Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Keywords » - entrée « Tate »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Tata institute < Tate < Tate category  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 33.
[0-20] [0 - 20][0 - 33][20-32][20-40]
Ident.Authors (with country if any)Title
000289 (2011) Peter O'Sullivan [Australie]Algebraic cycles on an abelian variety
000A75 (2006) Ken-Ichi Sugiyama [Japon]On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface
000C38 (2005) David Harari ; Tamás SzamuelyArithmetic Duality Theorems for 1-Motives
000D49 (2004) J. Van HamelLichtenbaum-Tate duality for varieties over p-adic fields
000F41 (2002) The arithmetic and geometry of a generic hypersurface section
001101 (2001) S. Del Ba OOn the Chow motive of some moduli spaces
001271 (2000) On the Brauer group
001584 (1998) On Frobenius traces
001862 (1996) Yves André [France]On the Shafarevich and Tate conjectures for hyperkähler varieties
001870 (1996) D. Burns [Royaume-Uni, États-Unis] ; M. Flach [Royaume-Uni, États-Unis]Motivic L-functions and Galois module structures
001923 (1996) Yasuhiro GotoArithmetic of Weighted Diagonal Surfaces over Finite Fields
001A06 (1995) Jan Neková [États-Unis]On the p -adic height of Heegner cycles
001C54 (1993) Ralph Greenberg [États-Unis] ; Glenn Stevens [États-Unis]p -adic L -functions and p -adic periods of modular forms
001D56 (1992) Chad Schoen [États-Unis]Some examples of torsion in the Griffiths group
001E18 (1992) Henri Darmon [États-Unis]A refined conjecture of Mazur-Tate type for Heegner points
002261 (1987) V. Kumar Murty [Canada] ; Dinakar Ramakrishnan [États-Unis]Period relations and the Tate conjecture for Hilbert modular surfaces
002532 (1984) ON CYCLES ON ABELIAN VARIETIES OF PRIME DIMENSION OVER FINITE OR NUMBER FIELDS
002551 (1984) B. Mazur [États-Unis] ; A. Wiles [États-Unis]Class fields of abelian extensions of Q
002584 (1983) N. O. Nygaard [États-Unis]The Tate conjecture for ordinary K3 surfaces over finite fields
002A00 (1978) Nicholas M. Katz [États-Unis]p -Adic L -functions for CM fields
002A27 (1978) ON PAIRINGS IN ELLIPTIC CURVES OVER GLOBAL FIELDS

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/KwdEn.i -k "Tate" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/KwdEn.i  \
                -Sk "Tate" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    KwdEn.i
   |clé=    Tate
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022