Serveur d'exploration sur Monteverdi

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres

Identifieur interne : 000005 ( Pmc/Checkpoint ); précédent : 000004; suivant : 000006

Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres

Auteurs : Dan Wu [République populaire de Chine] ; Keith M. Kendrick [République populaire de Chine] ; Daniel J. Levitin [Canada] ; Chaoyi Li [République populaire de Chine] ; Dezhong Yao [République populaire de Chine]

Source :

RBID : PMC:4636347

Abstract

Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach’s harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.


Url:
DOI: 10.1371/journal.pone.0142431
PubMed: 26545104
PubMed Central: 4636347


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4636347

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres</title>
<author>
<name sortKey="Wu, Dan" sort="Wu, Dan" uniqKey="Wu D" first="Dan" last="Wu">Dan Wu</name>
<affiliation wicri:level="3">
<nlm:aff id="aff001">
<addr-line>Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kendrick, Keith M" sort="Kendrick, Keith M" uniqKey="Kendrick K" first="Keith M." last="Kendrick">Keith M. Kendrick</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Levitin, Daniel J" sort="Levitin, Daniel J" uniqKey="Levitin D" first="Daniel J." last="Levitin">Daniel J. Levitin</name>
<affiliation wicri:level="4">
<nlm:aff id="aff003">
<addr-line>Department of Psychology, McGill University, Montreal, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Psychology, McGill University, Montreal</wicri:regionArea>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
<orgName type="university">Université McGill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Li, Chaoyi" sort="Li, Chaoyi" uniqKey="Li C" first="Chaoyi" last="Li">Chaoyi Li</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff004">
<addr-line>Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Dezhong" sort="Yao, Dezhong" uniqKey="Yao D" first="Dezhong" last="Yao">Dezhong Yao</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26545104</idno>
<idno type="pmc">4636347</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636347</idno>
<idno type="RBID">PMC:4636347</idno>
<idno type="doi">10.1371/journal.pone.0142431</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000003</idno>
<idno type="wicri:Area/Pmc/Curation">000003</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000005</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres</title>
<author>
<name sortKey="Wu, Dan" sort="Wu, Dan" uniqKey="Wu D" first="Dan" last="Wu">Dan Wu</name>
<affiliation wicri:level="3">
<nlm:aff id="aff001">
<addr-line>Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kendrick, Keith M" sort="Kendrick, Keith M" uniqKey="Kendrick K" first="Keith M." last="Kendrick">Keith M. Kendrick</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Levitin, Daniel J" sort="Levitin, Daniel J" uniqKey="Levitin D" first="Daniel J." last="Levitin">Daniel J. Levitin</name>
<affiliation wicri:level="4">
<nlm:aff id="aff003">
<addr-line>Department of Psychology, McGill University, Montreal, Canada</addr-line>
</nlm:aff>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Psychology, McGill University, Montreal</wicri:regionArea>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
<orgName type="university">Université McGill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Li, Chaoyi" sort="Li, Chaoyi" uniqKey="Li C" first="Chaoyi" last="Li">Chaoyi Li</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff004">
<addr-line>Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yao, Dezhong" sort="Yao, Dezhong" uniqKey="Yao D" first="Dezhong" last="Yao">Dezhong Yao</name>
<affiliation wicri:level="1">
<nlm:aff id="aff002">
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach’s harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Peretz, I" uniqKey="Peretz I">I Peretz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sievers, B" uniqKey="Sievers B">B Sievers</name>
</author>
<author>
<name sortKey="Polansky, L" uniqKey="Polansky L">L Polansky</name>
</author>
<author>
<name sortKey="Casey, M" uniqKey="Casey M">M Casey</name>
</author>
<author>
<name sortKey="Wheatley, T" uniqKey="Wheatley T">T Wheatley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koelsch, S" uniqKey="Koelsch S">S Koelsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juslin, Ppn" uniqKey="Juslin P">PPN Juslin</name>
</author>
<author>
<name sortKey="Sloboda, Pj" uniqKey="Sloboda P">PJ Sloboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitin, Dj" uniqKey="Levitin D">DJ Levitin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Rw" uniqKey="Hall R">RW Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tymoczko, D" uniqKey="Tymoczko D">D Tymoczko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sethares, Wa" uniqKey="Sethares W">WA Sethares</name>
</author>
<author>
<name sortKey="Budney, R" uniqKey="Budney R">R Budney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burgoyne, Ja" uniqKey="Burgoyne J">JA Burgoyne</name>
</author>
<author>
<name sortKey="Wild, J" uniqKey="Wild J">J Wild</name>
</author>
<author>
<name sortKey="Fujinaga, I" uniqKey="Fujinaga I">I Fujinaga</name>
</author>
<author>
<name sortKey="Yust, J" uniqKey="Yust J">J Yust</name>
</author>
<author>
<name sortKey="Wild, J" uniqKey="Wild J">J Wild</name>
</author>
<author>
<name sortKey="Burgoyne, Ja" uniqKey="Burgoyne J">JA Burgoyne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kepler, J" uniqKey="Kepler J">J Kepler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mandelbrot, Bb" uniqKey="Mandelbrot B">BB Mandelbrot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennig, H" uniqKey="Hennig H">H Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitin, Dj" uniqKey="Levitin D">DJ Levitin</name>
</author>
<author>
<name sortKey="Chordia, P" uniqKey="Chordia P">P Chordia</name>
</author>
<author>
<name sortKey="Menon, V" uniqKey="Menon V">V Menon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voss, Rf" uniqKey="Voss R">RF Voss</name>
</author>
<author>
<name sortKey="Clarke, J" uniqKey="Clarke J">J Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Manaris, B" uniqKey="Manaris B">B Manaris</name>
</author>
<author>
<name sortKey="Romero, J" uniqKey="Romero J">J Romero</name>
</author>
<author>
<name sortKey="Machado, P" uniqKey="Machado P">P Machado</name>
</author>
<author>
<name sortKey="Krehbiel, D" uniqKey="Krehbiel D">D Krehbiel</name>
</author>
<author>
<name sortKey="Hirzel, T" uniqKey="Hirzel T">T Hirzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Kj" uniqKey="Hsu K">KJ Hsü</name>
</author>
<author>
<name sortKey="Hsu, Aj" uniqKey="Hsu A">AJ Hsü</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Kj" uniqKey="Hsu K">KJ Hsü</name>
</author>
<author>
<name sortKey="Hsu, A" uniqKey="Hsu A">A Hsü</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J Wei</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Xin, J" uniqKey="Xin J">J Xin</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rankin, Sk" uniqKey="Rankin S">SK Rankin</name>
</author>
<author>
<name sortKey="Fink, Pw" uniqKey="Fink P">PW Fink</name>
</author>
<author>
<name sortKey="Large, Ew" uniqKey="Large E">EW Large</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennig, H" uniqKey="Hennig H">H Hennig</name>
</author>
<author>
<name sortKey="Fleischmann, R" uniqKey="Fleischmann R">R Fleischmann</name>
</author>
<author>
<name sortKey="Fredebohm, A" uniqKey="Fredebohm A">A Fredebohm</name>
</author>
<author>
<name sortKey="Hagmayer, Y" uniqKey="Hagmayer Y">Y Hagmayer</name>
</author>
<author>
<name sortKey="Nagler, J" uniqKey="Nagler J">J Nagler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, A" uniqKey="Das A">A Das</name>
</author>
<author>
<name sortKey="Das, P" uniqKey="Das P">P Das</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Komeilipoor, N" uniqKey="Komeilipoor N">N Komeilipoor</name>
</author>
<author>
<name sortKey="Rodger, Mwm" uniqKey="Rodger M">MWM Rodger</name>
</author>
<author>
<name sortKey="Craig, Cm" uniqKey="Craig C">CM Craig</name>
</author>
<author>
<name sortKey="Cesari, P" uniqKey="Cesari P">P Cesari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herrojo, Ruiz M" uniqKey="Herrojo R">Ruiz M Herrojo</name>
</author>
<author>
<name sortKey="Hong, Sb" uniqKey="Hong S">SB Hong</name>
</author>
<author>
<name sortKey="Hennig, H" uniqKey="Hennig H">H Hennig</name>
</author>
<author>
<name sortKey="Altenmuller, E" uniqKey="Altenmuller E">E Altenmüller</name>
</author>
<author>
<name sortKey="Kuhn, Aa" uniqKey="Kuhn A">AA Kühn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sposobin, I" uniqKey="Sposobin I">I Sposobin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinbeis, N" uniqKey="Steinbeis N">N Steinbeis</name>
</author>
<author>
<name sortKey="Koelsch, S" uniqKey="Koelsch S">S Koelsch</name>
</author>
<author>
<name sortKey="Sloboda, Ja" uniqKey="Sloboda J">JA Sloboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hedges, T" uniqKey="Hedges T">T Hedges</name>
</author>
<author>
<name sortKey="Roy, P" uniqKey="Roy P">P Roy</name>
</author>
<author>
<name sortKey="Pachet, F" uniqKey="Pachet F">F Pachet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anglade, A" uniqKey="Anglade A">A Anglade</name>
</author>
<author>
<name sortKey="Benetos, E" uniqKey="Benetos E">E Benetos</name>
</author>
<author>
<name sortKey="Mauch, M" uniqKey="Mauch M">M Mauch</name>
</author>
<author>
<name sortKey="Dixon, S" uniqKey="Dixon S">S Dixon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teitelbaum, T" uniqKey="Teitelbaum T">T Teitelbaum</name>
</author>
<author>
<name sortKey="Balenzuela, P" uniqKey="Balenzuela P">P Balenzuela</name>
</author>
<author>
<name sortKey="Cano, P" uniqKey="Cano P">P Cano</name>
</author>
<author>
<name sortKey="Buldu, Jm" uniqKey="Buldu J">JM Buldú</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Rd" uniqKey="Smith R">RD Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schedl, M" uniqKey="Schedl M">M Schedl</name>
</author>
<author>
<name sortKey="Pohle, T" uniqKey="Pohle T">T Pohle</name>
</author>
<author>
<name sortKey="Knees, P" uniqKey="Knees P">P Knees</name>
</author>
<author>
<name sortKey="Widmer, G" uniqKey="Widmer G">G Widmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cano, P" uniqKey="Cano P">P Cano</name>
</author>
<author>
<name sortKey="Celma, O" uniqKey="Celma O">O Celma</name>
</author>
<author>
<name sortKey="Koppenberger, M" uniqKey="Koppenberger M">M Koppenberger</name>
</author>
<author>
<name sortKey="Buldu, Jm" uniqKey="Buldu J">JM Buldú</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helmholtz, Hl" uniqKey="Helmholtz H">HL Helmholtz</name>
</author>
<author>
<name sortKey="Ellis, Aj" uniqKey="Ellis A">AJ Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Jm" uniqKey="Lee J">JM Lee</name>
</author>
<author>
<name sortKey="Kim, Dj" uniqKey="Kim D">DJ Kim</name>
</author>
<author>
<name sortKey="Kim, Iy" uniqKey="Kim I">IY Kim</name>
</author>
<author>
<name sortKey="Park, Ks" uniqKey="Park K">KS Park</name>
</author>
<author>
<name sortKey="Kim, Si" uniqKey="Kim S">SI Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leicht, Ea" uniqKey="Leicht E">EA Leicht</name>
</author>
<author>
<name sortKey="Newman, Me" uniqKey="Newman M">ME Newman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Good, Bh" uniqKey="Good B">BH Good</name>
</author>
<author>
<name sortKey="De Montjoye, Y A" uniqKey="De Montjoye Y">Y-A de Montjoye</name>
</author>
<author>
<name sortKey="Clauset, A" uniqKey="Clauset A">A Clauset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroll, M" uniqKey="Kroll M">M Kroll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirkpatrick, R" uniqKey="Kirkpatrick R">R Kirkpatrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krummacher, F" uniqKey="Krummacher F">F Krummacher</name>
</author>
<author>
<name sortKey="Struck, M" uniqKey="Struck M">M Struck</name>
</author>
<author>
<name sortKey="Floros, C" uniqKey="Floros C">C Floros</name>
</author>
<author>
<name sortKey="Petersen, P" uniqKey="Petersen P">P Petersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolff, C" uniqKey="Wolff C">C Wolff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landon, Hcr" uniqKey="Landon H">HCR Landon</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
<author>
<name sortKey="Yao, D" uniqKey="Yao D">D Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J Lu</name>
</author>
<author>
<name sortKey="Wu, D" uniqKey="Wu D">D Wu</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Luo, C" uniqKey="Luo C">C Luo</name>
</author>
<author>
<name sortKey="Li, C" uniqKey="Li C">C Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brothers, Hj" uniqKey="Brothers H">HJ Brothers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krumhansl, Cl" uniqKey="Krumhansl C">CL Krumhansl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levitin, Dj" uniqKey="Levitin D">DJ Levitin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdermott, Jh" uniqKey="Mcdermott J">JH McDermott</name>
</author>
<author>
<name sortKey="Lehr, Aj" uniqKey="Lehr A">AJ Lehr</name>
</author>
<author>
<name sortKey="Oxenham, Aj" uniqKey="Oxenham A">AJ Oxenham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masataka, N" uniqKey="Masataka N">N Masataka</name>
</author>
<author>
<name sortKey="Perlovsky, L" uniqKey="Perlovsky L">L Perlovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plantinga, J" uniqKey="Plantinga J">J Plantinga</name>
</author>
<author>
<name sortKey="Trehub, Se" uniqKey="Trehub S">SE Trehub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tramo, Mj" uniqKey="Tramo M">MJ Tramo</name>
</author>
<author>
<name sortKey="Cariani, Pa" uniqKey="Cariani P">PA Cariani</name>
</author>
<author>
<name sortKey="Delgutte, B" uniqKey="Delgutte B">B Delgutte</name>
</author>
<author>
<name sortKey="Braida, Ld" uniqKey="Braida L">LD Braida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bones, O" uniqKey="Bones O">O Bones</name>
</author>
<author>
<name sortKey="Hopkins, K" uniqKey="Hopkins K">K Hopkins</name>
</author>
<author>
<name sortKey="Krishnan, A" uniqKey="Krishnan A">A Krishnan</name>
</author>
<author>
<name sortKey="Plack, Cj" uniqKey="Plack C">CJ Plack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Lazaro, Ja" uniqKey="Garcia Lazaro J">JA Garcia-Lazaro</name>
</author>
<author>
<name sortKey="Ahmed, B" uniqKey="Ahmed B">B Ahmed</name>
</author>
<author>
<name sortKey="Schnupp, Jwh" uniqKey="Schnupp J">JWH Schnupp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Fa" uniqKey="Rodriguez F">FA Rodriguez</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C Chen</name>
</author>
<author>
<name sortKey="Read, Hl" uniqKey="Read H">HL Read</name>
</author>
<author>
<name sortKey="Escabi, Ma" uniqKey="Escabi M">MA Escabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Byj" uniqKey="He B">BYJ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Bj" uniqKey="He B">BJ He</name>
</author>
<author>
<name sortKey="Zempel, Jm" uniqKey="Zempel J">JM Zempel</name>
</author>
<author>
<name sortKey="Snyder, Az" uniqKey="Snyder A">AZ Snyder</name>
</author>
<author>
<name sortKey="Raichle, Me" uniqKey="Raichle M">ME Raichle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Jy" uniqKey="Park J">JY Park</name>
</author>
<author>
<name sortKey="Park, H" uniqKey="Park H">H Park</name>
</author>
<author>
<name sortKey="Kim, Ji" uniqKey="Kim J">JI Kim</name>
</author>
<author>
<name sortKey="Park, Hj" uniqKey="Park H">HJ Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, X" uniqKey="Wan X">X Wan</name>
</author>
<author>
<name sortKey="Cruts, B" uniqKey="Cruts B">B Crüts</name>
</author>
<author>
<name sortKey="Jensen, Hj" uniqKey="Jensen H">HJ Jensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
<author>
<name sortKey="Lugger, M" uniqKey="Lugger M">M Lugger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maccallum, Rm" uniqKey="Maccallum R">RM MacCallum</name>
</author>
<author>
<name sortKey="Mauch, M" uniqKey="Mauch M">M Mauch</name>
</author>
<author>
<name sortKey="Burt, A" uniqKey="Burt A">A Burt</name>
</author>
<author>
<name sortKey="Leroi, Am" uniqKey="Leroi A">AM Leroi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitch, W" uniqKey="Fitch W">W Fitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoenberg, A" uniqKey="Schoenberg A">A Schoenberg</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26545104</article-id>
<article-id pub-id-type="pmc">4636347</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0142431</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-11978</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres</article-title>
<alt-title alt-title-type="running-head">1/f Fluctuation Analysis in Musical Harmony</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Dan</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kendrick</surname>
<given-names>Keith M.</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Levitin</surname>
<given-names>Daniel J.</given-names>
</name>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Chaoyi</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yao</surname>
<given-names>Dezhong</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref rid="cor001" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Department of Psychology, McGill University, Montreal, Canada</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Najbauer</surname>
<given-names>Joseph</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Pécs Medical School, HUNGARY</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: DW CL DY. Performed the experiments: DW. Analyzed the data: DW DY. Contributed reagents/materials/analysis tools: DW KK DL. Wrote the paper: DW KK DL DY.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>dyao@uestc.edu.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>6</day>
<month>11</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>11</issue>
<elocation-id>e0142431</elocation-id>
<history>
<date date-type="received">
<day>29</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-year>2015</copyright-year>
<copyright-holder>Wu et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0142431.pdf"></self-uri>
<abstract>
<p>Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach’s harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.</p>
</abstract>
<funding-group>
<funding-statement>Funding was provided by National Natural Science Foundation of China, 81201159,
<ext-link ext-link-type="uri" xlink:href="http://www.nsfc.gov.cn/">http://www.nsfc.gov.cn/</ext-link>
to DW; China Postdoctoral Science Foundation, 2014M550607,
<ext-link ext-link-type="uri" xlink:href="http://jj.chinapostdoctor.org.cn/">http://jj.chinapostdoctor.org.cn/</ext-link>
, to DW; Fundamental Research Funds for the Central Universities, 2015JBM038, to DW; National Natural Science Foundation of China, 91232725, 81330032,
<ext-link ext-link-type="uri" xlink:href="http://www.nsfc.gov.cn/">http://www.nsfc.gov.cn/</ext-link>
to DY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="3"></table-count>
<page-count count="17"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Throughout history, music has played an important role in people’s daily lives [
<xref rid="pone.0142431.ref001" ref-type="bibr">1</xref>
]. Many studies have attempted to discover why music can so powerfully influence our mood [
<xref rid="pone.0142431.ref002" ref-type="bibr">2</xref>
<xref rid="pone.0142431.ref005" ref-type="bibr">5</xref>
]. Mathematics and physics have often been used to characterize, analyze, model and understand music. For example, the musical chords and voice leadings were modelled by geometric space [
<xref rid="pone.0142431.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0142431.ref007" ref-type="bibr">7</xref>
]. The topology analysis [
<xref rid="pone.0142431.ref008" ref-type="bibr">8</xref>
] and compositional data analysis [
<xref rid="pone.0142431.ref009" ref-type="bibr">9</xref>
] were both used to investigate musical structures. Johannes Kepler’s “
<italic>The Harmony of the World</italic>
” was inspired by music [
<xref rid="pone.0142431.ref010" ref-type="bibr">10</xref>
]. Musical elements and structures have been found to follow a 1/f distribution, termed “fractal” by Mandelbrot [
<xref rid="pone.0142431.ref011" ref-type="bibr">11</xref>
]. The power spectra of musical signals decays in a power law with frequency f as [1/f]
<sup>β</sup>
(where β is the spectral exponent). The DFA (detrended fluctuation analysis) exponent (also called Hurst exponent) is denoted as α, and it is related to β via α = (β+1)/2. Hence, a DFA exponent α may be translated to an asymptotic scaling exponent β = 2*α-1, and the power spectral density can be represented as p(f)~[1/f]
<sup>2*α-1</sup>
. In this work, the DFA exponent α is referred to as the scaling exponent. A signal is considered long-range correlated if its power spectral density (PSD) asymptotically decays in a power law, p(f)∼[1/f]
<sup>β</sup>
for small frequencies f and 0<β<2 [
<xref rid="pone.0142431.ref012" ref-type="bibr">12</xref>
]. The limit β = 0 indicates white noise, the structure of which is entirely unpredictable [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
]; β = 2 is Brownian motion. Hence, long-range correlations are found in a signal when 0.5<α<1.5. When α = β = 1, the signal is the 1/f noise.</p>
<p>The aesthetics of music has been shown to be related to its scale-free exponent [
<xref rid="pone.0142431.ref014" ref-type="bibr">14</xref>
] when applied to pitch structures. Much of the enjoyment of music relates to the balance of predictability and surprise [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
]. The 1/f distribution probably indicates such balance. Indeed, many specific musical elements such as pitch, melody and rhythm follow the scale-free law [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
,
<xref rid="pone.0142431.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0142431.ref017" ref-type="bibr">17</xref>
]. The 1/f distribution of note pitch in music is supported by different hierarchies: the power spectral analysis of audio waves [
<xref rid="pone.0142431.ref014" ref-type="bibr">14</xref>
], the frequency of occurrence of all the notes [
<xref rid="pone.0142431.ref015" ref-type="bibr">15</xref>
], and the fluctuation of pitch [
<xref rid="pone.0142431.ref018" ref-type="bibr">18</xref>
]. For melody, the structure of self-similarity is expressed more directly [
<xref rid="pone.0142431.ref017" ref-type="bibr">17</xref>
]. The rhythm, which is considered highly regular and predictable, is also proved to obey the 1/f power law [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
]. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing [
<xref rid="pone.0142431.ref019" ref-type="bibr">19</xref>
]. And such preference in rhythm is observed in human perception and musical performance [
<xref rid="pone.0142431.ref012" ref-type="bibr">12</xref>
,
<xref rid="pone.0142431.ref020" ref-type="bibr">20</xref>
]. The fractal structure of songs can be influenced by performer's preference [
<xref rid="pone.0142431.ref021" ref-type="bibr">21</xref>
], while the synchronization and accuracy of human movements can also be effected by the consonance and dissonance of music [
<xref rid="pone.0142431.ref022" ref-type="bibr">22</xref>
]. In addition, 1/f noise in the timing of musical performance can be used to assess motoric dysfunctions [
<xref rid="pone.0142431.ref023" ref-type="bibr">23</xref>
]. These findings suggest that the scale-free characteristic of music is an important intrinsic property which may reflect not only a musician’s individual unique contribution but also the learned or acquired influence of previous composers and genres.</p>
<p>The harmony, consonance of notes played simultaneously, is an important feature in Western music. Traditional music theory describes the rules for the use of these harmony intervals or chords in composition [
<xref rid="pone.0142431.ref024" ref-type="bibr">24</xref>
]. In Western music, dissonance is the quality of sounds that are perceived as “unstable” and have an aural “need” to “resolve” to a “stable” consonance. There are many relative constant patterns of chord progressions. When one chord occurs, the next chord will be expected or predicted quite easily according to the patterns. Actually, the expectations of harmony can influence the emotion [
<xref rid="pone.0142431.ref025" ref-type="bibr">25</xref>
]. To describe the harmony rules, a geometric model is used, in which a chord can be represented as a point in a geometrical space and line segments represent mappings from the notes of one chord to those of another [
<xref rid="pone.0142431.ref007" ref-type="bibr">7</xref>
]. However, the fluctuations of the consonance in real musical pieces may change even in one beat if there is more than one note played consecutively in this beat, so the harmony variation may not be regular according to the theory.</p>
<p>The harmony, as a mark of a composer, can be used to identify the composers or genres [
<xref rid="pone.0142431.ref026" ref-type="bibr">26</xref>
,
<xref rid="pone.0142431.ref027" ref-type="bibr">27</xref>
]. Several studies used networks to describe the relationships among the composers. The network of notes in a score, and that of different musicians, has been evaluated based on the association between notes or their subjective similarity judged by musical editors [
<xref rid="pone.0142431.ref028" ref-type="bibr">28</xref>
]. Two composers are considered having close relationship when their works appeared in one record [
<xref rid="pone.0142431.ref029" ref-type="bibr">29</xref>
], on the same webpage [
<xref rid="pone.0142431.ref030" ref-type="bibr">30</xref>
], or in one playlist [
<xref rid="pone.0142431.ref031" ref-type="bibr">31</xref>
]. Most networks of composers are established by subjective judgment. In this study, we show that a network based on consonance fluctuations of the composers and genres can reveal some intrinsic properties of music.</p>
<p>Here we are interested in the intrinsic mutual relationships among typical musical pieces within and across different eras according to their mathematical characteristics. We try to find the characteristics of consonance fluctuations for different composers and genres, and networks of composers and genres are established according to similarity of musical harmony. Because music in the western tradition builds on the styles and structures of previously written music, compositions from different eras are not entirely independent from one another. Here we seek to quantify the latent structure underlying musical pieces through their harmony fluctuations spanning composers and genres. In general, harmonic fluctuation may be characterized by chord,since stability and predictability are the soul of chord progression in a work, we pay special attention to the stability of chord which are related to the interval consonance, so we use the fluctuation of pairwise consonance to approximate this property (
<xref rid="pone.0142431.s006" ref-type="supplementary-material">S1 Table</xref>
), such an approach is based on the basic physical properties of notes thus more direct and understandable.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Materials and Methods</title>
<sec id="sec003">
<title>Processing of the musical scores</title>
<p>We selected 1191 musical movements from 568 compositions written by 20 composers from across 9 different genres spanning from the late 16
<sup>th</sup>
to the early 20
<sup>th</sup>
century. As in prior work, each movement was treated as an independent piece [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
]. MIDI files were obtained for analysis from the Humdrum Kern database [
<xref rid="pone.0142431.ref032" ref-type="bibr">32</xref>
], allowing the pitch, duration and onset time of all the notes to be automatically extracted. All the files can be found in the Supporting Information
<xref rid="pone.0142431.s005" ref-type="supplementary-material">S1 File</xref>
. At least 9 compositions with an average of 60 movements were analyzed for each composer, as summarized in
<xref rid="pone.0142431.t001" ref-type="table">Table 1</xref>
. Nine different genres were selected and at least 13 movements were evaluated for each genre, as summarized in
<xref rid="pone.0142431.t002" ref-type="table">Table 2</xref>
.</p>
<table-wrap id="pone.0142431.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.t001</object-id>
<label>Table 1</label>
<caption>
<title>Statistics for the compositions of different composers.</title>
</caption>
<alternatives>
<graphic id="pone.0142431.t001g" xlink:href="pone.0142431.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Composer (period)</th>
<th align="center" rowspan="1" colspan="1">Number of movements</th>
<th align="left" rowspan="1" colspan="1">α (original)</th>
<th align="left" rowspan="1" colspan="1">α (shuffled)</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Bach (1685–1750)</td>
<td align="center" rowspan="1" colspan="1">145</td>
<td align="left" rowspan="1" colspan="1">0.86 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Beethoven (1770–1827)</td>
<td align="center" rowspan="1" colspan="1">161</td>
<td align="left" rowspan="1" colspan="1">0.86 ± 0.07</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Brahms (1833–1897)</td>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0.86 ± 0.05</td>
<td align="left" rowspan="1" colspan="1">0.49 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Buxtehude (1639–1707)</td>
<td align="center" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">0.92 ± 0.16</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Chopin (1810–1849)</td>
<td align="center" rowspan="1" colspan="1">84</td>
<td align="left" rowspan="1" colspan="1">0.87 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Clementi (1756–1832)</td>
<td align="center" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">0.79 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Corelli (1653–1713)</td>
<td align="center" rowspan="1" colspan="1">130</td>
<td align="left" rowspan="1" colspan="1">0.94 ± 0.12</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Frescobaldi (1583–1643)</td>
<td align="center" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">0.90 ± 0.06</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Grieg (1843–1907)</td>
<td align="center" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">0.84 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.52 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Haydn (1732–1809)</td>
<td align="center" rowspan="1" colspan="1">158</td>
<td align="left" rowspan="1" colspan="1">0.87 ± 0.08</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hummel (1778–1837)</td>
<td align="center" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">1.09 ± 0.13</td>
<td align="left" rowspan="1" colspan="1">0.54 ± 0.05</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Joplin (1868–1917)</td>
<td align="center" rowspan="1" colspan="1">45</td>
<td align="left" rowspan="1" colspan="1">0.80 ± 0.08</td>
<td align="left" rowspan="1" colspan="1">0.52 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MacDowell (1860–1908)</td>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">0.91 ± 0.11</td>
<td align="left" rowspan="1" colspan="1">0.49 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Monteverdi (1567–1643)</td>
<td align="center" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">0.92 ± 0.05</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mozart (1756–1791)</td>
<td align="center" rowspan="1" colspan="1">160</td>
<td align="left" rowspan="1" colspan="1">0.82 ± 0.08</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Scarlatti (1685–1757)</td>
<td align="center" rowspan="1" colspan="1">59</td>
<td align="left" rowspan="1" colspan="1">0.79 ± 0.07</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Schubert (1797–1828)</td>
<td align="center" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">0.80 ± 0.12</td>
<td align="left" rowspan="1" colspan="1">0.52 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Scriabin (1872–1915)</td>
<td align="center" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">0.85 ± 0.12</td>
<td align="left" rowspan="1" colspan="1">0.52 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sousa (1854–1932)</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">0.85 ± 0.10</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Vivaldi (1678–1741)</td>
<td align="center" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">0.91 ± 0.11</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>For a ± b, a is the mean value, and b is the standard deviation.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone.0142431.t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.t002</object-id>
<label>Table 2</label>
<caption>
<title>Statistics for the compositions of different genres.</title>
</caption>
<alternatives>
<graphic id="pone.0142431.t002g" xlink:href="pone.0142431.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Genres</th>
<th align="left" rowspan="1" colspan="1">Number of movements</th>
<th align="left" rowspan="1" colspan="1">α (original)</th>
<th align="left" rowspan="1" colspan="1">α (shuffled)</th>
<th align="left" rowspan="1" colspan="1">
<italic>P</italic>
value</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Etude</td>
<td align="center" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">0.85 ± 0.11</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Fugue</td>
<td align="center" rowspan="1" colspan="1">62</td>
<td align="left" rowspan="1" colspan="1">0.88 ± 0.06</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Mazurka</td>
<td align="center" rowspan="1" colspan="1">52</td>
<td align="left" rowspan="1" colspan="1">0.88 ± 0.08</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Prelude</td>
<td align="center" rowspan="1" colspan="1">87</td>
<td align="left" rowspan="1" colspan="1">0.94 ± 0.13</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.05</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Quartet</td>
<td align="center" rowspan="1" colspan="1">305</td>
<td align="left" rowspan="1" colspan="1">0.87 ± 0.08</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ragtime</td>
<td align="center" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">0.78 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sonata</td>
<td align="center" rowspan="1" colspan="1">378</td>
<td align="left" rowspan="1" colspan="1">0.86 ± 0.12</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.04</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sonatina</td>
<td align="center" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">0.81 ± 0.09</td>
<td align="left" rowspan="1" colspan="1">0.50 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Waltz</td>
<td align="center" rowspan="1" colspan="1">13</td>
<td align="left" rowspan="1" colspan="1">0.85 ± 0.07</td>
<td align="left" rowspan="1" colspan="1">0.51 ± 0.03</td>
<td align="left" rowspan="1" colspan="1">P<0.001</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t002fn001">
<p>For a ± b, a is the mean value, and b is the standard deviation.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>A musical score represents the pitch and duration of each note in a musical piece, as is shown with an example in
<xref rid="pone.0142431.g001" ref-type="fig">Fig 1A</xref>
. Here we first changed the score into a graph, with x axis as time and y axis as the pitch. In MIDI notation, each pitch corresponds to a number. For example, the middle C, C4 in scientific pitch notation (SPN), 261.63 Hz, is 60. Each note now can be represented by a line segment in the graph. The starting point represents the time when a note is on, and the end point represents the note off, as in
<xref rid="pone.0142431.g001" ref-type="fig">Fig 1B</xref>
. Then the consonance was computed, and a curve of consonance was obtained. The consonance of the musical intervals corresponds to the ratio of the frequency of the notes. The ratio 2:1 produces an octave; 3:2 produces a fifth and so on. There are many types of note combinations; some are consonant (e.g., the perfect fifth with a frequency ratio of 3:2), and some are dissonant (e.g., the minor second with a frequency ratio of 16:15). The corresponding consonant rank for all the intervals in an octave is shown in
<xref rid="pone.0142431.t003" ref-type="table">Table 3</xref>
. To measure the consonance of intervals, roughness, an auditory attribute, was proposed by Helmholtz as a sensory basis for musical consonance within the tonal system [
<xref rid="pone.0142431.ref033" ref-type="bibr">33</xref>
]. Here we adopted the consonant rank (CR) as the measure, which was a visually direct, convenient but coarse-grained value of the roughness.</p>
<fig id="pone.0142431.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g001</object-id>
<label>Fig 1</label>
<caption>
<title>The extraction of the consonance rank series from a musical score.</title>
<p>(A) An example musical score from Bach’s work BWV 953. (B) The MIDI information corresponding to the piece of music in A; the arrows represent the time point for the consonance rank (CR) series computation. (C) The steps for the CR series calculation. The pitches are initially obtained from the MIDI information (at the given arrow point, the pitches are B4 (71), G4 (67), F3 (53)); then, the intervals of every two notes are calculated, and the intervals that exceeded one octave (12 semitones) are adjusted to one octave. Subsequently, the intervals are translated to the CR according to the mapping rule in
<xref rid="pone.0142431.t003" ref-type="table">Table 3</xref>
; finally, the maximum CR value is acquired as the value for the CR series at the given time point.</p>
</caption>
<graphic xlink:href="pone.0142431.g001"></graphic>
</fig>
<table-wrap id="pone.0142431.t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.t003</object-id>
<label>Table 3</label>
<caption>
<title>The mapping rule for pitch interval to the consonance rank.</title>
</caption>
<alternatives>
<graphic id="pone.0142431.t003g" xlink:href="pone.0142431.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="center" rowspan="1" colspan="1">Intervals (semitone)</th>
<th align="center" rowspan="1" colspan="1">Interval name</th>
<th align="center" rowspan="1" colspan="1">Consonance rank</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" rowspan="1" colspan="1">0 or 12</td>
<td align="center" rowspan="1" colspan="1">unison/octave</td>
<td align="center" rowspan="1" colspan="1">1</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">minor second</td>
<td align="center" rowspan="1" colspan="1">11</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">major second</td>
<td align="center" rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">3</td>
<td align="center" rowspan="1" colspan="1">minor third</td>
<td align="center" rowspan="1" colspan="1">6</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">major third</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">perfect fourth</td>
<td align="center" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">6</td>
<td align="center" rowspan="1" colspan="1">augmented fourth/diminished fifth</td>
<td align="center" rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">7</td>
<td align="center" rowspan="1" colspan="1">perfect fifth</td>
<td align="center" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">minor sixth</td>
<td align="center" rowspan="1" colspan="1">7</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">9</td>
<td align="center" rowspan="1" colspan="1">major sixth</td>
<td align="center" rowspan="1" colspan="1">5</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">minor seventh</td>
<td align="center" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">11</td>
<td align="center" rowspan="1" colspan="1">major seventh</td>
<td align="center" rowspan="1" colspan="1">10</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>A musical harmony/chord progression is defined by a change from a “stable” condition to an “unstable” condition and then back to a “stable” condition. Here, a stable pitch combination often consists of consonant intervals, whereas the dissonant intervals often induce unstable feelings. However, as consonance and dissonance are relative in music, we do not discriminate them explicitly for each time point; we just calculated the note pitch intervals between every two notes first in
<xref rid="pone.0142431.g001" ref-type="fig">Fig 1C</xref>
. Intervals that exceeded one octave (12 semitones) were converted into one octave with the mode of 12. And based on the corresponding consonant rank (CR) (
<xref rid="pone.0142431.t003" ref-type="table">Table 3</xref>
), the CR values of the intervals were found out. Then the maximum CR was taken to represent the relatively dissonant interval of this moment (
<xref rid="pone.0142431.g001" ref-type="fig">Fig 1C</xref>
). At last, we obtained a curve of the CR values for each music piece.</p>
<p>In this way, we pay more attention to the relative dissonant intervals. In fact, dissonance is not noise or redundancy in music; on the contrary, it plays a prominent role in many traditional musical cultures, even being considered to be the main motivation for musical progression. In short, a consonant interval is the main body and elemental requirement of a piece of almost acknowledged musical works, and it is the specific use of the relative dissonance that may lead to the differences in music genres and styles of musicians.</p>
</sec>
<sec id="sec004">
<title>Detrended fluctuation analysis</title>
<p>Detrended fluctuation analysis (DFA) is a useful tool for analyzing the nonlinear dynamic properties of a system [
<xref rid="pone.0142431.ref034" ref-type="bibr">34</xref>
]; it is also utilized to estimate the scaling exponent in a power law distribution [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
]. Here the DFA is used to obtain the scaling exponent of the musical CR value curves. In detrended fluctuation analysis, the time series with number of N samples is integrated as.
<disp-formula id="pone.0142431.e001">
<alternatives>
<graphic xlink:href="pone.0142431.e001.jpg" id="pone.0142431.e001g" position="anchor" mimetype="image" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:mrow>
<mml:mi>y</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mstyle displaystyle="true">
<mml:munderover>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mi>m</mml:mi>
</mml:munderover>
<mml:mrow>
<mml:mo stretchy="false">[</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>t</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo></mml:mo>
<mml:mover accent="true">
<mml:mi>x</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
<mml:mo stretchy="false">]</mml:mo>
</mml:mrow>
</mml:mstyle>
</mml:mrow>
</mml:math>
</alternatives>
<label>(1)</label>
</disp-formula>
where
<italic>x</italic>
(
<italic>t</italic>
) is the sequence at time
<italic>t</italic>
, and
<inline-formula id="pone.0142431.e002">
<alternatives>
<graphic xlink:href="pone.0142431.e002.jpg" id="pone.0142431.e002g" position="anchor" mimetype="image" orientation="portrait"></graphic>
<mml:math id="M2">
<mml:mover accent="true">
<mml:mi>x</mml:mi>
<mml:mo>¯</mml:mo>
</mml:mover>
</mml:math>
</alternatives>
</inline-formula>
is the average of the entire time series. Then
<italic>y</italic>
(
<italic>m</italic>
), integrated time series, is divided into subsequences of equal length L. In each window, the y-coordinate of a least-square line which fits to the data is denoted by
<italic>y</italic>
<sub>
<italic>L</italic>
</sub>
(
<italic>m</italic>
). Finally, the average fluctuation as a function of window size L is given by.
<disp-formula id="pone.0142431.e003">
<alternatives>
<graphic xlink:href="pone.0142431.e003.jpg" id="pone.0142431.e003g" position="anchor" mimetype="image" orientation="portrait"></graphic>
<mml:math id="M3">
<mml:mrow>
<mml:mi>F</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>L</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:msqrt>
<mml:mrow>
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mi>N</mml:mi>
</mml:mfrac>
<mml:mstyle displaystyle="true">
<mml:munderover>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:munderover>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mo stretchy="false">[</mml:mo>
<mml:mi>y</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>y</mml:mi>
<mml:mi>L</mml:mi>
</mml:msub>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo stretchy="false">]</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msup>
</mml:mrow>
</mml:mstyle>
</mml:mrow>
</mml:msqrt>
</mml:mrow>
</mml:math>
</alternatives>
<label>(2)</label>
</disp-formula>
</p>
<p>If there is a straight line on a log-log graph, it signifies a statistical self-affinity expressed as
<italic>F</italic>
(
<italic>L</italic>
) ∝
<italic>L</italic>
<sup>
<italic>α</italic>
</sup>
. The scaling exponent α is calculated as the slope of a straight line fit to the log-log graph of
<italic>L</italic>
against
<italic>F(L)</italic>
using a least-squares regression. If the exponent is less than 0.5, the signal is anti-correlated; if the exponent is 0.5, the signal is uncorrelated (white noise). If the exponent is greater than 0.5, the signal may be correlated. An α value of 1 indicates 1/f noise, which is called scale free.</p>
<p>The scaling exponent α was calculated from the CR time series and we calculated the scaling exponent for the CR series for each musical movement. The length of each musical movement was different, the average CR time series length was 3777 and the shortest was 600 (sampling rate was 20 Hz).
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2A</xref>
showed the CR time series of the BWV 953. And
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2B</xref>
was the scaling exponent of this music piece. For statistical comparison, a shuffled random signal was generated (an example was shown in
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2C</xref>
) and the scaling exponent was computed (
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2D</xref>
). For every musical movement, the CR series would be randomly shuffled so that each piece of music would have a contrastive signal. Thus the consonance of the musical movement was kept in a random sequence. The Wilcoxon signed rank test was used to test the difference between the CR series and the shuffled counterparts and statistical tests were performed in Matlab. A two-tailed t test was used to analyze the differences across the composers and genres.</p>
<fig id="pone.0142431.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g002</object-id>
<label>Fig 2</label>
<caption>
<title>The consonance rank series and scaling exponent of BWV 953 and shuffled signal.</title>
<p>(A) The consonance rank series of BWV 953. (B) The scaling exponent of the signal in A. (C) The shuffled series related to the signal in A. (D) The scaling exponent of the shuffled series.</p>
</caption>
<graphic xlink:href="pone.0142431.g002"></graphic>
</fig>
</sec>
<sec id="sec005">
<title>Networks of composers and genres</title>
<p>The established composer network was based on the differences among the composers. The genre network was based on the differences among the genres. The composers/genres were the nodes in the graph. When two musicians or two genres had no significant differences (t test,
<italic>P</italic>
>0.05), a connection was considered to exist between both. We focused on the degree, the out-in degree, and the modularity of the network.</p>
<p>In graph theory, the degree of a vertex (node) is the number of edges linked to the vertex (node). When it is a directed network, there are two kinds of edges for a node, the edges originating from the node (out) and those directed into it (in). The out-in-degree is the difference between the number of out-going lines and the number of incoming lines. In our composers’ network, the directions of the edges were defined according to the time they were born, thus the edge was from the composer who was born early to the one born late.</p>
<p>The “community structure” is useful for analyzing the relationship among the musicians. It divides them naturally into communities or modules with dense connections within communities but sparser connections between them. The modularity is a statistic that quantifies the degree to which the network may be subdivided into such clearly delineated groups [
<xref rid="pone.0142431.ref035" ref-type="bibr">35</xref>
]. In this study, we used a method to find the optimal community structure [
<xref rid="pone.0142431.ref036" ref-type="bibr">36</xref>
], which was a subdivision of the network into non-overlapping groups of nodes in a way that maximized the number of within-group edges but minimized the number of between-group edges. The result of community structure in this study was the average for 100 runs.</p>
</sec>
</sec>
<sec sec-type="results" id="sec006">
<title>Results</title>
<p>The scaling exponent (α) was calculated after the interval consonant rank (CR) series were extracted from a musical movement. The α of the exampled music (Bach's BWV953) is 0.82 (
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2B</xref>
). This means that in the log-domain, the fluctuation increased exponentially with the window size of the sequence as 1/f.
<xref rid="pone.0142431.g002" ref-type="fig">Fig 2D</xref>
illustrates the scaling exponent of the shuffled signal of the example musical movement. The α is 0.5, which means that the shuffled signal is just white noise. This finding indicates that the 1/f fluctuation reflects the global structure across the entire piece, and this structure is a consequence of the specific ordering of the harmony sequence, not their mere presence in the piece at random locations.</p>
<p>The results of all the 1191 movements are shown in
<xref rid="pone.0142431.g003" ref-type="fig">Fig 3</xref>
. The average scaling exponent is 0.87, while the average exponent for the shuffled signals is 0.51 (
<xref rid="pone.0142431.g003" ref-type="fig">Fig 3A</xref>
). This finding demonstrates that across the analyzed compositions, the fluctuation of harmony is characterized by the 1/f power law. We found the average exponent for all the 20 composers was approximately 0.9 (
<xref rid="pone.0142431.g003" ref-type="fig">Fig 3B</xref>
,
<xref rid="pone.0142431.t001" ref-type="table">Table 1</xref>
), indicating that the consonant intervals do indeed exhibit 1/f structure. The shuffled series showed an α value of approximately 0.5, i.e. akin white noise, which was significantly different from the origin (
<italic>P</italic>
<0.01,
<xref rid="pone.0142431.t001" ref-type="table">Table 1</xref>
). This provides strong evidence for the 1/f characteristic of the consonance information. The composer Hummel (1778–1837) had the largest α value (1.1±0.1) (mean±s.d.). Beethoven (α = 0.86±0.07) (1770–1827), who lived at approximately the same period, had a significantly different distribution of exponents from Hummel (
<italic>P</italic>
<0.05). However, “the three Bs” in classical music history, i.e., Bach (α = 0.86±0.09) (1685–1750), Brahms (α = 0.86±0.05) (1833–1897) and Beethoven, had equivalent exponents, despite living in different eras. These results indicate that composers may have different characteristics despite living in the same era, and the similarity of the CR properties may not be correlated with the era of the composers.
<xref rid="pone.0142431.g003" ref-type="fig">Fig 3C</xref>
shows the results for 9 different genres and confirms that they all follow the scale-free law. The α values range from 0.78 to 0.94 and are significantly different from their respective shuffled counterparts (
<italic>P</italic>
<0.01,
<xref rid="pone.0142431.t002" ref-type="table">Table 2</xref>
). The preludes had the largest α values, indicating the most consonant interval variety. The ragtime genre had the smallest α value among these genres, indicating that ragtime has a unique consonance fluctuation.</p>
<fig id="pone.0142431.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g003</object-id>
<label>Fig 3</label>
<caption>
<title>The scaling exponents for all the music movements across different composers and genres.</title>
<p>(A) The scaling exponent of all the 1191 musical movements and the corresponding shuffled counterparts. (B) The scaling exponents for 20 composers. (C) The scaling exponents for 9 different genres.</p>
</caption>
<graphic xlink:href="pone.0142431.g003"></graphic>
</fig>
<p>To evaluate the inherited relationships among different musicians, a network diagram of composers was constructed based on their exponent values of CR series (
<xref rid="pone.0142431.g004" ref-type="fig">Fig 4</xref>
). This network analysis reveals that the composers who lived in later eras usually had greater exponent values than those who lived in earlier ones. The composer Hummel was completely isolated in this analysis, indicating that he was unique in his use of musical consonance. Indeed, some critics have suggested that Hummel’s music took a different direction from that of Beethoven by challenging the classical harmonic structures and stretch the sonata form [
<xref rid="pone.0142431.ref037" ref-type="bibr">37</xref>
]. The second-smallest degree belonged to Scarlatti; his use of the Phrygian mode and other tonal inflections was relatively alien to European music at the time. Many of Scarlatti’s dissonances and figurations were suggestive of the guitar [
<xref rid="pone.0142431.ref038" ref-type="bibr">38</xref>
]. Brahms had a large degree in the network, and it was known that he venerated Beethoven; some passages in his works were reminiscent of Beethoven’s style [
<xref rid="pone.0142431.ref039" ref-type="bibr">39</xref>
]. Brahms was also influenced by Mozart, Haydn and Bach [
<xref rid="pone.0142431.ref039" ref-type="bibr">39</xref>
]. These wide relationships demonstrate the broad links between Brahms and other composers. The composers Scriabin and Sousa lived in the 20th century, and thus had learned from many predecessors and had greater degrees. The only small degree in the Romantic era was that belonging to Joplin, who was famous for his unique musical style, ragtime. This result indicates that Joplin’s ragtime was novel in terms of dissonance fluctuation.</p>
<fig id="pone.0142431.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g004</object-id>
<label>Fig 4</label>
<caption>
<title>The network of the composers.</title>
<p>The nodes corresponded to the composers, and the connections among the nodes are established according to the difference between the exponents of any two composers over all of their movements. When the difference is not significant (
<italic>P</italic>
>0.05) in t test, a line linking the two composers is assumed. The composers in the network were put into two groups (red and blue) according to the network modularity. The size of the circle indicates the degree (the number of lines).</p>
</caption>
<graphic xlink:href="pone.0142431.g004"></graphic>
</fig>
<p>There were two groups in the composer network according to the network modularity analysis. This supports the notion of Bach as “the father of harmony” since composers before Bach were in one group whereas most after him were in his group (10 in Bach’s group, 4 in the other group). Even the composers after Bach who were not in his group were shown to be connected to him by the network analysis.</p>
<p>We further analyzed the relations of these composers with their eras. As shown in
<xref rid="pone.0142431.g005" ref-type="fig">Fig 5A</xref>
, we found that in the Baroque era, composers had connections other than with Bach and Scarlatti. In the classical era, only Mozart and Clementi had connections. The composers in the transition era had no connections whereas those in the Romantic era had strong connections among them. This indicates that the musicians in the Baroque and Romantic eras influenced each other. We also found that composers before and within the Baroque era affected almost all subsequent ones, expecially the Romantic era. The composers in the Classical and transition periods showed fewer connections with Baroque, but more connetions with Romantic ones. Thus Classical and transition era composers had styles very different from previous ones. Overall, Bach had the greatest influence, which lends credence to Bach’s title of the “original father of harmony” [
<xref rid="pone.0142431.ref040" ref-type="bibr">40</xref>
]. Mozart, Beethoven, Chopin and Brahms were among his most prominent admirers; they began writing in a more contrapuntal style after being exposed to Bach’s music. The second-most influential composer was Mozart (according to this analysis), who was clearly established as an important figure in music history and about whom Joseph Haydn wrote that “posterity will not see such a talent again in 100 years” [
<xref rid="pone.0142431.ref041" ref-type="bibr">41</xref>
]. Bach, Mozart and Beethoven had almost no connections with composers before them. On the other hand they had many connections with composers after them. We also defined a cultural heritage direction of the network edges according to their relative birth order, and then the out-in degree was obtained as an indicator of influence. A high positive value of the out-in degree may indicate that the composer had an important influence on the evolution of music, similar to the source of musical lineages, whereas a low or negative out-in degree means that the composer mainly inherited their style from older generations (
<xref rid="pone.0142431.g005" ref-type="fig">Fig 5B</xref>
). Together these findings indicate that Bach and Mozart were both the most influential in their own eras, as well as on the works of the composers in subsequent eras, thereby further confirming their reputation as key figures in the history of music. The analysis shows that after Bach and Mozart, Monteverdi, Frescobaldi and Buxtehude were the most influential and their works were also occasionally imitated by others.</p>
<fig id="pone.0142431.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g005</object-id>
<label>Fig 5</label>
<caption>
<title>The network of composers in different eras.</title>
<p>(A) The composers are arranged according to the eras they belonged to and different colors are used to identify the eras. The arrow around all the nodes represents the time. The size of the circle indicates the influence of the composer (out-in degree). Red lines are used for composers within era. (B) The influence (out-in degree) of the nodes in the composers’ network.</p>
</caption>
<graphic xlink:href="pone.0142431.g005"></graphic>
</fig>
<p>Similarly, we constructed a network of genres (
<xref rid="pone.0142431.g006" ref-type="fig">Fig 6</xref>
) which revealed that the waltz and the etude had the largest degrees and that the smallest ones corresponded to ragtime and prelude genres. The waltz is defined by its strong rhythmic pattern and has remained popular for hundreds of years [
<xref rid="pone.0142431.ref042" ref-type="bibr">42</xref>
], so it is not surprising that its harmony influences many other genres. Etudes are usually short and difficult to play; designed to provide practice material for perfecting specific technical skills [
<xref rid="pone.0142431.ref042" ref-type="bibr">42</xref>
] and include many varieties of consonance. Ragtime and prelude are somewhat specialised genres, and thus their degrees are unsurprisingly small. The broad relationships among all the studied genres occurred because they were widely adopted by various composers of different eras suggesting that some specific consonant interval might be at the heart of all of the various genres causing them to be widely linked. Indeed, current practice in musical analysis emphasises an important role for the consonant interval series in various genre studies and the role of harmony for genre classification [
<xref rid="pone.0142431.ref027" ref-type="bibr">27</xref>
].</p>
<fig id="pone.0142431.g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0142431.g006</object-id>
<label>Fig 6</label>
<caption>
<title>The network of genres.</title>
<p>When the difference of any two genres is not significant (
<italic>P</italic>
>0.05) in a t test, a line between the two genres is assumed. The size of the nodes represents the degrees.</p>
</caption>
<graphic xlink:href="pone.0142431.g006"></graphic>
</fig>
</sec>
<sec sec-type="conclusions" id="sec007">
<title>Discussion</title>
<p>In summary, we have demonstrated an interesting characteristic of the music harmony. Previous studies have demonstrated the scale-free properties of the pitch [
<xref rid="pone.0142431.ref015" ref-type="bibr">15</xref>
,
<xref rid="pone.0142431.ref018" ref-type="bibr">18</xref>
,
<xref rid="pone.0142431.ref043" ref-type="bibr">43</xref>
], rhythm [
<xref rid="pone.0142431.ref013" ref-type="bibr">13</xref>
], intensity [
<xref rid="pone.0142431.ref044" ref-type="bibr">44</xref>
], melody [
<xref rid="pone.0142431.ref015" ref-type="bibr">15</xref>
<xref rid="pone.0142431.ref017" ref-type="bibr">17</xref>
] and structure [
<xref rid="pone.0142431.ref045" ref-type="bibr">45</xref>
] of a large number of musical compositions. The current findings show for the first time that consonance fluctuation in music obeys the same law.</p>
<p>In fact, as comparisons, we also calculated the pitch and chord fluctuation for the above music movements (
<xref rid="pone.0142431.t001" ref-type="table">Table 1</xref>
) in this work. The pitch series were extracted from the highest pitch at each time point. For example, in
<xref rid="pone.0142431.g001" ref-type="fig">Fig 1C and 1B</xref>
(71) would be chosen as the representative pitch. For the chord fluctuation analysis, the key of the movement was found first [
<xref rid="pone.0142431.ref046" ref-type="bibr">46</xref>
]; then the chord name and its stability rank. At last, the chord stability rank series were obtained (
<xref rid="pone.0142431.s006" ref-type="supplementary-material">S1 Table</xref>
).</p>
<p>The average DFA exponent of pitch was 0.9, which was larger than that of the consonance interval. For composers, Grieg, Bach, Frescobaldi and Corelli, the values were very close to 1.0. For genres, the scaling exponents of pitch were all larger than that of consonance interval, and prelude and fugue were the largest and second largest values, the trend was the same as the consonance fluctuation (
<xref rid="pone.0142431.s001" ref-type="supplementary-material">S1 Fig</xref>
). These results support that pitch fluctuation does obey the 1/f structure [
<xref rid="pone.0142431.ref018" ref-type="bibr">18</xref>
].</p>
<p>The average DFA exponent of chord fluctuation was 0.87, and the composer Hummel had the largest α value (1.0±0.1). Beethoven (α = 0.85±0.07) had a significantly different distribution of exponents from Hummel (
<italic>P</italic>
<0.05). “The three Bs” in classical music history, i.e., Bach (α = 0.87±0.09), Brahms (α = 0.88±0.05) and Beethoven, had approximate equivalent exponents, despite living in different eras. For different genres, preludes had the largest α values, while ragtime had the smallest α value among these genres (
<xref rid="pone.0142431.s002" ref-type="supplementary-material">S2 Fig</xref>
). Interestingly, these relative relations are similar to those of consonance intervals.</p>
<p>According to the consonance fluctuation, composers Bach, Mozart et al. displayed their special characters in musical history. However, according to pitch fluctuation, the influence was based on the eras (
<xref rid="pone.0142431.s003" ref-type="supplementary-material">S3 Fig</xref>
). Composers in early eras had high out-in degree, while composers in late eras had low out-in degree. This tendency existed in chord fluctuation, too, except with Monteverdi and Mozart (
<xref rid="pone.0142431.s004" ref-type="supplementary-material">S4 Fig</xref>
). However, Monteverdi showed lower influence than composers of Baroque era, indicating that composers in Baroque had high influence than in Renaissance for chord utilizing. Mozart had quite high influence suggested that his feature of chord using affected other composers. The influence of Bach was not a highlight in pitch and chord. The reason may be that Bach’s famous counterpoint works was not expressed in pitch and chord fluctuation, but showed in consonance. Therefore, as “the father of harmony”, Bach actually played the most important role in the counterpoint works and established a new way for musical harmony using through interval consonance.</p>
<p>The scale-free distribution of musical properties is thought to be related to their aesthetic quality [
<xref rid="pone.0142431.ref014" ref-type="bibr">14</xref>
,
<xref rid="pone.0142431.ref015" ref-type="bibr">15</xref>
]. An optimal balance of predictability and surprise may cause the pleasing feelings in music appreciation [
<xref rid="pone.0142431.ref047" ref-type="bibr">47</xref>
]. When music is played, listeners expect the next note, not only for its pitch, duration, but also for the harmony. Compared to these basic music elements such as pitch, duration, harmony is more complicated and considered to be a distinction central to Western music [
<xref rid="pone.0142431.ref048" ref-type="bibr">48</xref>
]. The harmony reflects cultural customs [
<xref rid="pone.0142431.ref049" ref-type="bibr">49</xref>
], for there are specific styles without using harmony, like Chinese folk music. However, there are different opinions concerning whether the perception of specific harmony patterns is innate or not. Whatever the preference for consonant intervals is underlain by familiarity [
<xref rid="pone.0142431.ref050" ref-type="bibr">50</xref>
], or is a production of neurons' firing action potentials [
<xref rid="pone.0142431.ref051" ref-type="bibr">51</xref>
] and the brainstem temporal coding [
<xref rid="pone.0142431.ref052" ref-type="bibr">52</xref>
], our findings in this study provides some evidences that music consonance fluctuations obey the 1/f law across centuries, especially with the most famous composers in history. That may be a new way to investigate the relation between human and music harmony.</p>
<p>Actually, human perception is known to focus on scale-free signals in the environment [
<xref rid="pone.0142431.ref053" ref-type="bibr">53</xref>
,
<xref rid="pone.0142431.ref054" ref-type="bibr">54</xref>
], and physiological signals follow the same law, as evidenced by patterns of brain electrical activity [
<xref rid="pone.0142431.ref054" ref-type="bibr">54</xref>
<xref rid="pone.0142431.ref056" ref-type="bibr">56</xref>
]. The consonance plays an important role in music perception. Since the human nerves are sensitive to 1/f noise, the harmony pattern of that structure exists when the composers wrote their works. The products of human creativity such as music, painting are also frequently inspired by our experience of the natural world. Although individual differences may enrich the variety of creative expression and shape its evolution, the relatively stable influence of the scale-free framework provides a platform ensuring fundamental relationship between the artistic works of different individuals. This also effectively creates a defining feature that characterises, encompasses and sets the boundaries for all forms of human art. It also resonates strongly with the Chinese traditional idea of the “oneness of man and nature”.</p>
<p>The consonance in music can cause pleasant feeling while dissonance may cause unpleasant one [
<xref rid="pone.0142431.ref048" ref-type="bibr">48</xref>
], and they elicit different EEG gamma activity [
<xref rid="pone.0142431.ref057" ref-type="bibr">57</xref>
]. The brain networks are different when the musicians perform music in a mechanical manner or a more emotionally rich manner [
<xref rid="pone.0142431.ref058" ref-type="bibr">58</xref>
]. And the harmony progressions may enhance the emotion expression [
<xref rid="pone.0142431.ref024" ref-type="bibr">24</xref>
]. So the harmony features are used for emotion recognition [
<xref rid="pone.0142431.ref059" ref-type="bibr">59</xref>
]. Therefore, the 1/f distribution may be a bridge between music harmony fluctuation and the emotion. The method developed in our study is likely to be useful in musical analysis, emotion recognition etc. Although the consonance fluctuation is not the whole story of harmony, it does provide some meaningful information about harmony. Additional features of harmony will be worthwhile to analyze in the future.</p>
<p>We have demonstrated an intrinsic heritage relationship based on patterns of scale-free harmony across a representative range of musicians from different eras spanning four centuries. Is this mathematically established relationship reasonable? In a recent artificial music experiment, consonance was also confirmed to be an important factor in determining musical evolution [
<xref rid="pone.0142431.ref060" ref-type="bibr">60</xref>
]. In Trehub’s model for the evolution of music, humans are hypothesized to have adopted music to help soothe infants or focus their attention [
<xref rid="pone.0142431.ref061" ref-type="bibr">61</xref>
] by using a variety of consonant intervals to induce calm or tense feelings [
<xref rid="pone.0142431.ref062" ref-type="bibr">62</xref>
]. Tension created by music is associated with the power of the chord progression and this is influential in music development. Our results suggest that relationships among the studied composers based on consonant interval may provide a novel and quantitative way of understanding music throughout history and may present a useful method for studying its structure and roots.</p>
</sec>
<sec sec-type="supplementary-material" id="sec008">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0142431.s001">
<label>S1 Fig</label>
<caption>
<title>The scaling exponents of the all music movements across different composers and genres based on pitch series.</title>
<p>(A) The scaling exponents for 20 composers. (B) The scaling exponents for 9 different genres.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0142431.s001.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0142431.s002">
<label>S2 Fig</label>
<caption>
<title>The scaling exponents of the all music movements across different composers and genres based on chord series.</title>
<p>(A) The scaling exponents for 20 composers. (B) The scaling exponents for 9 different genres.</p>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0142431.s002.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0142431.s003">
<label>S3 Fig</label>
<caption>
<title>The influence (out-in degree) of the nodes in the composers’ network based on pitch series.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0142431.s003.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0142431.s004">
<label>S4 Fig</label>
<caption>
<title>The influence (out-in degree) of the nodes in the composers’ network based on chord series.</title>
<p>(TIF)</p>
</caption>
<media xlink:href="pone.0142431.s004.tif">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0142431.s005">
<label>S1 File</label>
<caption>
<title>The MIDI files of all the composers and genres.</title>
<p>(ZIP)</p>
</caption>
<media xlink:href="pone.0142431.s005.zip">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0142431.s006">
<label>S1 Table</label>
<caption>
<title>The chord name and stability rank of major C and minor a.</title>
<p>The number in the table means the scale degree of a chord. Ⅰis tonic, Ⅴis dominant and Ⅳ is subdominant chord. They are the primary harmonies in music. In the key of C major, chordⅠis named C, which consists of note C, E, G. When we use integer 0–11 to represent the notes in an octave, (C, E, G) are (0, 4, 7). The stability rank of chord is according to the number, and it is related to the consonance rank (
<xref rid="pone.0142431.t001" ref-type="table">Table 1</xref>
). For example, the interval between root note of Ⅴ and Ⅰis perfect fifth, so the stability rank of Ⅴ is 2, the same as the consonance rank of interval “perfect fifth”. The stability rank of a chord consisted of more than three notes is 8.</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0142431.s006.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The authors would like to thank Chunyang Tian for technical assistance, Cheng Luo for critical discussions, and Jiehui Hu for language smoothing.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0142431.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Peretz</surname>
<given-names>I</given-names>
</name>
.
<article-title>The nature of music from a biological perspective</article-title>
.
<source>Cognition. 2006</source>
;
<volume>100</volume>
(
<issue>1</issue>
):
<fpage>1</fpage>
<lpage>32</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.cognition.2005.11.004">10.1016/j.cognition.2005.11.004</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sievers</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Polansky</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Casey</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Wheatley</surname>
<given-names>T</given-names>
</name>
.
<article-title>Music and movement share a dynamic structure that supports universal expressions of emotion</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>2013</year>
;
<volume>110</volume>
(
<issue>1</issue>
):
<fpage>70</fpage>
<lpage>75</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1209023110">10.1073/pnas.1209023110</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koelsch</surname>
<given-names>S</given-names>
</name>
.
<article-title>Towards a neural basis of music-evoked emotions</article-title>
.
<source>Trends in Cognitive Sciences</source>
.
<year>2010</year>
;
<volume>14</volume>
(
<issue>3</issue>
):
<fpage>131</fpage>
<lpage>137</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.tics.2010.01.002">10.1016/j.tics.2010.01.002</ext-link>
</comment>
<pub-id pub-id-type="pmid">20153242</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref004">
<label>4</label>
<mixed-citation publication-type="book">
<name>
<surname>Juslin</surname>
<given-names>PPN</given-names>
</name>
,
<name>
<surname>Sloboda</surname>
<given-names>PJ</given-names>
</name>
.
<chapter-title>Handbook of Music and Emotion: Theory, Research, Applications</chapter-title>
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Oxford University Press</publisher-name>
;
<year>2010</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levitin</surname>
<given-names>DJ</given-names>
</name>
.
<article-title>Why music moves us</article-title>
.
<source>Nature</source>
.
<year>2010</year>
;
<volume>464</volume>
(
<issue>7290</issue>
):
<fpage>834</fpage>
<lpage>835</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/464834a">10.1038/464834a</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hall</surname>
<given-names>RW</given-names>
</name>
.
<article-title>Music theory—Geometrical music theory</article-title>
.
<source>Science</source>
.
<year>2008</year>
;
<volume>320</volume>
(
<issue>5874</issue>
):
<fpage>328</fpage>
<lpage>329</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1155463">10.1126/science.1155463</ext-link>
</comment>
<pub-id pub-id-type="pmid">18420923</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tymoczko</surname>
<given-names>D</given-names>
</name>
.
<article-title>The geometry of musical chords</article-title>
.
<source>Science</source>
.
<year>2006</year>
;
<volume>313</volume>
(
<issue>5783</issue>
):
<fpage>72</fpage>
<lpage>74</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1126287">10.1126/science.1126287</ext-link>
</comment>
<pub-id pub-id-type="pmid">16825563</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sethares</surname>
<given-names>WA</given-names>
</name>
,
<name>
<surname>Budney</surname>
<given-names>R</given-names>
</name>
.
<article-title>Topology of musical data</article-title>
.
<source>Journal of Mathematics and Music</source>
.
<year>2014</year>
;
<volume>8</volume>
(
<issue>1</issue>
):
<fpage>73</fpage>
<lpage>92</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/17459737.2013.850597">10.1080/17459737.2013.850597</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref009">
<label>9</label>
<mixed-citation publication-type="book">
<name>
<surname>Burgoyne</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Wild</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Fujinaga</surname>
<given-names>I</given-names>
</name>
.
<chapter-title>Compositional Data Analysis of Harmonic Structures in Popular Music</chapter-title>
In:
<name>
<surname>Yust</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wild</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Burgoyne</surname>
<given-names>JA</given-names>
</name>
, editors.
<source>Mathematics and Computation in Music</source>
.
<publisher-loc>Canada</publisher-loc>
:
<publisher-name>Springer</publisher-name>
;
<year>2013</year>
pp.
<fpage>52</fpage>
<lpage>63</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref010">
<label>10</label>
<mixed-citation publication-type="book">
<name>
<surname>Kepler</surname>
<given-names>J</given-names>
</name>
.
<chapter-title>The harmony of the world</chapter-title>
<publisher-loc>Philadelphia</publisher-loc>
:
<publisher-name>American Philosophical Society</publisher-name>
;
<year>1997</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref011">
<label>11</label>
<mixed-citation publication-type="book">
<name>
<surname>Mandelbrot</surname>
<given-names>BB</given-names>
</name>
.
<source>The Fractal Geometry of Nature</source>
.
<publisher-loc>USA</publisher-loc>
:
<publisher-name>W.H. Freeman and Company</publisher-name>
;
<year>1983</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hennig</surname>
<given-names>H</given-names>
</name>
.
<article-title>Synchronization in human musical rhythms and mutually interacting complex systems</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>2014</year>
;
<volume>111</volume>
(
<issue>36</issue>
):
<fpage>12974</fpage>
<lpage>12979</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1324142111">10.1073/pnas.1324142111</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Levitin</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Chordia</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Menon</surname>
<given-names>V</given-names>
</name>
.
<article-title>Musical rhythm spectra from Bach to Joplin obey a 1/f power law</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>2012</year>
;
<volume>109</volume>
(
<issue>10</issue>
):
<fpage>3716</fpage>
<lpage>3720</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1113828109">10.1073/pnas.1113828109</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Voss</surname>
<given-names>RF</given-names>
</name>
,
<name>
<surname>Clarke</surname>
<given-names>J</given-names>
</name>
.
<article-title>1/f Noise in Music and Speech</article-title>
.
<source>Nature</source>
.
<year>1975</year>
;
<volume>258</volume>
:
<fpage>317</fpage>
<lpage>318</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1121/1.381721">10.1121/1.381721</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Manaris</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Romero</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Machado</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Krehbiel</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Hirzel</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
<article-title>Zipf's law, music classification, and aesthetics</article-title>
.
<source>Computer Music Journal</source>
.
<year>2005</year>
;
<volume>29</volume>
(
<issue>1</issue>
):
<fpage>55</fpage>
<lpage>69</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1162/comj.2005.29.1.55">10.1162/comj.2005.29.1.55</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hsü</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Hsü</surname>
<given-names>AJ</given-names>
</name>
.
<article-title>Fractal Geometry of Music</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>1990</year>
;
<volume>87</volume>
(
<issue>3</issue>
):
<fpage>938</fpage>
<lpage>941</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.87.3.938">10.1073/pnas.87.3.938</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hsü</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Hsü</surname>
<given-names>A</given-names>
</name>
.
<article-title>Self-similarity of the "1/f noise" called music</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>1991</year>
;
<volume>88</volume>
(
<issue>8</issue>
):
<fpage>3507</fpage>
<lpage>3509</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.88.8.3507">10.1073/pnas.88.8.3507</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Wei</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Xin</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
.
<article-title>A Statistical Physics View of Pitch Fluctuations in the Classical Music from Bach to Chopin: Evidence for Scaling</article-title>
.
<source>PLoS One</source>
.
<year>2013</year>
;
<volume>8</volume>
(
<issue>3</issue>
):
<fpage>e58710</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0058710">10.1371/journal.pone.0058710</ext-link>
</comment>
<pub-id pub-id-type="pmid">23544047</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rankin</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Fink</surname>
<given-names>PW</given-names>
</name>
,
<name>
<surname>Large</surname>
<given-names>EW</given-names>
</name>
.
<article-title>Fractal structure enables temporal prediction in music</article-title>
.
<source>The Journal of the Acoustical Society of America</source>
.
<year>2014</year>
;
<volume>136</volume>
(
<issue>4</issue>
):
<fpage>256</fpage>
<lpage>262</lpage>
. doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1121/1.4890198">http://dx.doi.org/10.1121/1.4890198</ext-link>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hennig</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Fleischmann</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Fredebohm</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Hagmayer</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Nagler</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
<article-title>The Nature and Perception of Fluctuations in Human Musical Rhythms</article-title>
.
<source>PLoS One</source>
.
<year>2011</year>
;
<volume>6</volume>
(
<issue>10</issue>
):
<fpage>e26457</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0026457">10.1371/journal.pone.0026457</ext-link>
</comment>
<pub-id pub-id-type="pmid">22046289</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Das</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Das</surname>
<given-names>P</given-names>
</name>
.
<article-title>Fractal analysis of songs: Performer's preference</article-title>
.
<source>Nonlinear Analysis-Real World Applications</source>
.
<year>2010</year>
;
<volume>11</volume>
(
<issue>3</issue>
):
<fpage>1790</fpage>
<lpage>1794</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.nonrwa.2009.04.004">10.1016/j.nonrwa.2009.04.004</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Komeilipoor</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Rodger</surname>
<given-names>MWM</given-names>
</name>
,
<name>
<surname>Craig</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Cesari</surname>
<given-names>P</given-names>
</name>
.
<article-title>(Dis-)Harmony in movement: effects of musical dissonance on movement timing and form</article-title>
.
<source>Experimental Brain Research</source>
.
<year>2015</year>
;
<volume>233</volume>
(
<issue>5</issue>
):
<fpage>1585</fpage>
<lpage>1595</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00221-015-4233-9">10.1007/s00221-015-4233-9</ext-link>
</comment>
<pub-id pub-id-type="pmid">25725774</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Herrojo</surname>
<given-names>Ruiz M</given-names>
</name>
,
<name>
<surname>Hong</surname>
<given-names>SB</given-names>
</name>
,
<name>
<surname>Hennig</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Altenmüller</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Kühn</surname>
<given-names>AA</given-names>
</name>
.
<article-title>Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation</article-title>
.
<source>Frontiers in Psychology</source>
.
<year>2014</year>
;
<volume>5</volume>
:
<fpage>1030</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.3389/fpsyg.2014.01030">10.3389/fpsyg.2014.01030</ext-link>
</comment>
<pub-id pub-id-type="pmid">25309487</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref024">
<label>24</label>
<mixed-citation publication-type="book">
<name>
<surname>Sposobin</surname>
<given-names>I</given-names>
</name>
.
<source>Harmony Textbook</source>
.
<publisher-loc>Beijing</publisher-loc>
:
<publisher-name>People's Music Publishing House</publisher-name>
;
<year>2000</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Steinbeis</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Koelsch</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Sloboda</surname>
<given-names>JA</given-names>
</name>
.
<article-title>The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses</article-title>
.
<source>Journal of Cognitive Neuroscience</source>
.
<year>2006</year>
;
<volume>18</volume>
(
<issue>8</issue>
):
<fpage>1380</fpage>
<lpage>1393</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1162/jocn.2006.18.8.1380">10.1162/jocn.2006.18.8.1380</ext-link>
</comment>
<pub-id pub-id-type="pmid">16859422</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hedges</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Roy</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Pachet</surname>
<given-names>F</given-names>
</name>
.
<article-title>Predicting the composer and style of Jazz chord progressions</article-title>
.
<source>Journal of New Music Research</source>
.
<year>2014</year>
;
<volume>43</volume>
(
<issue>3</issue>
):
<fpage>276</fpage>
<lpage>290</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/09298215.2014.925477">10.1080/09298215.2014.925477</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Anglade</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Benetos</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Mauch</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Dixon</surname>
<given-names>S</given-names>
</name>
.
<article-title>Improving music genre classification using automatically induced harmony rules</article-title>
.
<source>Journal of New Music Research</source>
.
<year>2010</year>
;
<volume>39</volume>
(
<issue>4</issue>
):
<fpage>349</fpage>
<lpage>361</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/09298215.2010.525654">10.1080/09298215.2010.525654</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Teitelbaum</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Balenzuela</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Cano</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Buldú</surname>
<given-names>JM</given-names>
</name>
.
<article-title>Community structures and role detection in music networks</article-title>
.
<source>Chaos</source>
.
<year>2008</year>
;
<volume>18</volume>
:
<fpage>043105</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2988285">10.1063/1.2988285</ext-link>
</comment>
<pub-id pub-id-type="pmid">19123615</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>RD</given-names>
</name>
.
<article-title>The network of collaboration among rappers and its community structure</article-title>
.
<source>Journal of Statistical Mechanics: Theory and Experiment</source>
.
<year>2006</year>
;
<volume>2</volume>
:
<fpage>P02006</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1088/1742-5468/2006/02/P02006">10.1088/1742-5468/2006/02/P02006</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schedl</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Pohle</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Knees</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Widmer</surname>
<given-names>G</given-names>
</name>
.
<article-title>Assigning and visualizing music genres by web-based co-occurrence analysis; 2006</article-title>
.
<source>Citeseer</source>
. pp.
<fpage>260</fpage>
<lpage>265</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cano</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Celma</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Koppenberger</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Buldú</surname>
<given-names>JM</given-names>
</name>
.
<article-title>The topology of music recommendation networks</article-title>
.
<source>Chaos</source>
.
<year>2006</year>
;
<volume>16</volume>
(
<issue>1</issue>
):
<fpage>013107</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2137622">10.1063/1.2137622</ext-link>
</comment>
<pub-id pub-id-type="pmid">16599738</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref032">
<label>32</label>
<mixed-citation publication-type="other">Huron D. Humdrum Kern database. Available:
<ext-link ext-link-type="uri" xlink:href="http://kern.humdrum.net">http://kern.humdrum.net</ext-link>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref033">
<label>33</label>
<mixed-citation publication-type="book">
<name>
<surname>Helmholtz</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Ellis</surname>
<given-names>AJ</given-names>
</name>
.
<source>On the Sensations of Tone as a Physiological Basis for the Theory of Music</source>
.
<publisher-loc>Cambridge</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
;
<year>2009</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>IY</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>SI</given-names>
</name>
.
<article-title>Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data</article-title>
.
<source>Computers in Biology and Medicine</source>
.
<year>2002</year>
;
<volume>32</volume>
(
<issue>1</issue>
):
<fpage>37</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="pmid">11738639</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Leicht</surname>
<given-names>EA</given-names>
</name>
,
<name>
<surname>Newman</surname>
<given-names>ME</given-names>
</name>
.
<article-title>Community structure in directed networks</article-title>
.
<source>Physical Review Letters</source>
.
<year>2008</year>
;
<volume>100</volume>
(
<issue>11</issue>
):
<fpage>118703</fpage>
<pub-id pub-id-type="pmid">18517839</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Good</surname>
<given-names>BH</given-names>
</name>
,
<name>
<surname>de Montjoye</surname>
<given-names>Y-A</given-names>
</name>
,
<name>
<surname>Clauset</surname>
<given-names>A</given-names>
</name>
.
<article-title>Performance of modularity maximization in practical contexts</article-title>
.
<source>Physical Review E</source>
.
<year>2010</year>
;
<volume>81</volume>
(
<issue>4</issue>
):
<fpage>046106</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevE.81.046106">10.1103/PhysRevE.81.046106</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref037">
<label>37</label>
<mixed-citation publication-type="book">
<name>
<surname>Kroll</surname>
<given-names>M</given-names>
</name>
.
<source>Johann Nepomuk Hummel: a musician's life and world</source>
.
<publisher-loc>Lanham</publisher-loc>
:
<publisher-name>Scarecrow Press</publisher-name>
;
<year>2007</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref038">
<label>38</label>
<mixed-citation publication-type="book">
<name>
<surname>Kirkpatrick</surname>
<given-names>R</given-names>
</name>
.
<source>Domenico Scarlatti</source>
.
<publisher-loc>Princeton</publisher-loc>
:
<publisher-name>Princeton University Press</publisher-name>
;
<year>1953</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref039">
<label>39</label>
<mixed-citation publication-type="book">
<name>
<surname>Krummacher</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Struck</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Floros</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Petersen</surname>
<given-names>P</given-names>
</name>
.
<source>Johannes Brahms: Quellen—Text—Rezeption—Interpretation</source>
.
<publisher-loc>München</publisher-loc>
:
<publisher-name>Henle Verlag</publisher-name>
;
<year>1999</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref040">
<label>40</label>
<mixed-citation publication-type="book">
<name>
<surname>Wolff</surname>
<given-names>C</given-names>
</name>
.
<source>Bach: Essays on His Life and Music</source>
.
<publisher-loc>Cambridge</publisher-loc>
:
<publisher-name>Harvard University Press</publisher-name>
;
<year>1991</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref041">
<label>41</label>
<mixed-citation publication-type="book">
<name>
<surname>Landon</surname>
<given-names>HCR</given-names>
</name>
.
<chapter-title>1791, Mozart's last year</chapter-title>
<publisher-loc>London</publisher-loc>
:
<publisher-name>Thames & Hudson</publisher-name>
<year>1990</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref042">
<label>42</label>
<mixed-citation publication-type="other">Kennedy M, Bourne J. The Oxford Dictionary of Music. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.oxfordmusiconline.com/">http://www.oxfordmusiconline.com/</ext-link>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Yao</surname>
<given-names>D</given-names>
</name>
.
<article-title>Scale-free music of the brain</article-title>
.
<source>PLoS One</source>
.
<year>2009</year>
;
<volume>4</volume>
(
<issue>6</issue>
):
<fpage>e5915</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0064046">10.1371/journal.pone.0064046</ext-link>
</comment>
<pub-id pub-id-type="pmid">19526057</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lu</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
<article-title>Scale-free brain-wave music from simultaneously EEG and fMRI recordings</article-title>
.
<source>PLoS One</source>
.
<year>2012</year>
;
<volume>7</volume>
(
<issue>11</issue>
):
<fpage>e49773</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0049773">10.1371/journal.pone.0049773</ext-link>
</comment>
<pub-id pub-id-type="pmid">23166768</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brothers</surname>
<given-names>HJ</given-names>
</name>
.
<article-title>Intervallic scaling in the Bach Cello Suites</article-title>
.
<source>Fractals</source>
.
<year>2009</year>
;
<volume>17</volume>
(
<issue>4</issue>
):
<fpage>537</fpage>
<lpage>545</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1142/s0218348x09004521">10.1142/s0218348x09004521</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref046">
<label>46</label>
<mixed-citation publication-type="book">
<name>
<surname>Krumhansl</surname>
<given-names>CL</given-names>
</name>
.
<chapter-title>Cognitive Foundations of Musical Pitch</chapter-title>
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Oxford University Press</publisher-name>
;
<year>1990</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref047">
<label>47</label>
<mixed-citation publication-type="book">
<name>
<surname>Levitin</surname>
<given-names>DJ</given-names>
</name>
.
<chapter-title>This is your brain on music: Understanding a human obsession</chapter-title>
<publisher-loc>London</publisher-loc>
:
<publisher-name>Atlantic Books Ltd</publisher-name>
;
<year>2011</year>
.</mixed-citation>
</ref>
<ref id="pone.0142431.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>McDermott</surname>
<given-names>JH</given-names>
</name>
,
<name>
<surname>Lehr</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Oxenham</surname>
<given-names>AJ</given-names>
</name>
.
<article-title>Individual Differences Reveal the Basis of Consonance</article-title>
.
<source>Current Biology</source>
.
<year>2010</year>
;
<volume>20</volume>
(
<issue>11</issue>
):
<fpage>1035</fpage>
<lpage>1041</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.cub.2010.04.019">10.1016/j.cub.2010.04.019</ext-link>
</comment>
<pub-id pub-id-type="pmid">20493704</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Masataka</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Perlovsky</surname>
<given-names>L</given-names>
</name>
.
<article-title>Cognitive interference can be mitigated by consonant music and facilitated by dissonant music</article-title>
.
<source>Scientific Reports</source>
.
<year>2013</year>
;
<volume>3</volume>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/srep02028">10.1038/srep02028</ext-link>
</comment>
<pub-id pub-id-type="pmid">23778307</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref050">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Plantinga</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Trehub</surname>
<given-names>SE</given-names>
</name>
.
<article-title>Revisiting the innate preference for consonance</article-title>
.
<source>Journal of Experimental Psychology: Human Perception and Performance</source>
.
<year>2014</year>
;
<volume>40</volume>
(
<issue>1</issue>
):
<fpage>40</fpage>
<lpage>49</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1037/a0033471">10.1037/a0033471</ext-link>
</comment>
<pub-id pub-id-type="pmid">23815480</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref051">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tramo</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Cariani</surname>
<given-names>PA</given-names>
</name>
,
<name>
<surname>Delgutte</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Braida</surname>
<given-names>LD</given-names>
</name>
.
<article-title>Neurobiological Foundations for the Theory of Harmony in Western Tonal Music</article-title>
.
<source>Annals of the New York Academy of Sciences</source>
.
<year>2001</year>
;
<volume>930</volume>
(
<issue>1</issue>
):
<fpage>92</fpage>
<lpage>116</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1749-6632.2001.tb05727.x">10.1111/j.1749-6632.2001.tb05727.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">11458869</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bones</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Hopkins</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Krishnan</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Plack</surname>
<given-names>CJ</given-names>
</name>
.
<article-title>Phase locked neural activity in the human brainstem predicts preference for musical consonance</article-title>
.
<source>Neuropsychologia</source>
.
<year>2014</year>
;
<volume>58</volume>
(
<issue>1</issue>
):
<fpage>23</fpage>
<lpage>32</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.neuropsychologia.2014.03.011">10.1016/j.neuropsychologia.2014.03.011</ext-link>
</comment>
<pub-id pub-id-type="pmid">24690415</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref053">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Garcia-Lazaro</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Ahmed</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Schnupp</surname>
<given-names>JWH</given-names>
</name>
.
<article-title>Emergence of Tuning to Natural Stimulus Statistics along the Central Auditory Pathway</article-title>
.
<source>PLoS One</source>
.
<year>2011</year>
;
<volume>6</volume>
(
<issue>8</issue>
):
<fpage>e22584</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0022584">10.1371/journal.pone.0022584</ext-link>
</comment>
<pub-id pub-id-type="pmid">21850231</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref054">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rodriguez</surname>
<given-names>FA</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Read</surname>
<given-names>HL</given-names>
</name>
,
<name>
<surname>Escabi</surname>
<given-names>MA</given-names>
</name>
.
<article-title>Neural Modulation Tuning Characteristics Scale to Efficiently Encode Natural Sound Statistics</article-title>
.
<source>Journal of Neuroscience</source>
.
<year>2010</year>
;
<volume>30</volume>
(
<issue>47</issue>
):
<fpage>15969</fpage>
<lpage>15980</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1523/JNEUROSCI.0966-10.2010">10.1523/JNEUROSCI.0966-10.2010</ext-link>
</comment>
<pub-id pub-id-type="pmid">21106835</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref055">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>BYJ</given-names>
</name>
.
<article-title>Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task</article-title>
.
<source>Journal of Neuroscience</source>
.
<year>2011</year>
;
<volume>31</volume>
(
<issue>39</issue>
):
<fpage>13786</fpage>
<lpage>13795</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1523/jneurosci.2111-11.2011">10.1523/jneurosci.2111-11.2011</ext-link>
</comment>
<pub-id pub-id-type="pmid">21957241</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>He</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Zempel</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Snyder</surname>
<given-names>AZ</given-names>
</name>
,
<name>
<surname>Raichle</surname>
<given-names>ME</given-names>
</name>
.
<article-title>The temporal structures and functional significance of scale-free brain activity</article-title>
.
<source>Neuron</source>
.
<year>2010</year>
;
<volume>66</volume>
(
<issue>3</issue>
):
<fpage>353</fpage>
<lpage>369</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.neuron.2010.04.020">10.1016/j.neuron.2010.04.020</ext-link>
</comment>
<pub-id pub-id-type="pmid">20471349</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>JY</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>JI</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>HJ</given-names>
</name>
.
<article-title>Consonant chords stimulate higher EEG gamma activity than dissonant chords</article-title>
.
<source>Neuroscience Letters</source>
.
<year>2011</year>
;
<volume>488</volume>
(
<issue>1</issue>
):
<fpage>101</fpage>
<lpage>105</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.neulet.2010.11.011">10.1016/j.neulet.2010.11.011</ext-link>
</comment>
<pub-id pub-id-type="pmid">21073923</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref058">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wan</surname>
<given-names>X</given-names>
</name>
,
<name>
<surname>Crüts</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>HJ</given-names>
</name>
.
<article-title>The Causal Inference of Cortical Neural Networks during Music Improvisations</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
(
<issue>12</issue>
):
<fpage>e112776</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0112776">10.1371/journal.pone.0112776</ext-link>
</comment>
<pub-id pub-id-type="pmid">25489852</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref059">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Lugger</surname>
<given-names>M</given-names>
</name>
.
<article-title>Emotion recognition from speech signals using new harmony features</article-title>
.
<source>Signal Processing</source>
.
<year>2010</year>
;
<volume>90</volume>
(
<issue>5</issue>
):
<fpage>1415</fpage>
<lpage>1423</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.sigpro.2009.09.009">10.1016/j.sigpro.2009.09.009</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref060">
<label>60</label>
<mixed-citation publication-type="journal">
<name>
<surname>MacCallum</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Mauch</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Burt</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Leroi</surname>
<given-names>AM</given-names>
</name>
.
<article-title>Evolution of music by public choice</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
.
<year>2012</year>
;
<volume>109</volume>
(
<issue>30</issue>
):
<fpage>12081</fpage>
<lpage>12086</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1203182109">10.1073/pnas.1203182109</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref061">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fitch</surname>
<given-names>W</given-names>
</name>
.
<article-title>The evolution of music in comparative perspective</article-title>
.
<source>Annals of the New York Academy of Sciences</source>
.
<year>2005</year>
;
<volume>1060</volume>
(
<issue>1</issue>
):
<fpage>29</fpage>
<lpage>49</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1196/annals.1360.004">10.1196/annals.1360.004</ext-link>
</comment>
<pub-id pub-id-type="pmid">16597747</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0142431.ref062">
<label>62</label>
<mixed-citation publication-type="book">
<name>
<surname>Schoenberg</surname>
<given-names>A</given-names>
</name>
.
<source>Theory of Harmony</source>
.
<publisher-loc>Ewing</publisher-loc>
:
<publisher-name>University of California Press</publisher-name>
;
<year>1983</year>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wu, Dan" sort="Wu, Dan" uniqKey="Wu D" first="Dan" last="Wu">Dan Wu</name>
</noRegion>
<name sortKey="Kendrick, Keith M" sort="Kendrick, Keith M" uniqKey="Kendrick K" first="Keith M." last="Kendrick">Keith M. Kendrick</name>
<name sortKey="Li, Chaoyi" sort="Li, Chaoyi" uniqKey="Li C" first="Chaoyi" last="Li">Chaoyi Li</name>
<name sortKey="Li, Chaoyi" sort="Li, Chaoyi" uniqKey="Li C" first="Chaoyi" last="Li">Chaoyi Li</name>
<name sortKey="Wu, Dan" sort="Wu, Dan" uniqKey="Wu D" first="Dan" last="Wu">Dan Wu</name>
<name sortKey="Yao, Dezhong" sort="Yao, Dezhong" uniqKey="Yao D" first="Dezhong" last="Yao">Dezhong Yao</name>
</country>
<country name="Canada">
<region name="Québec">
<name sortKey="Levitin, Daniel J" sort="Levitin, Daniel J" uniqKey="Levitin D" first="Daniel J." last="Levitin">Daniel J. Levitin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MonteverdiV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000005 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000005 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MonteverdiV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4636347
   |texte=   Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:26545104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MonteverdiV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Mon May 9 21:59:15 2016. Site generation: Mon Feb 12 09:57:54 2024