Serveur d'exploration Bourbaki - Checkpoint (Istex)

Index « Keywords » - entrée « Phase space »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Phase rule < Phase space < Phase spaces  Facettes :

List of bibliographic references

Number of relevant bibliographic references: 19.
Ident.Authors (with country if any)Title
000094 (2012) José A. VallejoSymplectic connections and Fedosov's quantization on supermanifolds
000726 (2008) Pure spinor partition function and the massive superstring spectrum
001109 (2001) N-wave interactions related to simple Lie algebras. 2-reductions and soliton solutions
001234 (2000) Symmetry reduction for quantizeddiffeomorphism-invariant theories of connections
001514 (1998) Mikhail Karasev [Russie]Advances in quantization: quantum tensors, explicit star-products, and restriction to irreducible leaves
001A21 (1995) S. Grekas [Grèce]Measure-theoretic problems in topological dynamics
001B11 (1994) A. Gorsky [Suède] ; N. Nekrasov [Suède]Hamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theory
001D03 (1993) José F. Cari Ena [Espagne] ; José Fernández-Nú Ez [Espagne]Geometric Theory of Time‐Dependent Singular Lagrangians
001D28 (1992) L. Fehér [Irlande (pays), Hongrie] ; L. O'Raifeartaigh [Irlande (pays)] ; P. Ruelle [Irlande (pays)] ; I. Tsutsui [Irlande (pays)] ; A. Wipf [Suisse]On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories
002188 (1988) INTEGRABLE DYNAMICAL SYSTEMSASSOCIATED WITH THE KdV EQUATION
002309 (1987) ANALOGUES OF THE OBJECTS OF LIE GROUP THEORYFOR NONLINEAR POISSON BRACKETS
002338 (1986) A. Grossmann [France] ; J. Slawny [États-Unis]Von Neumann algebras associated to quantum-mechanical constants of motion
002423 (1985) Eugene Gutkin [États-Unis]Integrable Hamiltonians with exponential potential
002556 (1984) Asymptotic and geometric quantization
002687 (1982) J. J. Duistermaat [Pays-Bas] ; G. J. Heckman [Pays-Bas]On the variation in the cohomology of the symplectic form of the reduced phase space
002729 (1981) M. A. Olshanetsky [Russie] ; A. M. Perelomov [Russie]Classical integrable finite-dimensional systems related to Lie algebras
002935 (1979) W. Lisiecki [Pologne] ; A. Odzijewicz [Pologne]Twistor flag spaces as phase spaces of conformal particles
002B47 (1976) Jan J. Sławianowski [Pologne]Deformable gyroscope in a non-euclidean space classical, non-relativistic theory
002C47 (1975) Jan J. SławianowskiThe mechanics of an affinely-rigid body

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/KwdEn.i -k "Phase space" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/KwdEn.i  \
                -Sk "Phase space" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    indexItem
   |index=    KwdEn.i
   |clé=    Phase space
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022