xxtie@ucar.edu</affiliation>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sasha</namePart>
<namePart type="family">Madronich</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stacy</namePart>
<namePart type="family">Walters</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David P.</namePart>
<namePart type="family">Edwards</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Ginoux</namePart>
<affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Mahowald</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">RenYi</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>Department of Atmospheric Science, Texas A&M University, Texas, College Station, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Lou</namePart>
<affiliation>Institute for Computational Earth Systems Science, University of California, California, Santa Barbara, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Brasseur</namePart>
<affiliation>National Center for Atmospheric Research, Boulder, Colorado, USA</affiliation>
<affiliation>Also at Max Planck Institute of Meteorology, Hamburg, Germany.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2005-02-16</dateIssued>
<dateCaptured encoding="w3cdtf">2004-08-17</dateCaptured>
<dateValid encoding="w3cdtf">2004-11-24</dateValid>
<edition>Tie, X., S. Madronich, S. Walters, D. P. Edwards, P. Ginoux, N. Mahowald, R. Zhang, C. Lou, and G. Brasseur (2005), Assessment of the global impact of aerosols on tropospheric oxidants, J. Geophys. Res., 110, D03204, doi:10.1029/2004JD005359.</edition>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">24</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract>We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas‐phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three‐dimensional chemical/transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART‐2), in which aerosols are coupled with the model. The model accounts for the presence of sulfate, soot, primary organic carbon, ammonium nitrate, secondary organic carbon, sea salt, and mineral dust particles. The simulated global distributions of the aerosols are analyzed and evaluated using satellite measurements (Moderate‐Resolution Imaging Spectroradiometer (MODIS)) and surface measurements. The results suggest that in northern continental regions the tropospheric aerosol loading is highest in Europe, North America, and east Asia. Sulfate, organic carbon, black carbon, and ammonium nitrate are major contributions for the high aerosol loading in these regions. Aerosol loading is also high in the Amazon and in Africa. In these areas the aerosols consist primarily of organic carbon and black carbon. Over the southern high‐latitude ocean (around 60°S), high concentrations of sea‐salt aerosol are predicted. The concentration of mineral dust is highest over the Sahara and, as a result of transport, spread out into adjacent regions. The model and MODIS show similar geographical distributions of aerosol particles. However, the model overestimates the sulfate and carbonaceous aerosol in the eastern United States, Europe, and east Asia. In the region where aerosol loading is high, aerosols have important impacts on tropospheric ozone and other oxidants. The model suggests that heterogeneous reactions of HO2 and CH2O on sulfate have an important impact on HOx (OH + HO2) concentrations, while the heterogeneous reaction of O3 on soot has a minor effect on O3 concentrations in the lower troposphere. The heterogeneous reactions on dust have very important impacts on HOx and O3 in the region of dust mobilization, where the reduction of HOx and O3 concentrations can reach a maximum of 30% and 20%, respectively, over the Sahara desert. Dust, organic carbon, black carbon, and sulfate aerosols have important impacts on photolysis rates. For example, the photodissociation frequencies of ozone and nitrogen dioxide are reduced by 20% at the surface in the Sahara, in the Amazon, and in eastern Asia, leading to 5–20% reduction in the concentration of HOx and to a few percent change in the O3 abundance in these regions.</abstract>
<subject>
<genre>Keywords</genre>
<topic>aerosols</topic>
<topic>troposphere</topic>
<topic>oxidants</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/subset/AAC">Aerosol and Clouds</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1610">Atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4801">Aerosols</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4906">Aerosols</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8125">Evolution of the Earth</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Aerosol and Clouds</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>110</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D3</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>32</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0</identifier>
<identifier type="DOI">10.1029/2004JD005359</identifier>
<identifier type="ArticleID">2004JD005359</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2005 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6C79B333CB6CB8B1C3AA065C4EC05232B27A72F0
   |texte=   Assessment of the global impact of aerosols on tropospheric oxidants
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023