Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Basics of Hermitian Geometry

Identifieur interne : 000321 ( Main/Exploration ); précédent : 000320; suivant : 000322

Basics of Hermitian Geometry

Auteurs : Jean Gallier [États-Unis]

Source :

RBID : ISTEX:D4991E492869C01963BA4448545752B02A72032E

Abstract

Abstract: In this chapter we generalize the basic results of Euclidean geometry presented in Chapter 6 to vector spaces over the complex numbers. Such a generalization is inevitable, and not simply a luxury. For example, linear maps may not have real eigenvalues, but they always have complex eigenvalues. Furthermore, some very important classes of linear maps can be diagonalized if they are extended to the complexification of a real vector space. This is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex vector spaces are often the natural framework in physics or engineering, and they are more convenient for dealing with Fourier series. However, some complications arise due to complex conjugation. Recall that for any complex number z ∈ $$\mathbb{C} $$ , if z = x+iy where x, y ∈ ℝ, we let ℜz = x, the real part of z, and ℑz = y, the imaginary part of z. We also denote the conjugate of z = x+iy by $$\bar{z}$$ = x-iy, and the absolute value (or length, or modulus) of z by |z|. Recall that |z|2 = z $$\bar{z}$$ = x 2 +y 2. There are many natural situations where a map ϕ : E × E $$\mathbb{C} $$ is linear in its first argument and only semilinear in its second argument, which means that ϕ(u,µv) = µ(u,v), as opposed to ϕ(u, $$\bar{\mu}$$ v) = µϕ(u,v). For example, the natural inner product to deal with functions f : ℝ→ $$\mathbb{C} $$ , especially Fourier series, is $$\langle{f,g}\rangle = \int\limits_{\pi}^{-\pi}f(x)\overline{g(x)}dx,$$ which is semilinear (but not linear) in g.

Url:
DOI: 10.1007/978-1-4419-9961-0_11


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Basics of Hermitian Geometry</title>
<author>
<name sortKey="Gallier, Jean" sort="Gallier, Jean" uniqKey="Gallier J" first="Jean" last="Gallier">Jean Gallier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D4991E492869C01963BA4448545752B02A72032E</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1007/978-1-4419-9961-0_11</idno>
<idno type="url">https://api.istex.fr/document/D4991E492869C01963BA4448545752B02A72032E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002B77</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002B77</idno>
<idno type="wicri:Area/Istex/Curation">002B77</idno>
<idno type="wicri:Area/Istex/Checkpoint">000282</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000282</idno>
<idno type="wicri:doubleKey">0939-2475:2011:Gallier J:basics:of:hermitian</idno>
<idno type="wicri:Area/Main/Merge">000321</idno>
<idno type="wicri:Area/Main/Curation">000321</idno>
<idno type="wicri:Area/Main/Exploration">000321</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Basics of Hermitian Geometry</title>
<author>
<name sortKey="Gallier, Jean" sort="Gallier, Jean" uniqKey="Gallier J" first="Jean" last="Gallier">Jean Gallier</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut Street, 19104, Philadelphia, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s">Texts in Applied Mathematics</title>
<imprint>
<date>2011</date>
</imprint>
<idno type="ISSN">0939-2475</idno>
<idno type="ISSN">0939-2475</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0939-2475</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In this chapter we generalize the basic results of Euclidean geometry presented in Chapter 6 to vector spaces over the complex numbers. Such a generalization is inevitable, and not simply a luxury. For example, linear maps may not have real eigenvalues, but they always have complex eigenvalues. Furthermore, some very important classes of linear maps can be diagonalized if they are extended to the complexification of a real vector space. This is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex vector spaces are often the natural framework in physics or engineering, and they are more convenient for dealing with Fourier series. However, some complications arise due to complex conjugation. Recall that for any complex number z ∈ $$\mathbb{C} $$ , if z = x+iy where x, y ∈ ℝ, we let ℜz = x, the real part of z, and ℑz = y, the imaginary part of z. We also denote the conjugate of z = x+iy by $$\bar{z}$$ = x-iy, and the absolute value (or length, or modulus) of z by |z|. Recall that |z|2 = z $$\bar{z}$$ = x 2 +y 2. There are many natural situations where a map ϕ : E × E $$\mathbb{C} $$ is linear in its first argument and only semilinear in its second argument, which means that ϕ(u,µv) = µ(u,v), as opposed to ϕ(u, $$\bar{\mu}$$ v) = µϕ(u,v). For example, the natural inner product to deal with functions f : ℝ→ $$\mathbb{C} $$ , especially Fourier series, is $$\langle{f,g}\rangle = \int\limits_{\pi}^{-\pi}f(x)\overline{g(x)}dx,$$ which is semilinear (but not linear) in g.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Gallier, Jean" sort="Gallier, Jean" uniqKey="Gallier J" first="Jean" last="Gallier">Jean Gallier</name>
</region>
<name sortKey="Gallier, Jean" sort="Gallier, Jean" uniqKey="Gallier J" first="Jean" last="Gallier">Jean Gallier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000321 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000321 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D4991E492869C01963BA4448545752B02A72032E
   |texte=   Basics of Hermitian Geometry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022