Serveur d'exploration sur Monteverdi

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations

Identifieur interne : 000789 ( Istex/Corpus ); précédent : 000788; suivant : 000790

Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations

Auteurs : Thijs L. Pons ; Jaume Flexas ; Susanne Von Caemmerer ; John R. Evans ; Bernard Genty ; Miquel Ribas-Carbo ; Enrico Brugnoli

Source :

RBID : ISTEX:8F57DD1D62918A7F61DDFCD169F19958C20E56D1

Abstract

The three most commonly used methods for estimating mesophyll conductance (gm) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against 13CO2. To obtain reliable estimates of gm, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of gm and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable gm values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO2 draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high gm that have a small difference in [CO2] between the substomatal cavity and the site of carboxylation in the chloroplast (CiCc gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of gm, which are as independent as possible, is recommended.

Url:
DOI: 10.1093/jxb/erp081

Links to Exploration step

ISTEX:8F57DD1D62918A7F61DDFCD169F19958C20E56D1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
<author>
<name sortKey="Pons, Thijs L" sort="Pons, Thijs L" uniqKey="Pons T" first="Thijs L." last="Pons">Thijs L. Pons</name>
<affiliation>
<mods:affiliation>Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flexas, Jaume" sort="Flexas, Jaume" uniqKey="Flexas J" first="Jaume" last="Flexas">Jaume Flexas</name>
<affiliation>
<mods:affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jaume.flexas@uib.es</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Von Caemmerer, Susanne" sort="Von Caemmerer, Susanne" uniqKey="Von Caemmerer S" first="Susanne" last="Von Caemmerer">Susanne Von Caemmerer</name>
<affiliation>
<mods:affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, John R" sort="Evans, John R" uniqKey="Evans J" first="John R." last="Evans">John R. Evans</name>
<affiliation>
<mods:affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Genty, Bernard" sort="Genty, Bernard" uniqKey="Genty B" first="Bernard" last="Genty">Bernard Genty</name>
<affiliation>
<mods:affiliation>CEA, CNRS, Universit Aix-Marseille, UMR 6191 Biologie Vgtale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Molculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ribas Carbo, Miquel" sort="Ribas Carbo, Miquel" uniqKey="Ribas Carbo M" first="Miquel" last="Ribas-Carbo">Miquel Ribas-Carbo</name>
<affiliation>
<mods:affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brugnoli, Enrico" sort="Brugnoli, Enrico" uniqKey="Brugnoli E" first="Enrico" last="Brugnoli">Enrico Brugnoli</name>
<affiliation>
<mods:affiliation>CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8F57DD1D62918A7F61DDFCD169F19958C20E56D1</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1093/jxb/erp081</idno>
<idno type="url">https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000789</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
<author>
<name sortKey="Pons, Thijs L" sort="Pons, Thijs L" uniqKey="Pons T" first="Thijs L." last="Pons">Thijs L. Pons</name>
<affiliation>
<mods:affiliation>Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flexas, Jaume" sort="Flexas, Jaume" uniqKey="Flexas J" first="Jaume" last="Flexas">Jaume Flexas</name>
<affiliation>
<mods:affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jaume.flexas@uib.es</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Von Caemmerer, Susanne" sort="Von Caemmerer, Susanne" uniqKey="Von Caemmerer S" first="Susanne" last="Von Caemmerer">Susanne Von Caemmerer</name>
<affiliation>
<mods:affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, John R" sort="Evans, John R" uniqKey="Evans J" first="John R." last="Evans">John R. Evans</name>
<affiliation>
<mods:affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Genty, Bernard" sort="Genty, Bernard" uniqKey="Genty B" first="Bernard" last="Genty">Bernard Genty</name>
<affiliation>
<mods:affiliation>CEA, CNRS, Universit Aix-Marseille, UMR 6191 Biologie Vgtale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Molculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ribas Carbo, Miquel" sort="Ribas Carbo, Miquel" uniqKey="Ribas Carbo M" first="Miquel" last="Ribas-Carbo">Miquel Ribas-Carbo</name>
<affiliation>
<mods:affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brugnoli, Enrico" sort="Brugnoli, Enrico" uniqKey="Brugnoli E" first="Enrico" last="Brugnoli">Enrico Brugnoli</name>
<affiliation>
<mods:affiliation>CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Experimental Botany</title>
<idno type="ISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2009-04-08">2009-04-08</date>
<biblScope unit="volume">60</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2217">2217</biblScope>
<biblScope unit="page" to="2234">2234</biblScope>
</imprint>
<idno type="ISSN">0022-0957</idno>
</series>
<idno type="istex">8F57DD1D62918A7F61DDFCD169F19958C20E56D1</idno>
<idno type="DOI">10.1093/jxb/erp081</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-0957</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The three most commonly used methods for estimating mesophyll conductance (gm) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against 13CO2. To obtain reliable estimates of gm, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of gm and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable gm values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO2 draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high gm that have a small difference in [CO2] between the substomatal cavity and the site of carboxylation in the chloroplast (CiCc gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of gm, which are as independent as possible, is recommended.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Thijs L. Pons</name>
<affiliations>
<json:string>Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jaume Flexas</name>
<affiliations>
<json:string>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</json:string>
<json:string>E-mail: jaume.flexas@uib.es</json:string>
</affiliations>
</json:item>
<json:item>
<name>Susanne von Caemmerer</name>
<affiliations>
<json:string>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>John R. Evans</name>
<affiliations>
<json:string>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bernard Genty</name>
<affiliations>
<json:string>CEA, CNRS, Universit Aix-Marseille, UMR 6191 Biologie Vgtale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Molculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Miquel Ribas-Carbo</name>
<affiliations>
<json:string>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Enrico Brugnoli</name>
<affiliations>
<json:string>CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Review Papers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chlorophyll fluorescence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>isotope discrimination</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mesophyll conductance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methodology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photosynthesis</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>The three most commonly used methods for estimating mesophyll conductance (gm) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against 13CO2. To obtain reliable estimates of gm, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of gm and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable gm values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO2 draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high gm that have a small difference in [CO2] between the substomatal cavity and the site of carboxylation in the chloroplast (CiCc gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of gm, which are as independent as possible, is recommended.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 791 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1891</abstractCharCount>
<pdfWordCount>13791</pdfWordCount>
<pdfCharCount>82719</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>290</abstractWordCount>
</qualityIndicators>
<title>Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>60</volume>
<pages>
<last>2234</last>
<first>2217</first>
</pages>
<issn>
<json:string>0022-0957</json:string>
</issn>
<issue>8</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1460-2431</json:string>
</eissn>
<title>Journal of Experimental Botany</title>
</host>
<categories>
<wos>
<json:string>PLANT SCIENCES</json:string>
</wos>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1093/jxb/erp081</json:string>
</doi>
<id>8F57DD1D62918A7F61DDFCD169F19958C20E56D1</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
<respStmt xml:id="ISTEX-API" resp="Références bibliographiques récupérées via GROBID" name="ISTEX-API (INIST-CNRS)"></respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<p>OUP</p>
</availability>
<date>2009-04-08</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
<author>
<persName>
<forename type="first">Thijs L.</forename>
<surname>Pons</surname>
</persName>
<affiliation>Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</affiliation>
</author>
<author corresp="yes">
<persName>
<forename type="first">Jaume</forename>
<surname>Flexas</surname>
</persName>
<email>jaume.flexas@uib.es</email>
<affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</affiliation>
</author>
<author>
<persName>
<forename type="first">Susanne</forename>
<surname>von Caemmerer</surname>
</persName>
<affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</affiliation>
</author>
<author>
<persName>
<forename type="first">John R.</forename>
<surname>Evans</surname>
</persName>
<affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</affiliation>
</author>
<author>
<persName>
<forename type="first">Bernard</forename>
<surname>Genty</surname>
</persName>
<affiliation>CEA, CNRS, Universit Aix-Marseille, UMR 6191 Biologie Vgtale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Molculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</affiliation>
</author>
<author>
<persName>
<forename type="first">Miquel</forename>
<surname>Ribas-Carbo</surname>
</persName>
<affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</affiliation>
</author>
<author>
<persName>
<forename type="first">Enrico</forename>
<surname>Brugnoli</surname>
</persName>
<affiliation>CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Experimental Botany</title>
<idno type="JournalID">exbotj</idno>
<idno type="pISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2009-04-08"></date>
<biblScope unit="volume">60</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2217">2217</biblScope>
<biblScope unit="page" to="2234">2234</biblScope>
</imprint>
</monogr>
<idno type="istex">8F57DD1D62918A7F61DDFCD169F19958C20E56D1</idno>
<idno type="DOI">10.1093/jxb/erp081</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009-04-08</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The three most commonly used methods for estimating mesophyll conductance (gm) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against 13CO2. To obtain reliable estimates of gm, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of gm and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable gm values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO2 draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high gm that have a small difference in [CO2] between the substomatal cavity and the site of carboxylation in the chloroplast (CiCc gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of gm, which are as independent as possible, is recommended.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<item>
<term>Review Papers</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Chlorophyll fluorescence</term>
</item>
<item>
<term>isotope discrimination</term>
</item>
<item>
<term>mesophyll conductance</term>
</item>
<item>
<term>methodology</term>
</item>
<item>
<term>photosynthesis</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-04-08">Created</change>
<change when="2009-04-08">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-0-26">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup" wicri:toSee="no header">
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="review-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">jexbot</journal-id>
<journal-id journal-id-type="publisher-id">exbotj</journal-id>
<journal-title>Journal of Experimental Botany</journal-title>
<issn pub-type="epub">1460-2431</issn>
<issn pub-type="ppub">0022-0957</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/jxb/erp081</article-id>
<article-categories>
<subj-group>
<subject>Review Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Estimating mesophyll conductance to CO
<sub>2</sub>
: methodology, potential errors, and recommendations</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Pons</surname>
<given-names>Thijs L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Flexas</surname>
<given-names>Jaume</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>von Caemmerer</surname>
<given-names>Susanne</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Evans</surname>
<given-names>John R.</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Genty</surname>
<given-names>Bernard</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ribas-Carbo</surname>
<given-names>Miquel</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brugnoli</surname>
<given-names>Enrico</given-names>
</name>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</aff>
<aff id="aff2">
<label>2</label>
Research Group on ‘Plant Biology under Mediterranean Conditions’, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</aff>
<aff id="aff3">
<label>3</label>
Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</aff>
<aff id="aff4">
<label>4</label>
CEA, CNRS, Université Aix-Marseille, UMR 6191 Biologie Végétale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</aff>
<aff id="aff5">
<label>5</label>
CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
To whom correspondence should be addressed. E-mail:
<email>jaume.flexas@uib.es</email>
</corresp>
</author-notes>
<pub-date pub-type="epub-ppub">
<month>5</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>8</day>
<month>4</month>
<year>2009</year>
</pub-date>
<volume>60</volume>
<issue>8</issue>
<issue-title>Special Issue: Mesophyll conductance to CO2: mechanisms, modelling, and ecological implications</issue-title>
<fpage>2217</fpage>
<lpage>2234</lpage>
<history>
<date date-type="received">
<day>19</day>
<month>12</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>22</day>
<month>2</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>2</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author [2009]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org</copyright-statement>
<copyright-year>2009</copyright-year>
</permissions>
<abstract>
<p>The three most commonly used methods for estimating mesophyll conductance (
<italic>g</italic>
<sub>m</sub>
) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against
<sup>13</sup>
CO
<sub>2</sub>
. To obtain reliable estimates of
<italic>g</italic>
<sub>m</sub>
, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of
<italic>g</italic>
<sub>m</sub>
and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable
<italic>g</italic>
<sub>m</sub>
values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO
<sub>2</sub>
draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high
<italic>g</italic>
<sub>m</sub>
that have a small difference in [CO
<sub>2</sub>
] between the substomatal cavity and the site of carboxylation in the chloroplast (
<italic>C</italic>
<sub>i</sub>
<italic>C</italic>
<sub>c</sub>
gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of
<italic>g</italic>
<sub>m</sub>
, which are as independent as possible, is recommended.</p>
</abstract>
<kwd-group>
<kwd>Chlorophyll fluorescence</kwd>
<kwd>isotope discrimination</kwd>
<kwd>mesophyll conductance</kwd>
<kwd>methodology</kwd>
<kwd>photosynthesis</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thijs L.</namePart>
<namePart type="family">Pons</namePart>
<affiliation>Department of Plant Ecophysiology, Utrecht University, PO Box 80084, 3598 TB Utrecht, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="given">Jaume</namePart>
<namePart type="family">Flexas</namePart>
<affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</affiliation>
<affiliation>E-mail: jaume.flexas@uib.es</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susanne</namePart>
<namePart type="family">von Caemmerer</namePart>
<affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John R.</namePart>
<namePart type="family">Evans</namePart>
<affiliation>Research School of Biological Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernard</namePart>
<namePart type="family">Genty</namePart>
<affiliation>CEA, CNRS, Universit Aix-Marseille, UMR 6191 Biologie Vgtale et Microbiologie Environnementale, Laboratoire d'Ecophysiologie Molculaire des Plantes, CEA Cadarache, 13108 Saint Paul lez Durance, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miquel</namePart>
<namePart type="family">Ribas-Carbo</namePart>
<affiliation>Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Brugnoli</namePart>
<affiliation>CNR-Institute of Agro-Environmental Biology and Forestry, Via Marconi 2, I-05010 Porano (TR), Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article">review-article</genre>
<subject>
<topic>Review Papers</topic>
</subject>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2009-04-08</dateIssued>
<dateCreated encoding="w3cdtf">2009-04-08</dateCreated>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The three most commonly used methods for estimating mesophyll conductance (gm) are described. They are based on gas exchange measurements either (i) by themselves; (ii) in combination with chlorophyll fluorescence quenching analysis; or (iii) in combination with discrimination against 13CO2. To obtain reliable estimates of gm, the highest possible accuracy of gas exchange is required, particularly when using small leaf chambers. While there may be problems in achieving a high accuracy with leaf chambers that clamp onto a leaf with gaskets, guidelines are provided for making necessary corrections that increase reliability. All methods also rely on models for the calculation of gm and are sensitive to variation in the values of the model parameters. The sensitivity to these factors and to measurement error is analysed and ways to obtain the most reliable gm values are discussed. Small leaf areas can best be measured using one of the fluorescence methods. When larger leaf areas can be measured in larger chambers, the online isotopic methods are preferred. Using the large CO2 draw-down provided by big chambers, and the isotopic method, is particularly important when measuring leaves with high gm that have a small difference in [CO2] between the substomatal cavity and the site of carboxylation in the chloroplast (CiCc gradient). However, equipment for the fluorescence methods is more easily accessible. Carbon isotope discrimination can also be measured in recently synthesized carbohydrates, which has its advantages under field conditions when large number of samples must be processed. The curve-fitting method that uses gas exchange measurements only is not preferred and should only be used when no alternative is available. Since all methods have their weaknesses, the use of two methods for the estimation of gm, which are as independent as possible, is recommended.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Chlorophyll fluorescence</topic>
<topic>isotope discrimination</topic>
<topic>mesophyll conductance</topic>
<topic>methodology</topic>
<topic>photosynthesis</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Experimental Botany</title>
</titleInfo>
<identifier type="ISSN">0022-0957</identifier>
<identifier type="eISSN">1460-2431</identifier>
<identifier type="JournalID">exbotj</identifier>
<identifier type="JournalID-hwp">jexbot</identifier>
<part>
<date>2009</date>
<detail type="title">
<title>Special Issue: Mesophyll conductance to CO2: mechanisms, modelling, and ecological implications</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>60</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>2217</start>
<end>2234</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">8F57DD1D62918A7F61DDFCD169F19958C20E56D1</identifier>
<identifier type="DOI">10.1093/jxb/erp081</identifier>
<accessCondition type="use and reproduction" contentType="Copyright">The Author [2009]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org</accessCondition>
<recordInfo>
<recordContentSource>OUP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<covers>
<json:item>
<original>true</original>
<mimetype>image/tiff</mimetype>
<extension>tiff</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/covers/tiff</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/html</mimetype>
<extension>html</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/covers/html</uri>
</json:item>
</covers>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/annexes/jpeg</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>image/gif</mimetype>
<extension>gif</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/annexes/gif</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/annexes/pdf</uri>
</json:item>
</annexes>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/8F57DD1D62918A7F61DDFCD169F19958C20E56D1/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">PLANT SCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MonteverdiV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000789 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000789 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MonteverdiV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8F57DD1D62918A7F61DDFCD169F19958C20E56D1
   |texte=   Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Mon May 9 21:59:15 2016. Site generation: Mon Feb 12 09:57:54 2024