Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Root numbers and parity of ranks of elliptic curves

Identifieur interne : 000263 ( Main/Exploration ); précédent : 000262; suivant : 000264

Root numbers and parity of ranks of elliptic curves

Auteurs : Tim Dokchitser [Royaume-Uni] ; Vladimir Dokchitser [Royaume-Uni]

Source :

RBID : ISTEX:35B3B0263FD154132798BAC3C6D3AEFF4F97F640

English descriptors

Abstract

The purpose of the paper is to complete several global and local results concerning parity of ranks of elliptic curves. Primarily, we show that the Shafarevich–Tate conjecture implies the parity conjecture for all elliptic curves over number fields, we give a formula for local and global root numbers of elliptic curves and complete the proof of a conjecture of Kramer and Tunnell in characteristic 0. The method is to settle the outstanding local formulae by deforming from local fields to totally real number fields and then using global parity results.

Url:
DOI: 10.1515/crelle.2011.060


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Root numbers and parity of ranks of elliptic curves</title>
<author>
<name sortKey="Dokchitser, Tim" sort="Dokchitser, Tim" uniqKey="Dokchitser T" first="Tim" last="Dokchitser">Tim Dokchitser</name>
</author>
<author>
<name sortKey="Dokchitser, Vladimir" sort="Dokchitser, Vladimir" uniqKey="Dokchitser V" first="Vladimir" last="Dokchitser">Vladimir Dokchitser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:35B3B0263FD154132798BAC3C6D3AEFF4F97F640</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1515/crelle.2011.060</idno>
<idno type="url">https://api.istex.fr/document/35B3B0263FD154132798BAC3C6D3AEFF4F97F640/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B17</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B17</idno>
<idno type="wicri:Area/Istex/Curation">000B17</idno>
<idno type="wicri:Area/Istex/Checkpoint">000224</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000224</idno>
<idno type="wicri:doubleKey">0075-4102:2011:Dokchitser T:root:numbers:and</idno>
<idno type="wicri:Area/Main/Merge">000263</idno>
<idno type="wicri:Area/Main/Curation">000263</idno>
<idno type="wicri:Area/Main/Exploration">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Root numbers and parity of ranks of elliptic curves</title>
<author>
<name sortKey="Dokchitser, Tim" sort="Dokchitser, Tim" uniqKey="Dokchitser T" first="Tim" last="Dokchitser">Tim Dokchitser</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Robinson College, Cambridge CB3 9AN</wicri:regionArea>
<wicri:noRegion>Cambridge CB3 9AN</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Robinson College, Cambridge CB3 9AN</wicri:regionArea>
<wicri:noRegion>Cambridge CB3 9AN</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dokchitser, Vladimir" sort="Dokchitser, Vladimir" uniqKey="Dokchitser V" first="Vladimir" last="Dokchitser">Vladimir Dokchitser</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Emmanuel College, Cambridge CB2 3AP</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 3AP</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Emmanuel College, Cambridge CB2 3AP</wicri:regionArea>
<wicri:noRegion>Cambridge CB2 3AP</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal für die reine und angewandte Mathematik (Crelles Journal)</title>
<title level="j" type="abbrev">Journal für die reine und angewandte Mathematik (Crelles Journal)</title>
<idno type="ISSN">0075-4102</idno>
<idno type="eISSN">1435-5345</idno>
<imprint>
<publisher>Walter de Gruyter GmbH & Co. KG</publisher>
<date type="published" when="2011-09">2011-09</date>
<biblScope unit="volume">2011</biblScope>
<biblScope unit="issue">658</biblScope>
<biblScope unit="page" from="39">39</biblScope>
<biblScope unit="page" to="64">64</biblScope>
</imprint>
<idno type="ISSN">0075-4102</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0075-4102</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abelian</term>
<term>Burnside ring</term>
<term>Conjecture</term>
<term>Continuity argument</term>
<term>Corollary</term>
<term>Dokchitser</term>
<term>Eld</term>
<term>Elliptic</term>
<term>Elliptic curve</term>
<term>Elliptic curves</term>
<term>Galois</term>
<term>Galois extension</term>
<term>Galois group</term>
<term>Global root number</term>
<term>Good reduction</term>
<term>Hilbert</term>
<term>Hilbert symbol</term>
<term>Isogeny</term>
<term>Local root numbers</term>
<term>Local terms</term>
<term>Multiplicative</term>
<term>Multiplicative reduction</term>
<term>Nite</term>
<term>Ord2</term>
<term>Ord3</term>
<term>Ordp</term>
<term>Other hand</term>
<term>Other words</term>
<term>Parity</term>
<term>Parity conjecture</term>
<term>Product formula</term>
<term>Quadratic</term>
<term>Quadratic extension</term>
<term>Quadratic twist</term>
<term>Quadratic twists</term>
<term>Real number</term>
<term>Root number</term>
<term>Root numbers</term>
<term>Same parity</term>
<term>Selmer</term>
<term>Selmer group</term>
<term>Selmer groups</term>
<term>Selmer rank</term>
<term>Semistable</term>
<term>Theorem theorem</term>
<term>Vladimir</term>
<term>Vladimir dokchitser</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abelian</term>
<term>Burnside ring</term>
<term>Conjecture</term>
<term>Continuity argument</term>
<term>Corollary</term>
<term>Dokchitser</term>
<term>Eld</term>
<term>Elliptic</term>
<term>Elliptic curve</term>
<term>Elliptic curves</term>
<term>Galois</term>
<term>Galois extension</term>
<term>Galois group</term>
<term>Global root number</term>
<term>Good reduction</term>
<term>Hilbert</term>
<term>Hilbert symbol</term>
<term>Isogeny</term>
<term>Local root numbers</term>
<term>Local terms</term>
<term>Multiplicative</term>
<term>Multiplicative reduction</term>
<term>Nite</term>
<term>Ord2</term>
<term>Ord3</term>
<term>Ordp</term>
<term>Other hand</term>
<term>Other words</term>
<term>Parity</term>
<term>Parity conjecture</term>
<term>Product formula</term>
<term>Quadratic</term>
<term>Quadratic extension</term>
<term>Quadratic twist</term>
<term>Quadratic twists</term>
<term>Real number</term>
<term>Root number</term>
<term>Root numbers</term>
<term>Same parity</term>
<term>Selmer</term>
<term>Selmer group</term>
<term>Selmer groups</term>
<term>Selmer rank</term>
<term>Semistable</term>
<term>Theorem theorem</term>
<term>Vladimir</term>
<term>Vladimir dokchitser</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The purpose of the paper is to complete several global and local results concerning parity of ranks of elliptic curves. Primarily, we show that the Shafarevich–Tate conjecture implies the parity conjecture for all elliptic curves over number fields, we give a formula for local and global root numbers of elliptic curves and complete the proof of a conjecture of Kramer and Tunnell in characteristic 0. The method is to settle the outstanding local formulae by deforming from local fields to totally real number fields and then using global parity results.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Dokchitser, Tim" sort="Dokchitser, Tim" uniqKey="Dokchitser T" first="Tim" last="Dokchitser">Tim Dokchitser</name>
</noRegion>
<name sortKey="Dokchitser, Tim" sort="Dokchitser, Tim" uniqKey="Dokchitser T" first="Tim" last="Dokchitser">Tim Dokchitser</name>
<name sortKey="Dokchitser, Vladimir" sort="Dokchitser, Vladimir" uniqKey="Dokchitser V" first="Vladimir" last="Dokchitser">Vladimir Dokchitser</name>
<name sortKey="Dokchitser, Vladimir" sort="Dokchitser, Vladimir" uniqKey="Dokchitser V" first="Vladimir" last="Dokchitser">Vladimir Dokchitser</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:35B3B0263FD154132798BAC3C6D3AEFF4F97F640
   |texte=   Root numbers and parity of ranks of elliptic curves
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022