Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonholonomic mechanical systems with symmetry

Identifieur interne : 001A66 ( Main/Exploration ); précédent : 001A65; suivant : 001A67

Nonholonomic mechanical systems with symmetry

Auteurs : Anthony M. Bloch [États-Unis] ; P. S. Krishnaprasad [États-Unis] ; Jerrold E. Marsden [États-Unis] ; Richard M. Murray [États-Unis]

Source :

RBID : ISTEX:D2CB3316638B6C894729D9C968FB95822B2606E1

English descriptors

Abstract

Abstract: This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian mechanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d'Alembert formulation, generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholonomic systems using an Ehresmann connection to model the constraints, and show how the curvature of this connection enters into Lagrange's equations. Unlike the situation with standard configuration-space constraints, the presence of symmetries in the nonholonomic case may or may not lead to conservation laws. However, the momentum map determined by the symmetry group still satisfies a useful differential equation that decouples from the group variables. This momentum equation, which plays an important role in control problems, involves parallel transport operators and is computed explicitly in coordinates. An alternative description using a “body reference frame” relates part of the momentum equation to the components of the Euler-Poincaré equations along those symmetry directions consistent with the constraints. One of the purposes of this paper is to derive this evolution equation for the momentum and to distinguish geometrically and mechanically the cases where it is conserved and those where it is not. An example of the former is a ball or vertical disk rolling on a flat plane and an example of the latter is the snakeboard, a modified version of the skateboard which uses momentum coupling for locomotion generation. We construct a synthesis of the mechanical connection and the Ehresmann connection defining the constraints, obtaining an important new object we call the nonholonomic connection. When the nonholonomic connection is a principal connection for the given symmetry group, we show how to perform Lagrangian reduction in the presence of nonholonomic constraints, generalizing previous results which only held in special cases. Several detailed examples are given to illustrate the theory.

Url:
DOI: 10.1007/BF02199365


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonholonomic mechanical systems with symmetry</title>
<author>
<name sortKey="Bloch, Anthony M" sort="Bloch, Anthony M" uniqKey="Bloch A" first="Anthony M." last="Bloch">Anthony M. Bloch</name>
</author>
<author>
<name sortKey="Krishnaprasad, P S" sort="Krishnaprasad, P S" uniqKey="Krishnaprasad P" first="P. S." last="Krishnaprasad">P. S. Krishnaprasad</name>
</author>
<author>
<name sortKey="Marsden, Jerrold E" sort="Marsden, Jerrold E" uniqKey="Marsden J" first="Jerrold E." last="Marsden">Jerrold E. Marsden</name>
</author>
<author>
<name sortKey="Murray, Richard M" sort="Murray, Richard M" uniqKey="Murray R" first="Richard M." last="Murray">Richard M. Murray</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D2CB3316638B6C894729D9C968FB95822B2606E1</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1007/BF02199365</idno>
<idno type="url">https://api.istex.fr/document/D2CB3316638B6C894729D9C968FB95822B2606E1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002B43</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002B43</idno>
<idno type="wicri:Area/Istex/Curation">002B43</idno>
<idno type="wicri:Area/Istex/Checkpoint">001868</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001868</idno>
<idno type="wicri:doubleKey">0003-9527:1996:Bloch A:nonholonomic:mechanical:systems</idno>
<idno type="wicri:Area/Main/Merge">001A86</idno>
<idno type="wicri:Area/Main/Curation">001A66</idno>
<idno type="wicri:Area/Main/Exploration">001A66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Nonholonomic mechanical systems with symmetry</title>
<author>
<name sortKey="Bloch, Anthony M" sort="Bloch, Anthony M" uniqKey="Bloch A" first="Anthony M." last="Bloch">Anthony M. Bloch</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Department of Mathematics, University of Michigan, 48109, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Krishnaprasad, P S" sort="Krishnaprasad, P S" uniqKey="Krishnaprasad P" first="P. S." last="Krishnaprasad">P. S. Krishnaprasad</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Institute for Systems Research, University of Maryland, 20742, College Park</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Marsden, Jerrold E" sort="Marsden, Jerrold E" uniqKey="Marsden J" first="Jerrold E." last="Marsden">Jerrold E. Marsden</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Control and Dynamical Systems, California Institute of Technology, 91125, Pasadena</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Murray, Richard M" sort="Murray, Richard M" uniqKey="Murray R" first="Richard M." last="Murray">Richard M. Murray</name>
<affiliation wicri:level="2">
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Control and Dynamical Systems, California Institute of Technology, 91125, Pasadena</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Archive for Rational Mechanics and Analysis</title>
<title level="j" type="abbrev">Arch. Rational Mech. Anal.</title>
<idno type="ISSN">0003-9527</idno>
<idno type="eISSN">1432-0673</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1996-12-01">1996-12-01</date>
<biblScope unit="volume">136</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="21">21</biblScope>
<biblScope unit="page" to="99">99</biblScope>
</imprint>
<idno type="ISSN">0003-9527</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0003-9527</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abelian</term>
<term>Affine</term>
<term>Affine case</term>
<term>Affine constraints</term>
<term>Algebra</term>
<term>Algebra element</term>
<term>Amer</term>
<term>Angular momentum</term>
<term>Base space</term>
<term>Bloch</term>
<term>Bloch crouch</term>
<term>Blochet</term>
<term>Body representation</term>
<term>Bracket</term>
<term>Bundle coordinates</term>
<term>Bundle structure</term>
<term>California institute</term>
<term>Chaplygin</term>
<term>Conservation laws</term>
<term>Constraint</term>
<term>Constraint distribution</term>
<term>Constraint equations</term>
<term>Control systems</term>
<term>Control theory</term>
<term>Controllability</term>
<term>Covariant</term>
<term>Derivative</term>
<term>Dimension assumption</term>
<term>Dynamical</term>
<term>Dynamics</term>
<term>Ehresmann</term>
<term>Ehresmann connection</term>
<term>Ehresmann connections</term>
<term>Equation</term>
<term>Equivariant</term>
<term>Eulerpoincar6 equations</term>
<term>External forces</term>
<term>First term</term>
<term>Full space</term>
<term>General case</term>
<term>Generalized momentum</term>
<term>Geometric mechanics</term>
<term>Geometric phases</term>
<term>Getz marsden</term>
<term>Group action</term>
<term>Group orbit</term>
<term>Group orbits</term>
<term>Group variables</term>
<term>Hamiltonian</term>
<term>Holonomic</term>
<term>Holonomic constraints</term>
<term>Horizontal</term>
<term>Horizontal plane</term>
<term>Horizontal space</term>
<term>Horizontal spaces</term>
<term>Horizontal symmetries</term>
<term>Inertia</term>
<term>Inertia tensor</term>
<term>Infinitesimal generator</term>
<term>Infinitesimal generators</term>
<term>Invariance</term>
<term>Kinematic</term>
<term>Kinematic case</term>
<term>Kinematic connection</term>
<term>Kinematic constraints</term>
<term>Kinetic energy</term>
<term>Krishnaprasad</term>
<term>Lagrangian</term>
<term>Lagrangian mechanics</term>
<term>Lagrangian reduction</term>
<term>Lagrangian systems</term>
<term>Local expression</term>
<term>Local representation</term>
<term>Local trivialization</term>
<term>Locomotion</term>
<term>Locomotion systems</term>
<term>Marsden</term>
<term>Marsden ratiu</term>
<term>Marsden scheurle</term>
<term>Math</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical connection</term>
<term>Mechanical systems</term>
<term>Momentum</term>
<term>Momentum equation</term>
<term>Momentum equations</term>
<term>Nonholonomic</term>
<term>Nonholonomic connection</term>
<term>Nonholonomic constraints</term>
<term>Nonholonomic mechanics</term>
<term>Nonholonomic momentum</term>
<term>Nonholonomic system</term>
<term>Nonholonomic systems</term>
<term>Nonlinear</term>
<term>Orthogonal</term>
<term>Other hand</term>
<term>Other words</term>
<term>Phys</term>
<term>Poisson</term>
<term>Preprint</term>
<term>Present paper</term>
<term>Present work</term>
<term>Principal bundle</term>
<term>Principal connection</term>
<term>Principal connections</term>
<term>Principal kinematic case</term>
<term>Quotient</term>
<term>Rational mech</term>
<term>Ratiu</term>
<term>Reconstruction equation</term>
<term>Reduction theory</term>
<term>Relative equilibria</term>
<term>Rigid bodies</term>
<term>Rigid body</term>
<term>Scheurle</term>
<term>Shape space</term>
<term>Shape variables</term>
<term>Snakeboard</term>
<term>Snakeboard example</term>
<term>Sniatycki</term>
<term>Special case</term>
<term>Symmetry</term>
<term>Symmetry directions</term>
<term>Symmetry group</term>
<term>Symplectic</term>
<term>Tangent space</term>
<term>Tangent vector</term>
<term>Tangent vectors</term>
<term>Tensor</term>
<term>Trivialization</term>
<term>Unconstrained</term>
<term>Variational</term>
<term>Variational principle</term>
<term>Vector field</term>
<term>Vector fields</term>
<term>Velocity vector</term>
<term>Vertical axis</term>
<term>Vertical part</term>
<term>Vertical space</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abelian</term>
<term>Affine</term>
<term>Affine case</term>
<term>Affine constraints</term>
<term>Algebra</term>
<term>Algebra element</term>
<term>Amer</term>
<term>Angular momentum</term>
<term>Base space</term>
<term>Bloch</term>
<term>Bloch crouch</term>
<term>Blochet</term>
<term>Body representation</term>
<term>Bracket</term>
<term>Bundle coordinates</term>
<term>Bundle structure</term>
<term>California institute</term>
<term>Chaplygin</term>
<term>Conservation laws</term>
<term>Constraint</term>
<term>Constraint distribution</term>
<term>Constraint equations</term>
<term>Control systems</term>
<term>Control theory</term>
<term>Controllability</term>
<term>Covariant</term>
<term>Derivative</term>
<term>Dimension assumption</term>
<term>Dynamical</term>
<term>Dynamics</term>
<term>Ehresmann</term>
<term>Ehresmann connection</term>
<term>Ehresmann connections</term>
<term>Equation</term>
<term>Equivariant</term>
<term>Eulerpoincar6 equations</term>
<term>External forces</term>
<term>First term</term>
<term>Full space</term>
<term>General case</term>
<term>Generalized momentum</term>
<term>Geometric mechanics</term>
<term>Geometric phases</term>
<term>Getz marsden</term>
<term>Group action</term>
<term>Group orbit</term>
<term>Group orbits</term>
<term>Group variables</term>
<term>Hamiltonian</term>
<term>Holonomic</term>
<term>Holonomic constraints</term>
<term>Horizontal</term>
<term>Horizontal plane</term>
<term>Horizontal space</term>
<term>Horizontal spaces</term>
<term>Horizontal symmetries</term>
<term>Inertia</term>
<term>Inertia tensor</term>
<term>Infinitesimal generator</term>
<term>Infinitesimal generators</term>
<term>Invariance</term>
<term>Kinematic</term>
<term>Kinematic case</term>
<term>Kinematic connection</term>
<term>Kinematic constraints</term>
<term>Kinetic energy</term>
<term>Krishnaprasad</term>
<term>Lagrangian</term>
<term>Lagrangian mechanics</term>
<term>Lagrangian reduction</term>
<term>Lagrangian systems</term>
<term>Local expression</term>
<term>Local representation</term>
<term>Local trivialization</term>
<term>Locomotion</term>
<term>Locomotion systems</term>
<term>Marsden</term>
<term>Marsden ratiu</term>
<term>Marsden scheurle</term>
<term>Math</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical connection</term>
<term>Mechanical systems</term>
<term>Momentum</term>
<term>Momentum equation</term>
<term>Momentum equations</term>
<term>Nonholonomic</term>
<term>Nonholonomic connection</term>
<term>Nonholonomic constraints</term>
<term>Nonholonomic mechanics</term>
<term>Nonholonomic momentum</term>
<term>Nonholonomic system</term>
<term>Nonholonomic systems</term>
<term>Nonlinear</term>
<term>Orthogonal</term>
<term>Other hand</term>
<term>Other words</term>
<term>Phys</term>
<term>Poisson</term>
<term>Preprint</term>
<term>Present paper</term>
<term>Present work</term>
<term>Principal bundle</term>
<term>Principal connection</term>
<term>Principal connections</term>
<term>Principal kinematic case</term>
<term>Quotient</term>
<term>Rational mech</term>
<term>Ratiu</term>
<term>Reconstruction equation</term>
<term>Reduction theory</term>
<term>Relative equilibria</term>
<term>Rigid bodies</term>
<term>Rigid body</term>
<term>Scheurle</term>
<term>Shape space</term>
<term>Shape variables</term>
<term>Snakeboard</term>
<term>Snakeboard example</term>
<term>Sniatycki</term>
<term>Special case</term>
<term>Symmetry</term>
<term>Symmetry directions</term>
<term>Symmetry group</term>
<term>Symplectic</term>
<term>Tangent space</term>
<term>Tangent vector</term>
<term>Tangent vectors</term>
<term>Tensor</term>
<term>Trivialization</term>
<term>Unconstrained</term>
<term>Variational</term>
<term>Variational principle</term>
<term>Vector field</term>
<term>Vector fields</term>
<term>Velocity vector</term>
<term>Vertical axis</term>
<term>Vertical part</term>
<term>Vertical space</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian mechanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d'Alembert formulation, generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholonomic systems using an Ehresmann connection to model the constraints, and show how the curvature of this connection enters into Lagrange's equations. Unlike the situation with standard configuration-space constraints, the presence of symmetries in the nonholonomic case may or may not lead to conservation laws. However, the momentum map determined by the symmetry group still satisfies a useful differential equation that decouples from the group variables. This momentum equation, which plays an important role in control problems, involves parallel transport operators and is computed explicitly in coordinates. An alternative description using a “body reference frame” relates part of the momentum equation to the components of the Euler-Poincaré equations along those symmetry directions consistent with the constraints. One of the purposes of this paper is to derive this evolution equation for the momentum and to distinguish geometrically and mechanically the cases where it is conserved and those where it is not. An example of the former is a ball or vertical disk rolling on a flat plane and an example of the latter is the snakeboard, a modified version of the skateboard which uses momentum coupling for locomotion generation. We construct a synthesis of the mechanical connection and the Ehresmann connection defining the constraints, obtaining an important new object we call the nonholonomic connection. When the nonholonomic connection is a principal connection for the given symmetry group, we show how to perform Lagrangian reduction in the presence of nonholonomic constraints, generalizing previous results which only held in special cases. Several detailed examples are given to illustrate the theory.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Maryland</li>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Bloch, Anthony M" sort="Bloch, Anthony M" uniqKey="Bloch A" first="Anthony M." last="Bloch">Anthony M. Bloch</name>
</region>
<name sortKey="Krishnaprasad, P S" sort="Krishnaprasad, P S" uniqKey="Krishnaprasad P" first="P. S." last="Krishnaprasad">P. S. Krishnaprasad</name>
<name sortKey="Marsden, Jerrold E" sort="Marsden, Jerrold E" uniqKey="Marsden J" first="Jerrold E." last="Marsden">Jerrold E. Marsden</name>
<name sortKey="Murray, Richard M" sort="Murray, Richard M" uniqKey="Murray R" first="Richard M." last="Murray">Richard M. Murray</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D2CB3316638B6C894729D9C968FB95822B2606E1
   |texte=   Nonholonomic mechanical systems with symmetry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022