Serveur d'exploration sur le Magnificat

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variable temperature cure polyetherimide epoxy‐based prepreg systems

Identifieur interne : 000373 ( Istex/Corpus ); précédent : 000372; suivant : 000374

Variable temperature cure polyetherimide epoxy‐based prepreg systems

Auteurs : Brian S. Hayes ; James C. Seferis

Source :

RBID : ISTEX:CFED60AD15C86E2E9344F6D24790B1493F84B7F7

Abstract

This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.

Url:
DOI: 10.1002/pen.10197

Links to Exploration step

ISTEX:CFED60AD15C86E2E9344F6D24790B1493F84B7F7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
<author>
<name sortKey="Hayes, Brian S" sort="Hayes, Brian S" uniqKey="Hayes B" first="Brian S." last="Hayes">Brian S. Hayes</name>
<affiliation>
<mods:affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seferis, James C" sort="Seferis, James C" uniqKey="Seferis J" first="James C." last="Seferis">James C. Seferis</name>
<affiliation>
<mods:affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CFED60AD15C86E2E9344F6D24790B1493F84B7F7</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1002/pen.10197</idno>
<idno type="url">https://api.istex.fr/document/CFED60AD15C86E2E9344F6D24790B1493F84B7F7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000373</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
<author>
<name sortKey="Hayes, Brian S" sort="Hayes, Brian S" uniqKey="Hayes B" first="Brian S." last="Hayes">Brian S. Hayes</name>
<affiliation>
<mods:affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seferis, James C" sort="Seferis, James C" uniqKey="Seferis J" first="James C." last="Seferis">James C. Seferis</name>
<affiliation>
<mods:affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Polymer Engineering & Science</title>
<title level="j" type="abbrev">Polym Eng Sci</title>
<idno type="ISSN">0032-3888</idno>
<idno type="eISSN">1548-2634</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1998-02">1998-02</date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="357">357</biblScope>
<biblScope unit="page" to="370">370</biblScope>
</imprint>
<idno type="ISSN">0032-3888</idno>
</series>
<idno type="istex">CFED60AD15C86E2E9344F6D24790B1493F84B7F7</idno>
<idno type="DOI">10.1002/pen.10197</idno>
<idno type="ArticleID">PEN10197</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-3888</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Brian S. Hayes</name>
<affiliations>
<json:string>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</json:string>
</affiliations>
</json:item>
<json:item>
<name>James C. Seferis</name>
<affiliations>
<json:string>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>PEN10197</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.</abstract>
<qualityIndicators>
<score>7.544</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>576 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1326</abstractCharCount>
<pdfWordCount>7385</pdfWordCount>
<pdfCharCount>42247</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>212</abstractWordCount>
</qualityIndicators>
<title>Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>38</volume>
<publisherId>
<json:string>PEN</json:string>
</publisherId>
<pages>
<total>14</total>
<last>370</last>
<first>357</first>
</pages>
<issn>
<json:string>0032-3888</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1548-2634</json:string>
</eissn>
<title>Polymer Engineering & Science</title>
<doi>
<json:string>10.1002/(ISSN)1548-2634</json:string>
</doi>
</host>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1002/pen.10197</json:string>
</doi>
<id>CFED60AD15C86E2E9344F6D24790B1493F84B7F7</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/CFED60AD15C86E2E9344F6D24790B1493F84B7F7/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/CFED60AD15C86E2E9344F6D24790B1493F84B7F7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CFED60AD15C86E2E9344F6D24790B1493F84B7F7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>1998</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
<author>
<persName>
<forename type="first">Brian S.</forename>
<surname>Hayes</surname>
</persName>
<affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</affiliation>
</author>
<author>
<persName>
<forename type="first">James C.</forename>
<surname>Seferis</surname>
</persName>
<note type="correspondence">
<p>Correspondence: University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</p>
</note>
<affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Polymer Engineering & Science</title>
<title level="j" type="abbrev">Polym Eng Sci</title>
<idno type="pISSN">0032-3888</idno>
<idno type="eISSN">1548-2634</idno>
<idno type="DOI">10.1002/(ISSN)1548-2634</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1998-02"></date>
<biblScope unit="volume">38</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="357">357</biblScope>
<biblScope unit="page" to="370">370</biblScope>
</imprint>
</monogr>
<idno type="istex">CFED60AD15C86E2E9344F6D24790B1493F84B7F7</idno>
<idno type="DOI">10.1002/pen.10197</idno>
<idno type="ArticleID">PEN10197</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1997-03-20">Received</change>
<change when="1998-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/CFED60AD15C86E2E9344F6D24790B1493F84B7F7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1548-2634</doi>
<issn type="print">0032-3888</issn>
<issn type="electronic">1548-2634</issn>
<idGroup>
<id type="product" value="PEN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="POLYMER ENGINEERING AND SCIENCE">Polymer Engineering & Science</title>
<title type="short">Polym Eng Sci</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/pen.v38:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="38">38</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="1998-02">February 1998</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="15" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/pen.10197</doi>
<idGroup>
<id type="unit" value="PEN10197"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1998 Society of Plastics Engineers</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1997-03-20"></event>
<event type="manuscriptRevised" date="1997-06"></event>
<event type="firstOnline" date="2004-04-15"></event>
<event type="publishedOnlineFinalForm" date="2004-04-15"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">357</numbering>
<numbering type="pageLast">370</numbering>
</numberingGroup>
<correspondenceTo>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PEN.PEN10197.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="17"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="43"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
<title type="short" xml:lang="en">Variable Temperature Cure Polyetherimide Epoxy‐Based Prepreg Systems</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Brian S.</givenNames>
<familyName>Hayes</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>James C.</givenNames>
<familyName>Seferis</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the
<i>G</i>
<sub>
<i>IC</i>
</sub>
and
<i>G</i>
<sub>
<i>IIC</i>
</sub>
fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in
<i>G</i>
<sub>
<i>IIC</i>
</sub>
for the commercial prepreg was observed for the two cure temperatures.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Variable Temperature Cure Polyetherimide Epoxy‐Based Prepreg Systems</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Variable temperature cure polyetherimide epoxy‐based prepreg systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brian S.</namePart>
<namePart type="family">Hayes</namePart>
<affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James C.</namePart>
<namePart type="family">Seferis</namePart>
<affiliation>University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</affiliation>
<description>Correspondence: University of Washington, Department of Chemical Engineering, Polymeric Composites Laboratory, Seattle, Washington 98195</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1998-02</dateIssued>
<dateCaptured encoding="w3cdtf">1997-03-20</dateCaptured>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">17</extent>
<extent unit="tables">1</extent>
<extent unit="references">43</extent>
</physicalDescription>
<abstract lang="en">This work identifies the necessary attributes of variable temperature cure epoxybased prepreg systems as they relate to high performance prepreg systems capable for composite repair. Model polyetherimide epoxy blend resins were developed and hot‐melt impregnated into woven carbon fabric and compared with a commercial prepreg system. It was found that when the PEI content was increased from 0 to 14 wt% in the base resin of the prepregs, the GIC and GIIC fracture toughness increased by over 70%. The fracture toughness was found to be similar when the model prepreg was cured at either 121°C or 177°C, a result of only a 9% difference in conversion and complete phase separation of the PEI at both cure temperatures. Void content in vacuum cured laminates were found to decrease as the PEI content was increased because of a large quantity of resin in the interstitial areas between the longitudinal and transverse tows. A comparison of the model and commercial prepreg system demonstrated many similarities and some significant differences. For example, the commercial prepreg had a 15% difference in conversion when cured at 121°C versus 177°C and very little PEI phase separation after both cure cycles. As a result, a significant difference in GIIC for the commercial prepreg was observed for the two cure temperatures.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Polymer Engineering & Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Polym Eng Sci</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0032-3888</identifier>
<identifier type="eISSN">1548-2634</identifier>
<identifier type="DOI">10.1002/(ISSN)1548-2634</identifier>
<identifier type="PublisherID">PEN</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>357</start>
<end>370</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CFED60AD15C86E2E9344F6D24790B1493F84B7F7</identifier>
<identifier type="DOI">10.1002/pen.10197</identifier>
<identifier type="ArticleID">PEN10197</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1998 Society of Plastics Engineers</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MagnificatV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000373 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000373 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MagnificatV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CFED60AD15C86E2E9344F6D24790B1493F84B7F7
   |texte=   Variable temperature cure polyetherimide epoxy‐based prepreg systems
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Tue Aug 15 20:27:11 2017. Site generation: Thu Jan 4 15:18:55 2024