Serveur d'exploration sur les chartes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nasal flow limitation in children

Identifieur interne : 002143 ( Istex/Checkpoint ); précédent : 002142; suivant : 002144

Nasal flow limitation in children

Auteurs : RBID : ISTEX:AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE

English descriptors

Abstract

Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF50 and MEF50) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF50 increased with the BR strip (P < 0.05). Xylometazoline also caused a significant increase in all measured flows (P < 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/(SICI)1099-0496(199901)27:1<32::AID-PPUL7>3.0.CO;2-O

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nasal flow limitation in children</title>
<author>
<name sortKey="Pickering, Daniel N" uniqKey="Pickering D">Daniel N. Pickering</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Child Health, Leicester University, Leicester</wicri:regionArea>
<wicri:noRegion>Leicester</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX</wicri:regionArea>
<wicri:noRegion>Leicester LE2 7LX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beardsmore, Caroline S" uniqKey="Beardsmore C">Caroline S. Beardsmore</name>
<affiliation wicri:level="1">
<mods:affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Child Health, Leicester University, Leicester</wicri:regionArea>
<wicri:noRegion>Leicester</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX</wicri:regionArea>
<wicri:noRegion>Leicester LE2 7LX</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="RBID">ISTEX:AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE</idno>
<date when="1999">1999</date>
<idno type="doi">10.1002/(SICI)1099-0496(199901)27:1<32::AID-PPUL7>3.0.CO;2-O</idno>
<idno type="url">https://api.istex.fr/document/AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002663</idno>
<idno type="wicri:Area/Istex/Curation">002663</idno>
<idno type="wicri:Area/Istex/Checkpoint">002143</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">8755-6863</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Decongestant</term>
<term>Flow‐volume curve</term>
<term>Nasal cycle</term>
<term>Nasal stent</term>
<term>Nose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF50 and MEF50) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF50 increased with the BR strip (P < 0.05). Xylometazoline also caused a significant increase in all measured flows (P < 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<copyrightdate>1999</copyrightdate>
<author>
<json:item>
<name>Daniel N. Pickering BSc</name>
<affiliations>
<json:string>Department of Child Health, Leicester University, Leicester, United Kingdom</json:string>
<json:string>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Caroline S. Beardsmore PhD</name>
<affiliations>
<json:string>Department of Child Health, Leicester University, Leicester, United Kingdom</json:string>
<json:string>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>eng</lang>
<value>flow‐volume curve</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>nose</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>nasal stent</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>decongestant</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>nasal cycle</value>
</json:item>
</subject>
<genre>
<json:string>Serial article</json:string>
</genre>
<host>
<genre></genre>
<language></language>
<issn>
<json:string>8755-6863</json:string>
</issn>
<title>Pediatric Pulmonology</title>
<doi>
<json:string>10.1002/(ISSN)1099-0496</json:string>
</doi>
</host>
<language>
<json:string>eng</json:string>
</language>
<abstract>Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF50 and MEF50) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF50 increased with the BR strip (P > 0.05). Xylometazoline also caused a significant increase in all measured flows (P > 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.</abstract>
<title>Nasal flow limitation in children</title>
<pubdate>1999-01</pubdate>
<doi>
<json:string>10.1002/(SICI)1099-0496(199901)27:1>32::AID-PPUL7>3.0.CO;2-O</json:string>
</doi>
<id>AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE/fulltext/zip</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE/fulltext/tei">
<teiHeader type="text">
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Nasal flow limitation in children</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>John Wiley & Sons, Inc.</p>
</availability>
<date>1999-01-29</date>
</publicationStmt>
<notesStmt>
<note>Leicester Health</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Nasal flow limitation in children</title>
<author>
<persName>
<forename type="first">Daniel N.</forename>
<surname>Pickering</surname>
<roleName type="degree">BSc</roleName>
</persName>
<affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</affiliation>
<note type="correspondence">
<p>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</p>
</note>
</author>
<author>
<persName>
<forename type="first">Caroline S.</forename>
<surname>Beardsmore</surname>
<roleName type="degree">PhD</roleName>
</persName>
<affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</affiliation>
<note type="correspondence">
<p>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</p>
</note>
</author>
</analytic>
<monogr>
<title level="j">Pediatric Pulmonology</title>
<title level="j" type="abbrev">Pediatr. Pulmonol.</title>
<idno type="pISSN">8755-6863</idno>
<idno type="eISSN">1099-0496</idno>
<idno type="DOI">10.1002/(ISSN)1099-0496</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1999-01"></date>
<biblScope unit="vol">27</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="32">32</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
</monogr>
<idno type="istex">AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE</idno>
<idno type="DOI">10.1002/(SICI)1099-0496(199901)27:1<32::AID-PPUL7>3.0.CO;2-O</idno>
<idno type="ArticleID">PPUL7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999-01-29</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF50 and MEF50) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF50 increased with the BR strip (P < 0.05). Xylometazoline also caused a significant increase in all measured flows (P < 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>flow‐volume curve</term>
</item>
<item>
<term>nose</term>
</item>
<item>
<term>nasal stent</term>
</item>
<item>
<term>decongestant</term>
</item>
<item>
<term>nasal cycle</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-01-29">Created</change>
<change when="1999-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-0496</doi>
<issn type="print">8755-6863</issn>
<issn type="electronic">1099-0496</issn>
<idGroup>
<id type="product" value="PPUL"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="PEDIATRIC PULMONOLOGY">Pediatric Pulmonology</title>
<title type="short">Pediatr. Pulmonol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/(SICI)1099-0496(199901)27:1<>1.0.CO;2-M</doi>
<numberingGroup>
<numbering type="journalVolume" number="27">27</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="1999-01">January 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="7" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/(SICI)1099-0496(199901)27:1<32::AID-PPUL7>3.0.CO;2-O</doi>
<idGroup>
<id type="unit" value="PPUL7"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="5"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1999 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1997-09-09"></event>
<event type="manuscriptAccepted" date="1998-08-05"></event>
<event type="firstOnline" date="1999-01-29"></event>
<event type="publishedOnlineFinalForm" date="1999-01-29"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-07"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">32</numbering>
<numbering type="pageLast">36</numbering>
</numberingGroup>
<correspondenceTo>Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PPUL.PPUL7.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="15"></count>
<count type="wordTotal" number="3022"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Nasal flow limitation in children</title>
<title type="short" xml:lang="en">Nasal Flow Limitation in Children</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Daniel N.</givenNames>
<familyName>Pickering</familyName>
<degrees>BSc</degrees>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Caroline S.</givenNames>
<familyName>Beardsmore</familyName>
<degrees>PhD</degrees>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">flow‐volume curve</keyword>
<keyword xml:id="kwd2">nose</keyword>
<keyword xml:id="kwd3">nasal stent</keyword>
<keyword xml:id="kwd4">decongestant</keyword>
<keyword xml:id="kwd5">nasal cycle</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Leicester Health</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF
<sub>50</sub>
and MEF
<sub>50</sub>
) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF
<sub>50</sub>
increased with the BR strip (
<i>P</i>
< 0.05). Xylometazoline also caused a significant increase in all measured flows (
<i>P</i>
< 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.5">
<titleInfo lang="eng">
<title>Nasal flow limitation in children</title>
</titleInfo>
<titleInfo type="abbreviated" lang="eng">
<title>Nasal Flow Limitation in Children</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title></title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel N.</namePart>
<namePart type="family">Pickering</namePart>
<namePart type="termsOfAddress">BSc</namePart>
<affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</affiliation>
<affiliation>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline S.</namePart>
<namePart type="family">Beardsmore</namePart>
<namePart type="termsOfAddress">PhD</namePart>
<affiliation>Department of Child Health, Leicester University, Leicester, United Kingdom</affiliation>
<affiliation>Correspondence: Dept. of Child Health, Leicester University, Faculty of Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre>Serial article</genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1999-01-29</dateCreated>
<dateIssued encoding="w3cdtf">1999-01</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="eng">Nasal congestion due to the common cold may be exacerbated in small children because of their small nasal passages. Our aims were 1) to test the hypothesis that smaller children have relatively larger nasal airways compared to the intrathoracic airways, and 2) to examine the effect of stenting and a decongestant on nasal patency and nasal flow. During oral forced vital capacity (FVC) maneuvers, expiratory flow is limited by intrathoracic airways. During nasal FVC, flow at high volumes is limited by the nose. The point where the nasal flow–volume curve becomes superimposable on the oral curve (%Sup) depends on the relative resistance of nasal and intrathoracic airways. Fifty‐four healthy children (28 male), median age 9.5 years (range 5.9–16.0), performed full forced respiratory maneuvers through: 1) the mouth, 2) the nose, 3) the nose after application of an external stent (Breathe Right® (BR) strip), and 4) the nose following instillation of xylometazoline. Peak inspiratory and expiratory flow (PIF and PEF), and mid‐inspiratory and expiratory flow (MIF50 and MEF50) all showed a significant decrease from the oral to the nasal baseline maneuver. Mean (SD) %Sup of the nasal baseline was 35.6 (13.7)% and was unrelated to height. PIF and MIF50 increased with the BR strip (P < 0.05). Xylometazoline also caused a significant increase in all measured flows (P < 0.05). Mean (SD) %Sup of the nasal maneuver after application of xylometazoline increased to 53.3 (14.0)%. We conclude that there is no evidence that relative resistance of nasal and intrathoracic airways change with height. The %Sup is easy to obtain and may prove a useful index of nasal patency. Pediatr Pulmonol. 1999; 27:32–36. © 1999 Wiley‐Liss, Inc.</abstract>
<note type="funding">Leicester Health</note>
<subject lang="eng">
<genre>Keywords</genre>
<topic>flow‐volume curve</topic>
<topic>nose</topic>
<topic>nasal stent</topic>
<topic>decongestant</topic>
<topic>nasal cycle</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Pediatric Pulmonology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Pediatr. Pulmonol.</title>
</titleInfo>
<identifier type="ISSN">8755-6863</identifier>
<identifier type="eISSN">1099-0496</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-0496</identifier>
<identifier type="PublisherID">PPUL</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE</identifier>
<identifier type="DOI">10.1002/(SICI)1099-0496(199901)27:1<32::AID-PPUL7>3.0.CO;2-O</identifier>
<identifier type="ArticleID">PPUL7</identifier>
<part>
<extent unit="pages">
<start>32</start>
<end>36</end>
<total>5</total>
</extent>
<extent unit="figures">
<total>3</total>
</extent>
<extent unit="tables">
<total>1</total>
</extent>
<extent unit="references">
<total>15</total>
</extent>
<extent unit="words">
<total>3022</total>
</extent>
</part>
<recordInfo>
<recordOrigin>WILEY</recordOrigin>
<recordContentSource>John Wiley & Sons, Inc.</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Linguistique/explor/CharterV3/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 002143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Linguistique
   |area=    CharterV3
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:AB69AA5AF079B7E4D6AC7F23FA179244A11A67DE
   |texte=   Nasal flow limitation in children
}}

Wicri

This area was generated with Dilib version V0.6.07.
Data generation: Mon Jun 22 09:43:01 2015. Site generation: Mon Mar 11 16:19:56 2024