Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Titre (en) » - entrée « weight »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
weierstrass < weight < weighted  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 24.
[0-20] [0 - 20][0 - 24][20-23][20-40]
Ident.Authors (with country if any)Title
000286 (2011) A. Álvarez [Espagne]Annihilators for cusp forms of weight 2 and level 4 p m
000373 (2010) Rieuwert J. Blok [États-Unis]Highest weight modules and polarized embeddings of shadow spaces
000516 (2009) Roe Goodman [États-Unis] ; Nolan R. Wallach [États-Unis]Highest-Weight Theory
000C84 (2004) Tetsushi Ito [Japon]Weight-monodromy conjecture for p -adically uniformized varieties
001608 (1998) Karl-Hermann NeebHolomorphic highest weight representations of infinite dimensional complex classical groups
001610 (1998) T. Tanisaki [Japon]Highest Weight Modules Associated to Parabolic Subgroups with Commutative Unipotent Radicals
001743 (1997) Georgia Benkart [États-Unis] ; Daniel Britten [États-Unis] ; Frank Lemire [États-Unis]Modules with bounded weight multiplicities for simple Lie algebras
001764 (1997) Thomas J. Enright [États-Unis] ; Nolan R. Wallach [États-Unis]Embeddings of unitary highest weight representations and generalized Dirac operators
001793 (1997) Valentina Guizzi [Italie]A Classification of Unitary Highest Weight Modules of the Quantum Analogue of the Symmetric Pair ( An , A n −1)
001832 (1996) Joachim Hilgert [Allemagne] ; Karl-Hermann Neeb [Allemagne] ; Bent RstedUnitary highest weight representations via the orbit method I: The scalar case
001913 (1996) Antal Balog [Hongrie] ; Henri Darmon [Canada, États-Unis] ; Ken Ono [États-Unis]Congruences for Fourier coefficients of half-integral weight modular forms and special values of L-functions
001A10 (1995) K. H. Neeb [Allemagne]On the Convexity of the Moment Mapping for Unitary Highest Weight Representations
001A26 (1995) Lie group weight multiplicities from conformal field theory
001E47 (1991) A. D. Berenshtein ; A. V. ZelevinskiiWhen is the multiplicity of a weight equal to 1?
002035 (1990) Thomas J. Enright [États-Unis] ; Anthony Joseph [Israël]An intrinsic analysis of unitarizable highest weight modules
002601 (1983) J. D. Rogawski [États-Unis] ; J. B. Tunnell [États-Unis]On Artin L -functions associated to Hilbert modular forms of weight one
002611 (1983) Victor G. Kac [États-Unis]Integrable highest weight modules: the weight system, the contravariant Hermitian form and the restriction problem
002643 (1983) Thomas Enright ; Roger Howe ; Nolan WallachA Classification of Unitary Highest Weight Modules
002775 (1981) Highest-weight representations of the sl(n+1,C) algebras: Maximal representations
002860 (1980) ON DIRICHLET SERIES CONNECTED WITH MODULAR FORMSOF INTEGRAL AND HALF-INTEGRAL WEIGHT
002873 (1980) James E. Humphreys [États-Unis]Highest weight modules for semisimple Lie algebras

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Title.i -k "weight" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Title.i  \
                -Sk "weight" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Title.i
   |clé=    weight
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022