Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonholonomic Riemann and Weyl tensors for flag manifolds

Identifieur interne : 000584 ( Istex/Corpus ); précédent : 000583; suivant : 000585

Nonholonomic Riemann and Weyl tensors for flag manifolds

Auteurs : P. Ya. Grozman ; D. A. Leites

Source :

RBID : ISTEX:1B7087E7EE757B38E903282CC347F8A7FD91C0C4

English descriptors

Abstract

Abstract: On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.

Url:
DOI: 10.1007/s11232-007-0131-z

Links to Exploration step

ISTEX:1B7087E7EE757B38E903282CC347F8A7FD91C0C4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
<author>
<name sortKey="Grozman, P Ya" sort="Grozman, P Ya" uniqKey="Grozman P" first="P. Ya." last="Grozman">P. Ya. Grozman</name>
<affiliation>
<mods:affiliation>Equa Simulation AB, Stockholm, Sweden</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pavel@rixetele.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leites, D A" sort="Leites, D A" uniqKey="Leites D" first="D. A." last="Leites">D. A. Leites</name>
<affiliation>
<mods:affiliation>Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Mathematics, University of Stockholm, Stockholm, Sweden</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mleites@math.su.se</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1B7087E7EE757B38E903282CC347F8A7FD91C0C4</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1007/s11232-007-0131-z</idno>
<idno type="url">https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000584</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000584</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
<author>
<name sortKey="Grozman, P Ya" sort="Grozman, P Ya" uniqKey="Grozman P" first="P. Ya." last="Grozman">P. Ya. Grozman</name>
<affiliation>
<mods:affiliation>Equa Simulation AB, Stockholm, Sweden</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: pavel@rixetele.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leites, D A" sort="Leites, D A" uniqKey="Leites D" first="D. A." last="Leites">D. A. Leites</name>
<affiliation>
<mods:affiliation>Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Mathematics, University of Stockholm, Stockholm, Sweden</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mleites@math.su.se</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Theoretical and Mathematical Physics</title>
<title level="j" type="abbrev">Theor Math Phys</title>
<idno type="ISSN">0040-5779</idno>
<idno type="eISSN">1573-9333</idno>
<imprint>
<publisher>Springer US</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2007-11-01">2007-11-01</date>
<biblScope unit="volume">153</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="1511">1511</biblScope>
<biblScope unit="page" to="1538">1538</biblScope>
</imprint>
<idno type="ISSN">0040-5779</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0040-5779</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cartan prolongation</term>
<term>G 2-structure</term>
<term>Lie algebra cohomology</term>
<term>Riemann tensor</term>
<term>flag manifold</term>
<term>nonholonomic manifold</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.</div>
</front>
</TEI>
<istex>
<corpusName>springer-journals</corpusName>
<author>
<json:item>
<name>P. Ya. Grozman</name>
<affiliations>
<json:string>Equa Simulation AB, Stockholm, Sweden</json:string>
<json:string>E-mail: pavel@rixetele.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. A. Leites</name>
<affiliations>
<json:string>Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, Germany</json:string>
<json:string>Department of Mathematics, University of Stockholm, Stockholm, Sweden</json:string>
<json:string>E-mail: mleites@math.su.se</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Lie algebra cohomology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cartan prolongation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Riemann tensor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nonholonomic manifold</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flag manifold</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>G 2-structure</value>
</json:item>
</subject>
<articleId>
<json:string>131</json:string>
<json:string>s11232-007-0131-z</json:string>
</articleId>
<arkIstex>ark:/67375/VQC-680DH90F-W</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.</abstract>
<qualityIndicators>
<score>9.4</score>
<pdfWordCount>14765</pdfWordCount>
<pdfCharCount>64914</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>28</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>200</abstractWordCount>
<abstractCharCount>1354</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Theoretical and Mathematical Physics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<issn>
<json:string>0040-5779</json:string>
</issn>
<eissn>
<json:string>1573-9333</json:string>
</eissn>
<journalId>
<json:string>11232</json:string>
</journalId>
<volume>153</volume>
<issue>2</issue>
<pages>
<first>1511</first>
<last>1538</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Physics</value>
</json:item>
<json:item>
<value>Mathematical and Computational Physics</value>
</json:item>
<json:item>
<value>Applications of Mathematics</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/VQC-680DH90F-W</json:string>
</ark>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1007/s11232-007-0131-z</json:string>
</doi>
<id>1B7087E7EE757B38E903282CC347F8A7FD91C0C4</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Springer US</publisher>
<pubPlace>Boston</pubPlace>
<availability>
<licence>
<p>Springer Science+Business Media, Inc., 2007</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>2006-07-06</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">P.</forename>
<surname>Grozman</surname>
</persName>
<email>pavel@rixetele.com</email>
<affiliation>Equa Simulation AB, Stockholm, Sweden</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">D.</forename>
<surname>Leites</surname>
</persName>
<email>mleites@math.su.se</email>
<affiliation>Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, Germany</affiliation>
<affiliation>Department of Mathematics, University of Stockholm, Stockholm, Sweden</affiliation>
</author>
<idno type="istex">1B7087E7EE757B38E903282CC347F8A7FD91C0C4</idno>
<idno type="ark">ark:/67375/VQC-680DH90F-W</idno>
<idno type="DOI">10.1007/s11232-007-0131-z</idno>
<idno type="article-id">131</idno>
<idno type="article-id">s11232-007-0131-z</idno>
</analytic>
<monogr>
<title level="j">Theoretical and Mathematical Physics</title>
<title level="j" type="abbrev">Theor Math Phys</title>
<idno type="pISSN">0040-5779</idno>
<idno type="eISSN">1573-9333</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">6</idno>
<idno type="volume-issue-count">3</idno>
<imprint>
<publisher>Springer US</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2007-11-01"></date>
<biblScope unit="volume">153</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="1511">1511</biblScope>
<biblScope unit="page" to="1538">1538</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006-07-06</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Lie algebra cohomology</term>
</item>
<item>
<term>Cartan prolongation</term>
</item>
<item>
<term>Riemann tensor</term>
</item>
<item>
<term>nonholonomic manifold</term>
</item>
<item>
<term>flag manifold</term>
</item>
<item>
<term>G 2-structure</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal-Subject-Group">
<list>
<label>P</label>
<label>P19005</label>
<label>M13003</label>
<item>
<term>Physics</term>
</item>
<item>
<term>Mathematical and Computational Physics</term>
</item>
<item>
<term>Applications of Mathematics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-07-06">Created</change>
<change when="2007-11-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-12-2">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer US</PublisherName>
<PublisherLocation>Boston</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>11232</JournalID>
<JournalPrintISSN>0040-5779</JournalPrintISSN>
<JournalElectronicISSN>1573-9333</JournalElectronicISSN>
<JournalTitle>Theoretical and Mathematical Physics</JournalTitle>
<JournalAbbreviatedTitle>Theor Math Phys</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Code="P" Type="Primary">Physics</JournalSubject>
<JournalSubject Code="P19005" Priority="1" Type="Secondary">Mathematical and Computational Physics</JournalSubject>
<JournalSubject Code="M13003" Priority="2" Type="Secondary">Applications of Mathematics</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo TocLevels="0" VolumeType="Regular">
<VolumeIDStart>153</VolumeIDStart>
<VolumeIDEnd>153</VolumeIDEnd>
<VolumeIssueCount>3</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>2</IssueIDEnd>
<IssueArticleCount>6</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>2007</Year>
<Month>11</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer Science+Business Media, Inc.</CopyrightHolderName>
<CopyrightYear>2007</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="s11232-007-0131-z">
<ArticleInfo ArticleType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="Unnumbered" TocLevels="0">
<ArticleID>131</ArticleID>
<ArticleDOI>10.1007/s11232-007-0131-z</ArticleDOI>
<ArticleSequenceNumber>3</ArticleSequenceNumber>
<ArticleTitle Language="En">Nonholonomic Riemann and Weyl tensors for flag manifolds</ArticleTitle>
<ArticleFirstPage>1511</ArticleFirstPage>
<ArticleLastPage>1538</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2007</Year>
<Month>11</Month>
<Day>20</Day>
</RegistrationDate>
<Received>
<Year>2006</Year>
<Month>7</Month>
<Day>6</Day>
</Received>
<Revised>
<Year>2006</Year>
<Month>12</Month>
<Day>30</Day>
</Revised>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer Science+Business Media, Inc.</CopyrightHolderName>
<CopyrightYear>2007</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>P.</GivenName>
<GivenName>Ya.</GivenName>
<FamilyName>Grozman</FamilyName>
</AuthorName>
<Contact>
<Email>pavel@rixetele.com</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff2 Aff3">
<AuthorName DisplayOrder="Western">
<GivenName>D.</GivenName>
<GivenName>A.</GivenName>
<FamilyName>Leites</FamilyName>
</AuthorName>
<Contact>
<Email>mleites@math.su.se</Email>
</Contact>
</Author>
<Affiliation ID="Aff1">
<OrgName>Equa Simulation AB</OrgName>
<OrgAddress>
<City>Stockholm</City>
<Country Code="SE">Sweden</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgName>Max-Planck-Institut fur Mathematik in den Naturwissenschaften</OrgName>
<OrgAddress>
<City>Leipzig</City>
<Country Code="DE">Germany</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgDivision>Department of Mathematics</OrgDivision>
<OrgName>University of Stockholm</OrgName>
<OrgAddress>
<City>Stockholm</City>
<Country Code="SE">Sweden</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.</Para>
</Abstract>
<KeywordGroup Language="En">
<Heading>Keywords</Heading>
<Keyword>Lie algebra cohomology</Keyword>
<Keyword>Cartan prolongation</Keyword>
<Keyword>Riemann tensor</Keyword>
<Keyword>nonholonomic manifold</Keyword>
<Keyword>flag manifold</Keyword>
<Keyword>
<Emphasis Type="Italic">G</Emphasis>
<Subscript>2</Subscript>
-structure</Keyword>
</KeywordGroup>
<ArticleNote Type="Misc">
<SimplePara>__________</SimplePara>
<SimplePara>Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 2, pp. 186–219, November, 2007.</SimplePara>
</ArticleNote>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Nonholonomic Riemann and Weyl tensors for flag manifolds</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">P.</namePart>
<namePart type="given">Ya.</namePart>
<namePart type="family">Grozman</namePart>
<affiliation>Equa Simulation AB, Stockholm, Sweden</affiliation>
<affiliation>E-mail: pavel@rixetele.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="given">A.</namePart>
<namePart type="family">Leites</namePart>
<affiliation>Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, Germany</affiliation>
<affiliation>Department of Mathematics, University of Stockholm, Stockholm, Sweden</affiliation>
<affiliation>E-mail: mleites@math.su.se</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Springer US</publisher>
<place>
<placeTerm type="text">Boston</placeTerm>
</place>
<dateCreated encoding="w3cdtf">2006-07-06</dateCreated>
<dateIssued encoding="w3cdtf">2007-11-01</dateIssued>
<dateIssued encoding="w3cdtf">2007</dateIssued>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form ω can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and dω. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically “flat”: it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet’s theorems describing these cohomologies. Using Premet’s theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>Lie algebra cohomology</topic>
<topic>Cartan prolongation</topic>
<topic>Riemann tensor</topic>
<topic>nonholonomic manifold</topic>
<topic>flag manifold</topic>
<topic>G 2-structure</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Theoretical and Mathematical Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Theor Math Phys</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal" authority="ISTEX" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">2007-11-01</dateIssued>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<subject>
<genre>Journal-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="P">Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="P19005">Mathematical and Computational Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="M13003">Applications of Mathematics</topic>
</subject>
<identifier type="ISSN">0040-5779</identifier>
<identifier type="eISSN">1573-9333</identifier>
<identifier type="JournalID">11232</identifier>
<identifier type="IssueArticleCount">6</identifier>
<identifier type="VolumeIssueCount">3</identifier>
<part>
<date>2007</date>
<detail type="volume">
<number>153</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>1511</start>
<end>1538</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer Science+Business Media, Inc., 2007</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">1B7087E7EE757B38E903282CC347F8A7FD91C0C4</identifier>
<identifier type="ark">ark:/67375/VQC-680DH90F-W</identifier>
<identifier type="DOI">10.1007/s11232-007-0131-z</identifier>
<identifier type="ArticleID">131</identifier>
<identifier type="ArticleID">s11232-007-0131-z</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer Science+Business Media, Inc., 2007</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer Science+Business Media, Inc., 2007</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1B7087E7EE757B38E903282CC347F8A7FD91C0C4/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000584 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000584 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1B7087E7EE757B38E903282CC347F8A7FD91C0C4
   |texte=   Nonholonomic Riemann and Weyl tensors for flag manifolds
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022