Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Noncommutative graded domains with quadratic growth

Identifieur interne : 001C36 ( Main/Merge ); précédent : 001C35; suivant : 001C37

Noncommutative graded domains with quadratic growth

Auteurs : M. Artin [États-Unis] ; J. T. Stafford [États-Unis]

Source :

RBID : ISTEX:0FF8D14C935815B406B9856BB684EEB3B7487F8D

English descriptors

Abstract

Abstract: Letk be an algebraically closed field, and letR be a finitely generated, connected gradedk-algebra, which is a domain of Gelfand-Kirillov dimension two. Write the graded quotient ringQ(R) ofR asD[z,z−1; δ], for some automorphism δ of the division ringD. We prove thatD is a finitely generated field extension ofk of transcendence degree one. Moreover, we describeR in terms of geometric data. IfR is generated in degree one then up to a finite dimensional vector space,R is isomorphic to the twisted homogeneous coordinate ring of an invertible sheaf ℒ over a projective curveY. This implies, in particular, thatR is Noetherian, thatR is primitive when |δ|=∞ and thatR is a finite module over its centre when |δ|<∞. IfR is not generated in degree one, thenR will still be Noetherian and primitive if δ has infinite order, butR need not be Noetherian when δ has finite order.

Url:
DOI: 10.1007/BF01231444

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:0FF8D14C935815B406B9856BB684EEB3B7487F8D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Noncommutative graded domains with quadratic growth</title>
<author>
<name sortKey="Artin, M" sort="Artin, M" uniqKey="Artin M" first="M." last="Artin">M. Artin</name>
</author>
<author>
<name sortKey="Stafford, J T" sort="Stafford, J T" uniqKey="Stafford J" first="J. T." last="Stafford">J. T. Stafford</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0FF8D14C935815B406B9856BB684EEB3B7487F8D</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1007/BF01231444</idno>
<idno type="url">https://api.istex.fr/document/0FF8D14C935815B406B9856BB684EEB3B7487F8D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000345</idno>
<idno type="wicri:Area/Istex/Curation">000345</idno>
<idno type="wicri:Area/Istex/Checkpoint">001A17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001A17</idno>
<idno type="wicri:doubleKey">0020-9910:1995:Artin M:noncommutative:graded:domains</idno>
<idno type="wicri:Area/Main/Merge">001C36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Noncommutative graded domains with quadratic growth</title>
<author>
<name sortKey="Artin, M" sort="Artin, M" uniqKey="Artin M" first="M." last="Artin">M. Artin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, MIT, 02139, Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stafford, J T" sort="Stafford, J T" uniqKey="Stafford J" first="J. T." last="Stafford">J. T. Stafford</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, University of Michigan, 48109, Ann Arbor, M1</wicri:regionArea>
<wicri:noRegion>M1</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Inventiones mathematicae</title>
<title level="j" type="abbrev">Invent Math</title>
<idno type="ISSN">0020-9910</idno>
<idno type="eISSN">1432-1297</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1995-12-01">1995-12-01</date>
<biblScope unit="volume">122</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="231">231</biblScope>
<biblScope unit="page" to="276">276</biblScope>
</imprint>
<idno type="ISSN">0020-9910</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0020-9910</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebra</term>
<term>Algebraic curve</term>
<term>Analogue</term>
<term>Artin</term>
<term>Asymptotic structure</term>
<term>Automorphism</term>
<term>Birational</term>
<term>Centre</term>
<term>Coherent sheaf</term>
<term>Coherent sheaves</term>
<term>Commutative</term>
<term>Commutative ring</term>
<term>Corollary</term>
<term>Division ring</term>
<term>Divisor</term>
<term>Divisor sequence</term>
<term>Domain</term>
<term>Exact sequence</term>
<term>Field extension</term>
<term>Finite codimension</term>
<term>Finite module</term>
<term>Finite orbits</term>
<term>Finite order</term>
<term>Finitely</term>
<term>Function field</term>
<term>Global sections</term>
<term>Goldie</term>
<term>Homogeneous element</term>
<term>Homogeneous elements</term>
<term>Ideal sheaf</term>
<term>Inequality</term>
<term>Infinite orbit</term>
<term>Infinite orbits</term>
<term>Infinite order</term>
<term>Integer</term>
<term>Invertible</term>
<term>Invertible sheaf</term>
<term>Invertible sheaves</term>
<term>Isomorphic</term>
<term>Last paragraph</term>
<term>Lemma</term>
<term>Module</term>
<term>Morphism</term>
<term>Next lemma</term>
<term>Next result</term>
<term>Noetherian</term>
<term>Noetherian domain</term>
<term>Noncommutative</term>
<term>Noncommutative analogue</term>
<term>Nonzero</term>
<term>Nonzero element</term>
<term>Nonzero right</term>
<term>Notation</term>
<term>Opposite inequality</term>
<term>Other hand</term>
<term>Other words</term>
<term>Positive degree</term>
<term>Prime ideals</term>
<term>Prime ring</term>
<term>Projective</term>
<term>Projective curve</term>
<term>Projective scheme</term>
<term>Quadratic</term>
<term>Quadratic growth</term>
<term>Quotient</term>
<term>Quotient category</term>
<term>Quotient ring</term>
<term>Regular element</term>
<term>Right module</term>
<term>Right noetherian</term>
<term>Rmax</term>
<term>Sheaf</term>
<term>Simple artinian ring</term>
<term>Singular point</term>
<term>Stable image</term>
<term>Stafford</term>
<term>Subalgebra</term>
<term>Subring</term>
<term>Subscheme</term>
<term>Suffices</term>
<term>Surjective</term>
<term>Theorem</term>
<term>Transcendence degree</term>
<term>Vector space</term>
<term>Veronese</term>
<term>Veronese ring</term>
<term>Veronese rings</term>
<term>Veronese sequence</term>
<term>Veronese subring</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Algebra</term>
<term>Algebraic curve</term>
<term>Analogue</term>
<term>Artin</term>
<term>Asymptotic structure</term>
<term>Automorphism</term>
<term>Birational</term>
<term>Centre</term>
<term>Coherent sheaf</term>
<term>Coherent sheaves</term>
<term>Commutative</term>
<term>Commutative ring</term>
<term>Corollary</term>
<term>Division ring</term>
<term>Divisor</term>
<term>Divisor sequence</term>
<term>Domain</term>
<term>Exact sequence</term>
<term>Field extension</term>
<term>Finite codimension</term>
<term>Finite module</term>
<term>Finite orbits</term>
<term>Finite order</term>
<term>Finitely</term>
<term>Function field</term>
<term>Global sections</term>
<term>Goldie</term>
<term>Homogeneous element</term>
<term>Homogeneous elements</term>
<term>Ideal sheaf</term>
<term>Inequality</term>
<term>Infinite orbit</term>
<term>Infinite orbits</term>
<term>Infinite order</term>
<term>Integer</term>
<term>Invertible</term>
<term>Invertible sheaf</term>
<term>Invertible sheaves</term>
<term>Isomorphic</term>
<term>Last paragraph</term>
<term>Lemma</term>
<term>Module</term>
<term>Morphism</term>
<term>Next lemma</term>
<term>Next result</term>
<term>Noetherian</term>
<term>Noetherian domain</term>
<term>Noncommutative</term>
<term>Noncommutative analogue</term>
<term>Nonzero</term>
<term>Nonzero element</term>
<term>Nonzero right</term>
<term>Notation</term>
<term>Opposite inequality</term>
<term>Other hand</term>
<term>Other words</term>
<term>Positive degree</term>
<term>Prime ideals</term>
<term>Prime ring</term>
<term>Projective</term>
<term>Projective curve</term>
<term>Projective scheme</term>
<term>Quadratic</term>
<term>Quadratic growth</term>
<term>Quotient</term>
<term>Quotient category</term>
<term>Quotient ring</term>
<term>Regular element</term>
<term>Right module</term>
<term>Right noetherian</term>
<term>Rmax</term>
<term>Sheaf</term>
<term>Simple artinian ring</term>
<term>Singular point</term>
<term>Stable image</term>
<term>Stafford</term>
<term>Subalgebra</term>
<term>Subring</term>
<term>Subscheme</term>
<term>Suffices</term>
<term>Surjective</term>
<term>Theorem</term>
<term>Transcendence degree</term>
<term>Vector space</term>
<term>Veronese</term>
<term>Veronese ring</term>
<term>Veronese rings</term>
<term>Veronese sequence</term>
<term>Veronese subring</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Letk be an algebraically closed field, and letR be a finitely generated, connected gradedk-algebra, which is a domain of Gelfand-Kirillov dimension two. Write the graded quotient ringQ(R) ofR asD[z,z−1; δ], for some automorphism δ of the division ringD. We prove thatD is a finitely generated field extension ofk of transcendence degree one. Moreover, we describeR in terms of geometric data. IfR is generated in degree one then up to a finite dimensional vector space,R is isomorphic to the twisted homogeneous coordinate ring of an invertible sheaf ℒ over a projective curveY. This implies, in particular, thatR is Noetherian, thatR is primitive when |δ|=∞ and thatR is a finite module over its centre when |δ|<∞. IfR is not generated in degree one, thenR will still be Noetherian and primitive if δ has infinite order, butR need not be Noetherian when δ has finite order.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 001C36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:0FF8D14C935815B406B9856BB684EEB3B7487F8D
   |texte=   Noncommutative graded domains with quadratic growth
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022