Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Teeft.i » - entrée « Borel subalgebra »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Borel sets < Borel subalgebra < Borel subalgebras  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 20.
Ident.Authors (with country if any)Title
000B38 (2006) Hechmi Ben Messaoud [Tunisie]Almost split real forms for hyperbolic KacMoody Lie algebras
001079 (2001) Walter Borho [Allemagne] ; Anthony Joseph [Israël]Sheets and Topology of Primitive Spectra for Semisimple Lie Algebras
001218 (2000) Paola Cellini [Italie] ; Paolo Papi [Italie]ad -Nilpotent ideals of a Borel subalgebra
001505 (1998) Claudia Daboul [Allemagne] ; Jamil Daboul [Israël]From hydrogen atom to generalized Dynkin diagrams
001570 (1998) J. Hemmeter [États-Unis] ; V. J. Ustimenko [Ukraine] ; A. J. Woldar [États-Unis]Orbital Schemes of B 3( q ) Acting on 2-Dimensional Totally Isotropic Subspaces
001849 (1996) Boris Širola [Croatie]Some Structural Results for Nonsymmetric Pairs of Lie Algebras
001856 (1996) Frederic Bidegain [France] ; Georges Pinczon [France]Quantization of Poisson-Lie groups and applications
001A31 (1995) Alexander Premet [États-Unis]Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture
001F08 (1991) Josef Dorfmeister [États-Unis] ; Zhuang-Dan Guan [États-Unis]Fine structure of reductive pseudo-Kählerian spaces
001F70 (1990) A. A. Voronov ; Yu. I. ManinSupercell partitions of flag superspaces
001F93 (1990) ON THE COHOMOLOGY OF SOME NILPOTENT LIE ALGEBRAS
002029 (1990) Yu. B. KhakimdzhanovCharacteristically nilpotent Lie algebras
002266 (1987) ON THE INTEGRABILITY OF INVARIANT HAMILTONIAN SYSTEMS WITH HOMOGENEOUS CONFIGURATION SPACES
002272 (1987) Henryk Hecht [États-Unis] ; Dragan Mili I [États-Unis] ; Wilfried Schmid [États-Unis] ; Joseph A. Wolf [États-Unis]Localization and standard modules for real semisimple Lie groups I: The duality theorem
002404 (1986) Luis G. Casian [États-Unis]Asymptotics of matrix coefficients, perverse sheaves and Jacquet modules
002471 (1985) S. A. Kamalin [Russie] ; A. M. Perelomov [Russie]Construction of canonical coordinates on polarized coadjoint orbits of Lie groups
002586 (1983) THE INTEGRATION OF THE EQUATIONS FOR GEODESICSOF LEFT-INVARIANT METRICS ON SIMPLE LIE GROUPSUSING SPECIAL FUNCTIONS
002782 (1981) FINITE-DIMENSIONAL REPRESENTATIONS OFLIE ALGEBRAS AND COMPLETELY INTEGRABLE SYSTEMS
002855 (1980) S. Kumaresan [Inde]On the canonical k -types in the irreducible unitary g -modules with non-zero relative cohomology
002A24 (1978) Bertram Kostant [États-Unis]On Whittaker vectors and representation theory

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i -k "Borel subalgebra" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/Teeft.i  \
                -Sk "Borel subalgebra" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    Teeft.i
   |clé=    Borel subalgebra
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022