Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Algebraic Varieties: Basic Notions

Identifieur interne : 003423 ( Istex/Corpus ); précédent : 003422; suivant : 003424

Algebraic Varieties: Basic Notions

Auteurs : I. R. Shafarevich

Source :

RBID : ISTEX:FDEF4BAB8C3957AB2D5787F1CE203A00C9566066

Abstract

Abstract: The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”n or ℂn. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field K, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field K is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.

Url:
DOI: 10.1007/978-3-642-57878-6_6

Links to Exploration step

ISTEX:FDEF4BAB8C3957AB2D5787F1CE203A00C9566066

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Algebraic Varieties: Basic Notions</title>
<author>
<name sortKey="Shafarevich, I R" sort="Shafarevich, I R" uniqKey="Shafarevich I" first="I. R." last="Shafarevich">I. R. Shafarevich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FDEF4BAB8C3957AB2D5787F1CE203A00C9566066</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1007/978-3-642-57878-6_6</idno>
<idno type="url">https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003423</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003423</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Algebraic Varieties: Basic Notions</title>
<author>
<name sortKey="Shafarevich, I R" sort="Shafarevich, I R" uniqKey="Shafarevich I" first="I. R." last="Shafarevich">I. R. Shafarevich</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s">Encyclopaedia of Mathematical Sciences</title>
<imprint>
<date>1994</date>
</imprint>
<idno type="ISSN">0938-0396</idno>
<idno type="ISSN">0938-0396</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0938-0396</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”n or ℂn. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field K, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field K is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<author>
<json:item>
<name>I. R. Shafarevich</name>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-CSL32CT5-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”n or ℂn. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field K, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field K is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.</abstract>
<qualityIndicators>
<score>9.088</score>
<pdfWordCount>16519</pdfWordCount>
<pdfCharCount>76747</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>37</pdfPageCount>
<pdfPageSize>439.37 x 666.14 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>174</abstractWordCount>
<abstractCharCount>1050</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Algebraic Varieties: Basic Notions</title>
<chapterId>
<json:string>6</json:string>
<json:string>Chap6</json:string>
</chapterId>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Encyclopaedia of Mathematical Sciences</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1994</copyrightDate>
<issn>
<json:string>0938-0396</json:string>
</issn>
<volume>Part II</volume>
<editor>
<json:item>
<name>R. V. Gamkrelidze</name>
<affiliations>
<json:string>Steklov Mathematical Institute, Russian Academy of Sciences, ul. Vavilova 42, 117966, Moscow, Russia</json:string>
<json:string>Institute for Scientific Information (VINITI), ul. Usievicha 20a, 125219, Moscow, Russia</json:string>
</affiliations>
</json:item>
</editor>
</serie>
<host>
<title>Algebraic Geometry I</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1007/978-3-642-57878-6</json:string>
</doi>
<issn>
<json:string>0938-0396</json:string>
</issn>
<eisbn>
<json:string>978-3-642-57878-6</json:string>
</eisbn>
<bookId>
<json:string>978-3-642-57878-6</json:string>
</bookId>
<isbn>
<json:string>978-3-540-63705-9</json:string>
</isbn>
<volume>23</volume>
<pages>
<first>174</first>
<last>210</last>
</pages>
<genre>
<json:string>book-series</json:string>
</genre>
<editor>
<json:item>
<name>I. R. Shafarevich</name>
<affiliations>
<json:string>Steklov Mathematical Institute, ul. Vavilova 42, 117966, Moscow, Russia</json:string>
</affiliations>
</json:item>
</editor>
<subject>
<json:item>
<value>Mathematics and Statistics</value>
</json:item>
<json:item>
<value>Mathematics</value>
</json:item>
<json:item>
<value>Algebraic Geometry</value>
</json:item>
<json:item>
<value>Analysis</value>
</json:item>
<json:item>
<value>Topology</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-CSL32CT5-7</json:string>
</ark>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1007/978-3-642-57878-6_6</json:string>
</doi>
<id>FDEF4BAB8C3957AB2D5787F1CE203A00C9566066</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Algebraic Varieties: Basic Notions</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Springer Berlin Heidelberg</publisher>
<pubPlace>Berlin, Heidelberg</pubPlace>
<availability>
<licence>
<p>Springer-Verlag Berlin Heidelberg, 1994</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>1994</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="book-series" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Algebraic Varieties: Basic Notions</title>
<author xml:id="author-0000">
<persName>
<forename type="first">I.</forename>
<surname>Shafarevich</surname>
</persName>
</author>
<idno type="istex">FDEF4BAB8C3957AB2D5787F1CE203A00C9566066</idno>
<idno type="ark">ark:/67375/HCB-CSL32CT5-7</idno>
<idno type="DOI">10.1007/978-3-642-57878-6_6</idno>
<idno type="ChapterID">6</idno>
<idno type="ChapterID">Chap6</idno>
</analytic>
<monogr>
<title level="m">Algebraic Geometry I</title>
<title level="m" type="sub">Algebraic Curves, Algebraic Manifolds and Schemes</title>
<idno type="DOI">10.1007/978-3-642-57878-6</idno>
<idno type="pISBN">978-3-540-63705-9</idno>
<idno type="eISBN">978-3-642-57878-6</idno>
<idno type="pISSN">0938-0396</idno>
<idno type="book-title-id">23321</idno>
<idno type="book-id">978-3-642-57878-6</idno>
<idno type="book-chapter-count">9</idno>
<idno type="book-volume-number">23</idno>
<idno type="book-sequence-number">23</idno>
<idno type="PartChapterCount">5</idno>
<editor xml:id="book-author-0000">
<persName>
<forename type="first">I.</forename>
<forename type="first">R.</forename>
<surname>Shafarevich</surname>
</persName>
<affiliation>Steklov Mathematical Institute, ul. Vavilova 42, 117966, Moscow, Russia</affiliation>
</editor>
<imprint>
<publisher>Springer Berlin Heidelberg</publisher>
<pubPlace>Berlin, Heidelberg</pubPlace>
<date type="published" when="1994"></date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="chap">Chapter 1</biblScope>
<biblScope unit="page" from="174">174</biblScope>
<biblScope unit="page" to="210">210</biblScope>
</imprint>
</monogr>
<series>
<title level="s">Encyclopaedia of Mathematical Sciences</title>
<editor xml:id="serie-author-0000">
<persName>
<forename type="first">R.</forename>
<forename type="first">V.</forename>
<surname>Gamkrelidze</surname>
</persName>
<affiliation>Steklov Mathematical Institute, Russian Academy of Sciences, ul. Vavilova 42, 117966, Moscow, Russia</affiliation>
<affiliation>Institute for Scientific Information (VINITI), ul. Usievicha 20a, 125219, Moscow, Russia</affiliation>
</editor>
<biblScope>
<date>1994</date>
</biblScope>
<biblScope unit="part">Part II</biblScope>
<idno type="pISSN">0938-0396</idno>
<idno type="series-id">855</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”n or ℂn. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field K, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field K is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.</p>
</abstract>
<textClass>
<keywords scheme="Book-Subject-Collection">
<list>
<label>SUCO11649</label>
<item>
<term>Mathematics and Statistics</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Book-Subject-Group">
<list>
<label>M</label>
<label>M11019</label>
<label>M12007</label>
<label>M28000</label>
<item>
<term>Mathematics</term>
</item>
<item>
<term>Algebraic Geometry</term>
</item>
<item>
<term>Analysis</term>
</item>
<item>
<term>Topology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-11-28">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer Berlin Heidelberg</PublisherName>
<PublisherLocation>Berlin, Heidelberg</PublisherLocation>
<PublisherImprintName>Springer</PublisherImprintName>
</PublisherInfo>
<Series>
<SeriesInfo TocLevels="0" SeriesType="Series">
<SeriesID>855</SeriesID>
<SeriesPrintISSN>0938-0396</SeriesPrintISSN>
<SeriesTitle Language="En">Encyclopaedia of Mathematical Sciences</SeriesTitle>
</SeriesInfo>
<SeriesHeader>
<EditorGroup>
<Editor AffiliationIDS="Aff1 Aff2">
<EditorName DisplayOrder="Western">
<GivenName>R.</GivenName>
<GivenName>V.</GivenName>
<FamilyName>Gamkrelidze</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff1">
<OrgDivision>Steklov Mathematical Institute</OrgDivision>
<OrgName>Russian Academy of Sciences</OrgName>
<OrgAddress>
<Street>ul. Vavilova 42</Street>
<Postcode>117966</Postcode>
<City>Moscow</City>
<Country>Russia</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgName>Institute for Scientific Information (VINITI)</OrgName>
<OrgAddress>
<Street>ul. Usievicha 20a</Street>
<Postcode>125219</Postcode>
<City>Moscow</City>
<Country>Russia</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</SeriesHeader>
<Book Language="En">
<BookInfo Language="En" OutputMedium="All" TocLevels="0" NumberingStyle="ChapterOnly" ContainsESM="No" BookProductType="Monograph" MediaType="eBook">
<BookID>978-3-642-57878-6</BookID>
<BookTitle>Algebraic Geometry I</BookTitle>
<BookSubTitle>Algebraic Curves, Algebraic Manifolds and Schemes</BookSubTitle>
<BookVolumeNumber>23</BookVolumeNumber>
<BookSequenceNumber>23</BookSequenceNumber>
<BookDOI>10.1007/978-3-642-57878-6</BookDOI>
<BookTitleID>23321</BookTitleID>
<BookPrintISBN>978-3-540-63705-9</BookPrintISBN>
<BookElectronicISBN>978-3-642-57878-6</BookElectronicISBN>
<BookChapterCount>9</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>1994</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Type="Primary" Code="M">Mathematics</BookSubject>
<BookSubject Type="Secondary" Priority="1" Code="M11019">Algebraic Geometry</BookSubject>
<BookSubject Type="Secondary" Priority="2" Code="M12007">Analysis</BookSubject>
<BookSubject Type="Secondary" Priority="3" Code="M28000">Topology</BookSubject>
<SubjectCollection Code="SUCO11649">Mathematics and Statistics</SubjectCollection>
</BookSubjectGroup>
<BookContext>
<SeriesID>855</SeriesID>
</BookContext>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor AffiliationIDS="Aff3">
<EditorName DisplayOrder="Western">
<GivenName>I.</GivenName>
<GivenName>R.</GivenName>
<FamilyName>Shafarevich</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff3">
<OrgName>Steklov Mathematical Institute</OrgName>
<OrgAddress>
<Street>ul. Vavilova 42</Street>
<Postcode>117966</Postcode>
<City>Moscow</City>
<Country>Russia</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Part ID="Part2">
<PartInfo TocLevels="0">
<PartID>2</PartID>
<PartNumber>Part II</PartNumber>
<PartSequenceNumber>2</PartSequenceNumber>
<PartTitle>Algebraic Varieties and Schemes</PartTitle>
<PartChapterCount>5</PartChapterCount>
<PartContext>
<SeriesID>855</SeriesID>
<BookID>978-3-642-57878-6</BookID>
<BookTitle>Algebraic Geometry I</BookTitle>
</PartContext>
</PartInfo>
<Chapter ID="Chap6" Language="En">
<ChapterInfo ChapterType="OriginalPaper" NumberingStyle="ChapterOnly" TocLevels="0" Language="En" ContainsESM="No">
<ChapterID>6</ChapterID>
<ChapterNumber>Chapter 1</ChapterNumber>
<ChapterDOI>10.1007/978-3-642-57878-6_6</ChapterDOI>
<ChapterSequenceNumber>6</ChapterSequenceNumber>
<ChapterTitle Language="En">Algebraic Varieties: Basic Notions</ChapterTitle>
<ChapterFirstPage>174</ChapterFirstPage>
<ChapterLastPage>210</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer-Verlag Berlin Heidelberg</CopyrightHolderName>
<CopyrightYear>1994</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2011</Year>
<Month>7</Month>
<Day>18</Day>
</RegistrationDate>
</ChapterHistory>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<SeriesID>855</SeriesID>
<PartID>2</PartID>
<BookID>978-3-642-57878-6</BookID>
<BookTitle>Algebraic Geometry I</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author>
<AuthorName DisplayOrder="Western">
<GivenName>I.</GivenName>
<GivenName>R.</GivenName>
<FamilyName>Shafarevich</FamilyName>
</AuthorName>
</Author>
</AuthorGroup>
<Abstract ID="Abs1" Language="En" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para>The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”
<Superscript>n</Superscript>
or ℂ
<Superscript>n</Superscript>
. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field
<Emphasis Type="Italic">K</Emphasis>
, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field
<Emphasis Type="Italic">K</Emphasis>
is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Part>
</Book>
</Series>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Algebraic Varieties: Basic Notions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Algebraic Varieties: Basic Notions</title>
</titleInfo>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="given">R.</namePart>
<namePart type="family">Shafarevich</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" type="research-article" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer Berlin Heidelberg</publisher>
<place>
<placeTerm type="text">Berlin, Heidelberg</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: The aim of this chapter is to give a precise meaning to the following words: an algebraic variety is an object which is defined locally by some polynomial equations. The main distinction between algebraic varieties and differentiable or complex analytic manifolds (see Bourbaki [1967–1971], Chirka [1985], or Lang [1962]) lies in the choice of the local models. In the differentiable and complex analytic cases, these are the open subsets of ”n or ℂn. A local model of an algebraic variety is a subset of the coordinate space which is given by polynomial equations. This makes sense only if we fix a ground field K, over which both the polynomials and the solutions will be considered. In order to simplify the algebraic aspect of the question as much as possible and to concentrate on geometry, we shall assume in the first three chapters that the field K is algebraically closed. In the present chapter we shall also examine the simplest notions from algebraic geometry that have direct analogues in the differentiable and analytic cases.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Algebraic Geometry I</title>
<subTitle>Algebraic Curves, Algebraic Manifolds and Schemes</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="given">R.</namePart>
<namePart type="family">Shafarevich</namePart>
<affiliation>Steklov Mathematical Institute, ul. Vavilova 42, 117966, Moscow, Russia</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book-series" displayLabel="Monograph" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0G6R5W5T-Z">book-series</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11649">Mathematics and Statistics</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="M">Mathematics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="M11019">Algebraic Geometry</topic>
<topic authority="SpringerSubjectCodes" authorityURI="M12007">Analysis</topic>
<topic authority="SpringerSubjectCodes" authorityURI="M28000">Topology</topic>
</subject>
<identifier type="DOI">10.1007/978-3-642-57878-6</identifier>
<identifier type="ISBN">978-3-540-63705-9</identifier>
<identifier type="eISBN">978-3-642-57878-6</identifier>
<identifier type="ISSN">0938-0396</identifier>
<identifier type="BookTitleID">23321</identifier>
<identifier type="BookID">978-3-642-57878-6</identifier>
<identifier type="BookChapterCount">9</identifier>
<identifier type="BookVolumeNumber">23</identifier>
<identifier type="BookSequenceNumber">23</identifier>
<identifier type="PartChapterCount">5</identifier>
<part>
<date>1994</date>
<detail type="part">
<title>Part II: Algebraic Varieties and Schemes</title>
</detail>
<detail type="volume">
<number>23</number>
<caption>vol.</caption>
</detail>
<detail type="chapter">
<number>Chapter 1</number>
</detail>
<extent unit="pages">
<start>174</start>
<end>210</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 1994</recordOrigin>
</recordInfo>
</relatedItem>
<relatedItem type="series">
<titleInfo>
<title>Encyclopaedia of Mathematical Sciences</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="given">V.</namePart>
<namePart type="family">Gamkrelidze</namePart>
<affiliation>Steklov Mathematical Institute, Russian Academy of Sciences, ul. Vavilova 42, 117966, Moscow, Russia</affiliation>
<affiliation>Institute for Scientific Information (VINITI), ul. Usievicha 20a, 125219, Moscow, Russia</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
<issuance>serial</issuance>
</originInfo>
<identifier type="ISSN">0938-0396</identifier>
<identifier type="SeriesID">855</identifier>
<part>
<detail type="volume">
<number>Part II</number>
<caption>vol.</caption>
</detail>
<detail type="chapter">
<number>Chapter 1</number>
</detail>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 1994</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">FDEF4BAB8C3957AB2D5787F1CE203A00C9566066</identifier>
<identifier type="ark">ark:/67375/HCB-CSL32CT5-7</identifier>
<identifier type="DOI">10.1007/978-3-642-57878-6_6</identifier>
<identifier type="ChapterID">6</identifier>
<identifier type="ChapterID">Chap6</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag Berlin Heidelberg, 1994</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer-Verlag Berlin Heidelberg, 1994</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/metadata/json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>txt</extension>
<original>true</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FDEF4BAB8C3957AB2D5787F1CE203A00C9566066/annexes/txt</uri>
</json:item>
</annexes>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003423 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003423 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FDEF4BAB8C3957AB2D5787F1CE203A00C9566066
   |texte=   Algebraic Varieties: Basic Notions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022