Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Teeft.i » - entrée « Chevalley basis »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Chevalley base < Chevalley basis < Chevalley commutator formula  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 23.
[0-20] [0 - 20][0 - 23][20-22][20-40]
Ident.Authors (with country if any)Title
000C18 (2005) Deformations of classical Lie algebras with homogeneous root system in characteristic two. I
001033 (2001) W. A. De Graaf [Royaume-Uni]Constructing representations of split semisimple Lie algebras
001102 (2001) Nikolai Gordeev [Russie] ; Ulf Rehmann [Allemagne]On Multicommutators for Simple Algebraic Groups
001115 (2001) R. B Howlett [Australie] ; L. J Rylands [Australie] ; D. E Taylor [Australie]Matrix Generators for Exceptional Groups of Lie Type
001120 (2001) Terrell L. HodgeLie Triple Systems, Restricted Lie Triple Systems, and Algebraic Groups
001121 (2001) Arjeh M. Cohen [Pays-Bas] ; Anja Steinbach [Allemagne] ; Rosane Ushirobira [France] ; David WalesLie Algebras Generated by Extremal Elements
001321 (2000) Deformations of classical Lie algebras
001400 (1999) Sandro Mattarei [Italie]Some Thin Pro- p -Groups
001543 (1998) Howard GarlandThe Arithmetic Theory of Loop Groups. II. The Hilbert-Modular Case
001651 (1998) Tadayoshi Takebayashi [Japon]Chevalley Groups Associated to Elliptic Lie Algebras
001849 (1996) Boris Širola [Croatie]Some Structural Results for Nonsymmetric Pairs of Lie Algebras
001883 (1996) Yun Gao [Canada, Allemagne]Involutive Lie algebras graded by finite root systems and compact forms of IM algebras
001884 (1996) Yun Gao [Canada, Allemagne]Involutive Lie algebras graded by finite root systems and compact forms of IM algebras
001D82 (1992) S. Berman [Canada] ; R. V. Moody [Canada]Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy
001E46 (1991) q-fermionic operators and quantum exceptional algebras
001E99 (1991) James A. Carlson [États-Unis] ; Luis Hernández [États-Unis]Harmonic maps from compact Kähler manifolds to exceptional hyperbolic spaces
001F95 (1990) ON PROJECTIVE SIMPLICITYOF CERTAIN GROUPS OF RATIONAL POINTSOVER ALGEBRAIC NUMBER FIELDS
002077 (1989) Z. Magyar [Hongrie]On the classification of real semi-simple Lie algebras
002465 (1985) GENERALIZED GROUP IDENTITIES IN LINEAR GROUPS
002573 (1983) D. I. Olive [États-Unis, Royaume-Uni] ; N. Turok [États-Unis, Royaume-Uni]Algebraic structure of Toda systems
002780 (1981) John Phillip Jacob [États-Unis]Geodesic symmetries of homogeneous Kähler Manifolds

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i -k "Chevalley basis" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i  \
                -Sk "Chevalley basis" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Teeft.i
   |clé=    Chevalley basis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022