Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Titre (en) » - entrée « tate »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
tannakian < tate < taut  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 31.
[0-20] [0 - 20][0 - 31][20-30][20-40]
Ident.Authors (with country if any)Title
000009 (2013) M. Ram Murty [Canada] ; V. Kumar Murty [Canada]The Sato–Tate Conjecture for the Ramanujan τ -Function
000088 (2012) François Charles [France]The Tate conjecture for K 3 surfaces over finite fields
000876 (2007) Christian Wuthrich [Suisse]The fine Tate–Shafarevich group
000A75 (2006) Ken-Ichi Sugiyama [Japon]On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface
000B92 (2005) Ulf Kühn [Allemagne]Néron-Tate heights on algebraic curves and subgroups of the modular group
000C48 (2005) Hendrik Kasten [Allemagne]A Stickelberger index for the Tate–Shafarevich group
000D02 (2004) Stephen S. KudlaTate’s Thesis
000D20 (2004) A. C. Cojocaru [Canada] ; W. Duke [États-Unis]Reductions of an elliptic curve and their Tate-Shafarevich groups
000D29 (2004) Hoseog Yu [Corée du Sud]On Tate-Shafarevich groups over galois extensions
000D49 (2004) J. Van HamelLichtenbaum-Tate duality for varieties over p-adic fields
000D74 (2004) Frédéric Paugam [France]Galois representations, Mumford-Tate groups and good reduction of abelian varieties
000D80 (2004) Takeshi TsujiExplicit reciprocity law and formal moduli for Lubin-Tate formal groups
000E66 (2003) D. Burns [Royaume-Uni] ; C. Greither [Allemagne]On the Equivariant Tamagawa number conjecture for Tate motives
001285 (2000) S. David ; M. HindryMinoration de la hauteur de Néron-Tate sur les variétés abÉliennes de type C. M
001410 (1999) Michael Spie [États-Unis]Proof of the Tate conjecture for products of elliptic curves over finite fields
001657 (1998) Chad Schoen [États-Unis]An integral analog of the Tate conjecture for one dimensional cycles on varieties over finite fields
001862 (1996) Yves André [France]On the Shafarevich and Tate conjectures for hyperkähler varieties
001866 (1996) S. G. TankeevOn the Mumford-Tate conjecture for abelian varieties
001979 (1995) Surfaces of type K3 over number fields and the Mumford-Tate conjecture. II
001D53 (1992) Norbert SchappacherTate’s Conjecture on the Endomorphisms of Abelian Varieties
001E18 (1992) Henri Darmon [États-Unis]A refined conjecture of Mazur-Tate type for Heegner points

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Title.i -k "tate" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Title.i  \
                -Sk "tate" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Title.i
   |clé=    tate
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022