Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Teeft.i » - entrée « Complex semisimple »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Complex seminar < Complex semisimple < Complex signature  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 18.
Ident.Authors (with country if any)Title
000494 (2009) Ji Hrivnk [Canada, République tchèque] ; Ji Patera [Canada, République tchèque]On discretization of tori of compact simple Lie groups
001861 (1996) Michael Wüstner [Allemagne]On the Surjectivity of the Exponential Function of Complex Algebraic, Complex Semisimple, and Complex Splittable Lie Groups
001E47 (1991) A. D. Berenshtein ; A. V. ZelevinskiiWhen is the multiplicity of a weight equal to 1?
001F93 (1990) ON THE COHOMOLOGY OF SOME NILPOTENT LIE ALGEBRAS
002272 (1987) Henryk Hecht [États-Unis] ; Dragan Mili I [États-Unis] ; Wilfried Schmid [États-Unis] ; Joseph A. Wolf [États-Unis]Localization and standard modules for real semisimple Lie groups I: The duality theorem
002297 (1987) CONSTRUCTION OF COMPLETELY INTEGRABLE GEODESIC FLOWSON COMPACT SYMMETRIC SPACES
002456 (1985) D. V. AlekseevskiiLie groups
002511 (1984) R. Hotta [Japon] ; M. Kashiwara [Japon]The invariant holonomic system on a semisimple Lie algebra
002886 (1980) COMPLETE COMPLEX STRUCTURES ON HOMOGENEOUS SPACES OF SEMISIMPLE LIE GROUPS
002B69 (1976) D. P. ZhelobenkoRepresentations of complex semisimple lie groups
002C10 (1976) AN ANALOG OF CARTAN DUALITY OVER p-ADIC FIELDS
002D96 (1973) SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P
002F36 (1971) I. N. Bernshtein ; I. M. Gel'Fand ; S. I. Gel'FandStructure of representations generated by vectors of highest weight
002F60 (1971) CLASSIFICATION OF EXTREMALLY IRREDUCIBLE ANDNORMALLY IRREDUCIBLE REPRESENTATIONS OF SEMISIMPLECOMPLEX CONNECTED LIE GROUPS
003022 (1970) DESCRIPTION OF THE COMPLETELY IRREDUCIBLE REPRESENTATIONSOF A COMPLEX SEMISIMPLE LIE GROUP
003063 (1969) Phillip Griffiths [États-Unis] ; Wilfried Schmid [États-Unis]Locally homogeneous complex manifolds
003066 (1969) HARMONIC ANALYSIS OF FUNCTIONS ON SEMISIMPLE LIE GROUPS. II
003102 (1968) THE ANALYSIS OF IRREDUCIBILITY IN THE CLASS OF ELEMENTARYREPRESENTATIONS OF A COMPLEX SEMISIMPLE LIE GROUP

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i -k "Complex semisimple" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i  \
                -Sk "Complex semisimple" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Teeft.i
   |clé=    Complex semisimple
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022